
Dynamic HTML
The Definitive Reference

Dynamic HTML
The Definitive Reference
Danny Goodman
Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Dynamic HTML: The Definitive Reference
by Danny Goodman

Copyright © 1998 Danny Goodman. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Paula Ferguson

Production Editor: Mary Anne Weeks Mayo

Printing History:

July 1998: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly & Associates, Inc. The association between the image of a flamingo
and the topic of Dynamic HTML is a trademark of O’Reilly & Associates, Inc. Many of the
designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly & Associates, Inc.,
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.
ISBN: 1-56592-494-0 [1/00]
[M]

Table of Contents

Preface ... ix

I. Applying Dynamic HTML ... 1

1. The State of the Art ... 3
The Standards Alphabet Soup ... 4

Version Headaches .. 4
Dynamic H
Copyright
HTML 4.0 .. 5

Style Sheets ... 6

Document Object Model ... 9

ECMAScript ... 11

A Fragmenting World .. 12

2. Cross-Platform Compromises ... 14
What Is a Platform? .. 14

Navigator 4 DHTML ... 15

Internet Explorer 4 DHTML ... 19

Cross-Platform Strategies ... 21

Cross-Platform Expectations .. 27

3. Adding Style Sheets to Documents ... 28
Rethinking HTML Structures .. 28

Understanding Block-Level Elements ... 31

Two Types of Containment ... 33

CSS Platforms ... 35

Of Style Sheets, Elements, Attributes, and Values .. 36
v
TML: The Definitive Reference, eMatter Edition
 © 1999 Danny Goodman. All rights reserved.

vi Table of Contents
Embedding Style Sheets ... 39

Subgroup Selectors .. 44

Attribute Selector Futures: CSS2 .. 51

JavaScript Style Sheet Syntax ... 54

Cascade Precedence Rules .. 59

Cross-Platform Style Differences ... 62

4. Adding Dynamic Positioning to Documents 65
Creating Positionable Elements ... 66

Positioning Attributes ... 74

Changing Attribute Values via Scripting ... 80

Cross-Platform Position Scripting .. 86

Handling Navigator Window Resizing .. 93

Common Positioning Tasks ... 93

5. Making Content Dynamic .. 102
Writing Variable Content ... 102

Writing to Other Frames and Windows .. 104

Links to Multiple Frames ... 108

Image Swapping .. 109

Changing Tag Attribute Values .. 112

Changing Style Attribute Values .. 113

Changing Content .. 117

6. Scripting Events ... 132
Basic Events .. 132

Binding Event Handlers to Elements .. 135

Event Handler Return Values .. 139

Event Propagation .. 139

Examining Modifier Keys ... 147

Examining Mouse Buttons and Key Codes .. 150

Dragging Elements ... 152

Event Futures .. 156

7. Looking Ahead to HTML 4.0 .. 157
New Directions Overview ... 158

New Elements .. 160

Deprecated Elements ... 161

Obsolete Elements ... 161

New Element Attributes ... 161

Deprecated Attributes .. 162
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Table of Contents vii
II. Dynamic HTML Reference .. 165

8. HTML Reference ... 167
Attribute Value Types .. 168

Common HTML Attributes ... 171

Alphabetical Tag Reference ... 174

9. Document Object Reference .. 460
Property Value Types .. 461

About client- and offset- Properties .. 463

Event Handler Properties ... 464

Common Object Properties, Methods, and Collections 465

Alphabetical Object Reference .. 475

10. Style Sheet Attribute Reference .. 836
Attribute Value Types .. 837

Pseudo-Elements and Pseudo-Classes .. 839

At-Rules ... 840

Conventions .. 841

Alphabetical Attribute Reference ... 842

11. JavaScript Core Language Reference .. 909
Internet Explorer JScript Versions ... 909

About Static Objects ... 910

Core Objects ... 911

Operators .. 956

Control Statements ... 967

Global Functions .. 972

Statements ... 976

III. Cross References ... 979

12. HTML Attribute Index ... 981

13. Document Object Properties Index .. 987

14. Document Object Methods Index .. 1002

15. Document Object Event Handlers Index 1007
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

viii Table of Contents
IV. Appendixes ... 1011

A. Color Names and RGB Values .. 1013

B. HTML Character Entities .. 1018

C. Keyboard Event Character Values .. 1026

D. Internet Explorer Commands ... 1028

Glossary ... 1033

Index ... 1041
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Preface

I am going to admit a selfish m
product for my own consulting
gled online references and mon
World Wide Web Consortium (
features, I had had enough. M
and discrepancies of the hundr
scriptable object models. And n
patible a particular feature migh
Dynamic H
Copyright
Preface
otive for writing this book: I needed the finished
and development work. After struggling with tan-
strous printed versions of Netscape, Microsoft, and
W3C) documentation for Dynamic HTML (DHTML)
y human brain could no longer store the parallels
eds of terms for HTML attributes, style sheets, and
o browser maker was about to tell me how com-
t be in another browser. It was clearly time to roll

my own reference.

At first, I thought the project would be a relatively straightforward blending of con-
tent from available sources, with a pinch of my development experience thrown in
for flavoring. But the more I examined the existing documents, the worse the situ-
ation became. Developer documentation from the browser makers, and even the
W3C, contained inconsistencies and incomplete (if at times erroneous) informa-
tion. From the very beginning, it was clear that I could not trust anything I read,
but instead had to try as much as I could on as many browsers and browser ver-
sions as I could. Multiply all that code testing by the hundreds of HTML attributes,
CSS attributes, object properties, object methods, and event handlers...before I
knew it, many extra months of day-and-night coding and writing were history.

The result of that effort is the DHTML reference I’ve been wanting for a long
time—one that is especially well suited to creating content that works on Naviga-
tor and Internet Explorer. But even if you have the luxury of working in only one
of the browser brands, you should find the organization and browser version
information in this book valuable in your day-to-day development work. You may
also encounter descriptions of features that are not documented, but came to light
as a result of my probing into the inner workings of both browsers.
ix
TML: The Definitive Reference, eMatter Edition
 © 1999 Danny Goodman. All rights reserved.

x Preface
I would be the last person on the planet to promise that this book is perfect in
every way. In many instances, when a discrepancy between vendor documenta-
tion and observable reality occurred, I documented the reality. But there were
times during my explorations when even the observed reality didn’t jibe with
either the documentation or logical expectations. In some instances, the docu-
ments say one thing, and the implementations in two different operating system
versions of the same browser exhibit two entirely different behaviors. I have tried
to point out those issues as cautions for your own development, hoping for clarifi-
cation in future versions of the browsers and the W3C documents.

What You Should Already Know
Because this is a reference book, it has been written with the assumption that, in
the least, you have dabbled in Dynamic HTML. You should already be HTML liter-
ate and know the basics of client-side scripting in JavaScript. You need not be a
DHTML expert, but even the instructional chapters of Part I are very much crash
courses, intended for readers who are already comfortable with hand-coding web
pages (or at least modifying the HTML generated by WYSIWYG authoring tools).

Contents of This Book
This book is divided into four parts:

Part I, Applying Dynamic HTML
After making sense of the alphabet soup of industry standards surrounding
DHMTL, the chapters in this part demonstrate the use of cascading style
sheets, element positioning, dynamic content, and scripting events. These
chapters reveal not only how each browser implements the various DHTML
technologies, but also how to deploy as much as possible in a form that works
on both Navigator and Internet Explorer.

Part II, Dynamic HTML Reference
The chapters of Part II provide at-a-glance references for the tags, attributes,
objects, properties, methods, and event handlers of HTML, CSS, DOM, and
core JavaScript. These are the chapters I use all the time: to look up the
attributes of an HTML element or to see whether a particular object property is
available in the desired browser brands and versions. Every effort has been
expended to present this information in a condensed yet meaningful format.

Part III, Cross References
The chapters in Part III slice through the information of Part II along different
angles. Perhaps you recall the name of an attribute you found useful some
time ago, but don’t recall which elements provide that attribute. Here you can
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Preface xi
look up that attribute (or object property, method, or event handler) to find all
the items that recognize it.

Part IV, Appendixes
Several appendixes provide quick lookup for a variety of values useful in
HTML authoring and scripting. A glossary also gives you quick explanations of
some of the new and potentially confusing terminology of DHTML.

Conventions Used in This Book
Italic is used for:

• Pathnames, filenames, program names, email addresses, and web sites

• New terms where they are defined

Constant Width is used for:

• Any HTML, CSS, or scripting term, including HTML tags, attribute names,
object names, properties, methods, and event handlers

• All HTML and script code listings

Constant Width Italic is used for:

• Method and function parameter or assigned value placeholders that indicate
an item is to be replaced by a real value in actual use

Throughout Part II, compatibility tables accompany most entries. A number shown
for an item indicates the version of the designated browser or web standard in
which the term was first introduced. If an item premiere predates Navigator 2,
Internet Explorer 3, or HTML 3.2, it is assigned the value “all”. If an item is not
supported by a browser or standard as the book went to press, it is assigned the
value “n/a”.

Request for Comments
Your feedback on the quality of this book is important to us. If you discover any
errors, bugs, typos, explanations that you cannot grok, or platform-specific issues
not covered here, please let us know. You can email your bug reports and com-
ments to us at: bookquestions@ora.com.

Also be sure to check the errata list at http://www.oreilly.com/catalog/dhtmlref.
Previously reported errors and corrections are available for public view and fur-
ther comment.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

xii Preface
Acknowledgments
I had long wanted to write a book for the “class act” that is O’Reilly & Associates. I
thank Tim O’Reilly for trusting that my personal need for this book would trans-
late into the needs of other web page authors. Then I had the good fortune of the
book being assigned to Paula Ferguson, a first-rate editor in her own right (you
probably have on your bookshelf one or more excellent O’Reilly titles that have
benefited from her guidance). The reference chapters of this book presented
extraordinary design challenges that would make most publishers wince. Paula
shared my vision and worked magic with the O’Reilly designers to turn my dream
into a reality.

When I write about a comparatively new technology—and a complex one at
that—it is difficult to find someone who is knowledgeable enough to double-
check my work and articulate how to make things better. Amid the politically
charged browser wars, it is even more difficult to find a bipartisan supporter of the
developer in the trenches. I couldn’t have been luckier than when my old friend,
Dan Shafer, recommended his BUILDER.COM colleague, Charity Kahn, for the job.
I doubt she expected to wrestle with the nearly one-foot-thick original manu-
script, but she stuck with it to the very end. I still marvel at the insight and experi-
ence embedded within each comment and suggestion she made.

This book would not exist were it not for the many readers of my articles and
books over the past 20 years. My greatest reward has been to help you unlock
your own talent and create great solutions. To new readers, I bid you welcome, as
we all explore the possibilities that lie ahead in this new era of Dynamic HTML.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

I
I.Applying Dynamic HTML

This part of the book, Chapters 1 through 7, tries to make sense of the alphabet
soup of industry standards surrounding DHTML and demonstrates the use of cas-
cading style sheets, element positioning, dynamic content, and scripting events.

These chapters explain how Netscape Navigator and Microsoft Internet Explorer
implement the various DHTML technologies, and they discuss how to develop
cross-browser web applications.

• Chapter 1, The State of the Art

• Chapter 2, Cross-Platform Compromises

• Chapter 3, Adding Style Sheets to Documents

• Chapter 4, Adding Dynamic Positioning to Documents

• Chapter 5, Making Content Dynamic

• Chapter 6, Scripting Events

• Chapter 7, Looking Ahead to HTML 4.0
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L

Chapter 1Applying Dynamic HTML

In this chapter:
• The Standards

Alphabet Soup
• Version Headaches
• HTML 4.0
• Style Sheets
• Document Object

Model
• ECMAScript
• A Fragmenting World

It wasn’t all that long ago that b
tle more than an understandi
(HTML) tags, and perhaps mod
gram to generate a corporate
could start an Internet design b
tune 500 company. Ah, those w

The stakes are much higher n
Dynamic H
Copyright
1

1.The State of the Art
ecoming a web page authoring wizard required lit-
ng of a few dozen Hypertext Markup Language
est experience with a scanner and a graphics pro-
logo image file. Armed with that knowledge, you
usiness or become the online content guru at a For-
ere the good old days...about two years ago.

ow. The hobby phase is over. The Internet is big
business. Competition for visitor “hits” is enormous, as it becomes more and more
difficult to get your site noticed, much less bookmarked. Sensing that the author-
ing world wanted more out of HTML than a poor imitation of the printed page, the
web browser makers and the Internet standards bodies have been expanding the
capabilities of web pages at a feverish pace. These changes are allowing us to
make our pages more dynamic—pages that can “think and do” on their own,
without much help from the server once they have been loaded in the browser.
But at the same time, what we authors have to do to make our new, fancy con-
tent play on all the browsers is constantly changing.

As a result, it is no longer possible to become a web content guru by studying the
formal HTML recommendation published by the World Wide Web Consortium
(W3C). Adding effective Dynamic HTML (DHTML) content to your pages requires
an understanding of other technologies, specified by additional standards that exist
outside the charter of the original HTML Working Group. In this chapter, we’ll dis-
cuss the variety of standardization efforts that are currently underway. You should
begin to appreciate both how far the browser makers have come and how far they
have to go in providing us with compatible DHTML capabilities at a suitably high
level.
3
TML: The Definitive Reference, eMatter Edition
 © 1999 Danny Goodman. All rights reserved.

4 Chapter 1: The State of the Art
The Standards Alphabet Soup
There is no such thing as a single Dynamic HTML standard. DHTML is an amal-
gam of specifications that stem from multiple standards efforts and proprietary
technologies that are built into the two most popular DHTML-capable browsers,
Netscape Navigator and Internet Explorer, beginning with Version 4 of each
browser.

Efforts by various standards bodies and working groups within those bodies are as
fluid and fast moving as any Internet-related technology. As a savvy web content
author these days, you must know the acronyms of all relevant standards (HTML,
CSS, CSS-P, DOM, and ECMA for starters). You also have to keep track of the cur-
rent release of each standard, in addition to the release that is incorporated into
each version of each browser that you are developing for. Unfortunately for the
authoring community, it is not practical for the various standards bodies and the
browser makers to operate in complete synchronicity with each other. Market
pressures force browser makers to release new versions independent of the sched-
ules of the standards bodies.

Version Headaches
As a further complication, there are the inevitable prerelease versions of browsers
and standards.

Browser prereleases are sometimes called “preview editions” or “beta” versions.
While not officially released, these versions give us a chance to see what new
functionality will be available for content display in the next-generation browser.
Authors who follow browser releases closely sometimes worry when certain
aspects of their current pages fail to work properly in prerelease versions. The fear
is that the new version of the browser is going to break a carefully crafted master-
piece that runs flawlessly in released versions of the browser.

Somewhere between the releases of Netscape Navigator 2 and 3, I learned not to
fret over breakages that occur in prerelease browser versions. Of course, it is vital
to report any problems to the browser maker. I refuse, however, to modify my
HTML or scripting code to accommodate a temporary bug in a prerelease version
of a browser, as it is being used by an extremely small percentage of the popula-
tion. My feeling is that anyone who uses a prerelease browser does so at his or
her own risk. If my pages are breaking on that browser, they’re probably not the
only ones on the Net that are breaking. A user of a prerelease browser must
understand that using such a browser for mission-critical web work is as danger-
ous as entrusting your life’s work to a beta version of a word processing program.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
HTML 4.0 5
On the standards side, working groups usually publish prerelease versions of their
standards. These documents are very important to the people who build browsers
and authoring tools for us. The intent of publishing a working draft is not much
different from making a prerelease browser version public. The goal is to get as
many concerned netizens as possible looking over the material to find flaws or
shortcomings before the standard is published.

And speaking of standards, it is important to recognize that the final releases of
these documents from standards bodies are called not “standards” but “recommen-
dations.” No one is forcing browser makers to implement the recommendations.
Fortunately, from a marketing angle, it plays well to the web audience that a com-
pany’s browser adheres to the “standards.” Eventually—after enough release cycles
of both standards and browsers allow everyone to catch up with each other—our
lives as content creators should become easier.

In the meantime, the following sections provide a snapshot of the various stan-
dards and their implementation in browsers as they relate to the technologies that
affect DHTML.

HTML 4.0
The most recent release of recommendations for HTML is Version 4.0
(www.w3.org/MarkUp/). As you will see in more detail in Chapter 7, Looking
Ahead to HTML 4.0, HTML 4.0 has a considerably larger vocabulary than the previ-
ous release that is in common use, Version 3.2. Surprisingly, this time around the
standard is way ahead of the browser makers. Many of the new features of HTML
4.0 are designed for browsers that make the graphical user interface of a web page
more accessible to users who cannot see a monitor or use a keyboard. The new
tags and attributes readily acknowledge that a key component of the name World
Wide Web is World. Users of all different written and spoken languages need
equal access to the content of the Web. Thus, HTML 4.0 includes support for the
alphabets of most languages and provides the ability to specify that a page be ren-
dered from right to left, rather than left to right, to accommodate languages that
are written that way.

Perhaps the most important long-term effect of HTML 4.0, however, is distancing
the content of web pages from their formatting. Strictly speaking, the purpose of
HTML is to provide structural meaning to the content of pages. That’s what each
tag does: this blurb of text is a paragraph, another segment is labeled internally as
an acronym, and a block over there is reserved for data loaded in from an exter-
nal multimedia file. HTML 4.0 is attempting to wean authors from the familiar tags
that make text bold and red, for example. That kind of information is formatting
information, and it belongs to a separate standardization effort related to content
style.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

6 Chapter 1: The State of the Art
In the HTML 4.0 world, a chunk of text in a paragraph is bold because it is tagged
as being an element that requires emphasis. Whether it is bold or italic or green is
not defined by the HTML vocabulary, per se. Instead, the HTML passes the format-
ting decision to a style definition. When the text is viewed in a browser on a video
monitor, the color may be green and the style italic, but when the same page is
viewed through a projection system, it may be a different shade of green, to com-
pensate for the different ambient lighting conditions, and bold, so it is more read-
able at a distance. And when the content is being read aloud electronically for a
blind user, the voice speaks the tagged words with more emphasis. The key point
here is that the content—the words in this case—was written and tagged once.
Style definitions, either in the same document or maintained in separate files that
are linked into the document, can be modified and enhanced independently of the
content.

As a modern HTML author, you should find it encouraging that the HTML 4.0
working group did not operate in isolation from what is going on in the real
world. Their recognition of the work going on with style sheets is just one exam-
ple. Another is their clear understanding of the role of client-side scripting: the
<SCRIPT> and <NOSCRIPT> tags are part of the HTML 4.0 specification, and most
elements that get rendered on the page have scripting event handler attributes
defined for them right in the HTML 4.0 specification. This represents a very realis-
tic view of the web authoring world.

Netscape Navigator 4 was released many months before the HTML 4.0 specifica-
tion was published, which means that the HTML support in that browser was
decided on well before the scope of HTML 4.0 was finalized. As a result, Naviga-
tor’s support for the new features of HTML 4.0 is limited to the internationaliza-
tion features and the separation of style from content by way of style sheets. Many
of the new tags and the new attributes for existing tags are not supported in Navi-
gator 4. Internet Explorer 4 reached its final release much closer to the publica-
tion of the HTML 4.0 specification; as a result, the Microsoft browser includes sub-
stantially more support for new features of HTML 4.0, especially in the way of
structural elements for table components. Chapter 7 describes which new tags are
supported by each browser, and Chapter 8, HTML Reference, provides a complete
HTML reference.

Style Sheets
A style sheet is a definition of how content should be rendered on the page. The
link between a style sheet and the content it influences is either the tag name of
the HTML element that holds the content or an identifier associated with the ele-
ment by way of an attribute (such as the ID or CLASS attribute). When a style
sheet defines a border, the style definition doesn’t know (or care) whether the
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Style Sheets 7
border will be wrapped around a paragraph of text, an image, or an arbitrary
group of elements. All the style knows is that it specifies a border of a particular
thickness, color, and type for whatever element or identifier is associated with the
style. That’s how the separation of style from content works: the content is igno-
rant of the style and the style is ignorant of the content.

The standardization efforts for style sheets are still trying to establish themselves,
despite the fact that some versions have already been published. At the time the
Version 4 implementations of Navigator and Internet Explorer were under con-
struction, there were two separate, but related, style sheet efforts underway: Cas-
cading Style Sheets Level 1 (CSS1) and Cascading Style Sheets-Positioning (CSS-P).
The CSS-P functionality is being blended into the primary specification for the next
version of CSS, Cascading Style Sheets Level 2 (CSS2). All CSS standards activity is
under the auspices of the W3C (www.w3c.org/Style/). Chapter 10, Style Sheet
Attribute Reference, provides a complete reference for all the style attributes avail-
able in CSS1 and CSS2.

CSS1

The Cascading Style Sheets Level 1 recommendation lets authors define style rules
that are applied to HTML elements. A rule may apply to a single element, a related
group of elements, or all elements of a particular type (such as all P elements).
Style rules influence the rendering of elements, including their color, alignment,
border, margins, and padding between borders and the content. Style rules can
also control specialty items, such as whether an OL element uses letters or roman
numerals as item markers. CSS1 defines a full syntax for assigning style attributes
to rules.

CSS frees you from the tyranny of the pixel and the arbitrary way that each
browser measures fonts and other values. Font sizes can be specified in real point
sizes, instead of the absurd 1-through-7 relative scale of HTML. If you want a para-
graph or a picture indented from the left margin, you can do so with the preci-
sion of ems or picas, instead of relying on hokey arrangements of tables and trans-
parent images.

Many of the style specifications that go into CSS rules derive their inspiration from
existing HTML tag attributes that control visual aspects of elements. In some cases,
style sheet rules even supplant entire HTML elements. For example, in the world
of CSS, font changes within a paragraph are not done with tags. Instead, a
style sheet rule sets the font, and the style rule is assigned to structural HTML ele-
ments (perhaps tags) that surround the affected content.

On their own, style sheets as described in the CSS1 specification are not dynamic.
They simply set rules that are followed as a page loads. But under script control,
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

8 Chapter 1: The State of the Art
there is the possibility of changing a style rule after a page has loaded. Of course,
the browser must be constructed to allow such on-the-fly changes. I’ll have more
to say about that in the section on the document object model.

Netscape Navigator 4 implements most of the CSS1 specification. In addition to the
standard CSS1 rule specification syntax, Navigator offers authors an alternate syn-
tax (based on JavaScript) to assign style sheet rules to elements. We’ll talk more
about this alternate syntax in Chapter 3; for now it is important to understand that
it is merely another way of specifying CSS1 functionality. Internet Explorer began
supporting CSS1 in Version 3, although the functionality was little used by authors
unless the target audience was using IE 3 exclusively. More complete support of
the CSS1 specification is built into Version 4, but even in this version Microsoft has
elected to omit a few features. The good news is that CSS1 functionality is largely
the same in both IE 4 and Navigator 4, so we should start to see increased usage
of style sheets on the Web.

CSS-P

Begun as a separate working group effort, Cascading Style Sheets-Positioning
offers much more in the way of interactivity: more of the D in DHTML. The basic
notion of CSS-P is that an element or group of elements can be placed in its own
plane above the main document. The element lives in its own transparent layer, so
it can be hidden, shown, precisely positioned, and moved around the page with-
out disturbing the other content or the layout of the document. For the first time,
HTML elements can even overlap each other.

A script can make elements fly around the page or it can allow the user to drag
elements around the page. Content can pop up out of nowhere or expand to let
the viewer see more content—all without reloading the page or contacting the
server.

As an add-on to the CSS1 effort, CSS-P functionality uses a syntax that simply
extends the CSS1 vocabulary. CSS-P rules are embedded in documents the same
way that CSS1 rules are embedded.

The W3C work on CSS-P wasn’t as far along as CSS1 was when Navigator 4 had to
be put to bed. Moreover, Netscape had been lobbying the standards bodies to
adopt a different technique for handling content positioning, involving both a new
HTML tag and a scriptable object. Navigator 4 therefore implements the <LAYER>
tag and a scriptable layer object. A Netscape layer is in most respects the same as
a CSS-P layer, except that Netscape wanted to make it a part of the HTML syntax
as well.

Unfortunately for Netscape and Navigator 4, the <LAYER> tag was not adopted by
the W3C for HTML 4.0, and it is not likely that it will be added in the future. Even
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Document Object Model 9
so, if you are authoring for a Navigator-only audience, the LAYER element is a
convenient way to work with positionable elements. While its existence may not
be emphasized by Netscape in future browsers, it will certainly be available for
backward compatibility with pages that use it.

The good news for authors, however, is that whether you create a positionable
element via the CSS-P syntax or as a LAYER element, scripting the element on the
fly is the same in Navigator. The Netscape layer object exposes most of the CSS-P
properties for access via scripts.

In contrast, Internet Explorer 4 follows the CSS-P specification very closely. Includ-
ing a single attribute (the position attribute) in a style sheet rule makes the ele-
ment associated with that rule positionable.

The bad news for authors is that Microsoft’s way of working with positionable ele-
ments in scripts is different from Netscape’s way. All is not lost, however.
Chapter 4, Adding Dynamic Positioning to Documents, demonstrates ways to raise
the common denominator of positionable element scripting for both browsers in
the same document.

CSS2

In the next generation, Cascading Style Sheets Level 2, the work from the CSS-P
group is being blended with the other style sheet specifications. Therefore, with
the release of CSS2, there is no separate CSS-P specification. CSS2 also greatly
expands on CSS1 by supporting style sheet functionality for a lot of the advanced
work in HTML 4.0. Thus, you’ll find new style sheet attributes for electronic
speech (aural style sheets) and more attributes designed to remove style burdens
from HTML element attributes.

CSS2 is more recent than either Version 4 browser. Navigator 4 incorporates noth-
ing yet from CSS2, and Internet Explorer 4 has only a smattering of CSS2 attributes
built in. A lot of the new items added to CSS2 are optional, so there is no reason
to expect a 100% implementation in any browser in the future.

Document Object Model
When an HTML page loads into a scriptable browser, the browser creates a hid-
den, internal roadmap of all the elements it recognizes as scriptable objects. This
roadmap is hierarchical in nature, with the most “global” object—the browser win-
dow or frame—containing a document, which, in turn, contains a form, which, in
turn, contains form elements. For a script to communicate with one of these
objects, it must know the path through the hierarchy to reach the object, so it can
call one of its methods or set one of its property values. Document objects are the
“things” that scripts work with.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

10 Chapter 1: The State of the Art
Without question, the most hotly contested competition between Navigator and
Internet Explorer has been how each browser builds its internal roadmap of
objects. This roadmap is called a document object model (DOM). When one
browser implements an object as scriptable but the other doesn’t, it drives script-
ers and page authors to distraction. A lot of authors felt the sting of this problem
when they implemented image-swapping mouse rollovers in Navigator 3. They
soon discovered that images were not scriptable objects in Internet Explorer 3, so
their IE 3 users were getting script errors when visiting the sites and moving their
mice across the hot images.

In an effort to standardize this area, a separate working group of the W3C is
charged with setting recommendations for an HTML Document Object Model
(www.w3c.org/DOM/) that would become the common denominator among
browsers (the HTML subgroup is only one branch of a larger DOM effort). This is
an incredibly difficult task for a number of reasons: Netscape and Microsoft are
often at loggerheads on DOM philosophy; technically the browsers aren’t built the
same way inside, making common implementation of some ideas difficult; and his-
torically authors are familiar with their favorite browser’s way of handling objects
and don’t want to learn an entirely new method.

Of all the standards discussed in this chapter, DOM is the least solid. From indica-
tions in the working drafts, even the first release won’t cover some important cate-
gories, such as event handling. The issues around incompatible DOMs involve a
long, uphill struggle that DHTML authors will face for a while. We will be tanta-
lized by features of one browser, only to have our hopes dashed when we learn
that those features aren’t available in the other browser.

By virtue of being the first scriptable browser on the market by quite a margin,
Navigator 2 was the first to incorporate a scriptable object model. A subset of
HTML elements were exposed to scripts, but once a document was loaded into a
window or frame, nothing outside of form control content (i.e., text in text entry
areas, selections in checkboxes, etc.) could really change without reloading the
window or dynamically writing an entirely new document to the window. Even in
Navigator 3, the image was the only truly dynamic HTML element in a document
(as shown in those mouse rollovers).

Internet Explorer 3, as few web authors seemed to realize, was based on the
scriptability of Navigator 2. That’s why the image object didn’t exist in IE 3. Most
authors had left Navigator 2 in the dust of history, when, in fact, they should have
kept its limited capabilities fresher in their minds, to accommodate IE 3.

In the Version 4 browsers, however, the object model advantage has shifted dra-
matically in Microsoft’s favor. Literally every HTML element is exposed as a script-
able object in IE 4, and you can modify the content and style of inline content (not
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
ECMAScript 11
just positionable elements) on the fly. IE 4 automatically reflows the page (and
quickly, I might add) whenever you do anything that changes the page, like
adjusting the size of a font for a phrase in a paragraph or inserting some HTML
text in the middle of a paragraph.

Navigator 4, on the other hand, adds little to dynamic scripting beyond the ability
to swap the content of layers. Elements are exposed to scripts, but only in script
statements that use JavaScript to set style sheet rules as the page loads. And even if
the object model allowed content modification on the fly, pages do not automati-
cally reflow in Navigator 4.

The working draft of the DOM recommendation includes specifications that are
somewhere between the functionality provided by IE 4 and that provided by Navi-
gator 4. The draft recognizes that most elements should be reflected as document
objects whose properties and methods are accessible via scripting. It does not,
however, go so far as to dictate the automatic reflow of the page when content
changes. That loophole might take some of the pressure off Netscape for imple-
menting this functionality, but it also ensures that page authors are going to have
to struggle with the object model disparity for a lot longer (unless you are fortu-
nate enough to be able to design for just one browser).

Chapter 5, Making Content Dynamic, and Chapter 6, Scripting Events, cover the
current DOM implementations, while Chapter 9, Document Object Reference, pro-
vides a complete DOM reference.

ECMAScript
When Navigator 2 made its debut, it provided built-in client-side scripting with
JavaScript. Despite what its name might imply, the language was developed at
Netscape, originally under the name LiveScript. It was a marketing alliance
between Netscape and Sun Microsystems that put the “Java” into the JavaScript
name. Yes, there are some striking similarities between the syntax of JavaScript
and Java, but those existed even before the name was changed.

Internet Explorer 3 introduced client-side scripting for that browser. Microsoft pro-
vided language interpreters for two languages: VBScript, with its syntax based on
Microsoft’s Visual Basic language, and JScript, which, from a compatibility point of
view, was virtually 100% compatible with JavaScript in Navigator 2.

It is important to distinguish a programming language, such as JavaScript, from the
document object model that it scripts. It is too easy to forget that document objects
are not part of the JavaScript language, but are rather the “things” that program-
mers script with JavaScript (or VBScript). The JavaScript language is actually more
mundane in its scope. It provides the nuts and bolts that are needed for any pro-
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

12 Chapter 1: The State of the Art
gramming language: data types, variables, control structures, and so on. This is the
core JavaScript language.

From the beginning, JavaScript was designed as a kind of core language that could
be applied to any object model, and this has proven useful. Adobe Systems, for
example, uses JavaScript as the core scripting language for Acrobat Forms script-
ing. The same core language you use in HTML documents is applied to a com-
pletely different object model in Acrobat Forms.

To head off potentially disastrous incompatibilities between the implementations
of core JavaScript in different browsers, several concerned parties (including
Netscape and Microsoft) worked with a European computer standards group now
known only by its acronym: ECMA. The first published standard, ECMA-262
(www.ecma.ch/stand/ecma-262.htm), also known as the politically neutral ECMA-
Script, is essentially the version of JavaScript found in Navigator 3. Both Navigator
4 and Internet Explorer 4 implement this ECMA standard (with only very esoteric
exceptions). In addition, the Version 4 browsers both extend the work of the first
ECMA release in a consonant fashion. The core JavaScript language in Navigator 4
(JavaScript 1.2) is supported almost to the letter by JScript in Internet Explorer 4.

After the dissonance in the object model arena, it is comforting for web authors to
see so much harmony in the core language implementation. For the objects in the
core JavaScript language, Chapter 11, JavaScript Core Language Reference, pro-
vides a complete reference.

A Fragmenting World
As you will see throughout this book, implementing Dynamic HTML applications
that work equally well in both Navigator 4 and Internet Explorer 4 can be a chal-
lenge unto itself. Understanding and using the common-denominator functionality
among the various pieces of DHTML will lead you to greater success than plow-
ing ahead with a design for one browser and crossing your fingers about how
things will work in the other browser.

One more potential gotcha is that the same browser brand and version may not
behave identically across different operating systems. Navigator 4 is pretty good
about maintaining compatibility when you open a document in operating systems
as diverse as Solaris and Windows 3.1. The same can’t be said for Internet
Explorer 4, however. Microsoft readily admits that some features (detailed in later
chapters) are guaranteed to work only on Win32 operating systems (Windows 95,
Windows 98, and Windows NT 4). Even features that should work on non-Win32
systems, such as style sheets, don’t always translate well to, say, the Macintosh ver-
sion of IE 4.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
A Fragmenting World 13
If the inexorable flow of new browser versions, standards, and authoring features
teaches us anything, it is that each new generation only serves to fragment further
the installed base of browsers in use throughout the world. While I’m sure that
every reader of this book has the latest sub-version of at least one browser
installed (and probably a prerelease edition of a new version), the imperative to
upgrade rarely trickles down to all the users of yesterday’s browsers. If you are
designing web applications for public consumption, coming up with a strategy for
handling the ever-growing variety of browser versions should be a top priority. It’s
one thing to build a DHTML-based, context-sensitive pop-up menu system into
your pages for IE 4 users. But what happens to users who visit with Navigator 4,
or IE 3, or a pocket computer mini-browser, or Lynx?

There is no quick and easy answer to this question. So much depends on your
content, the image you want to project via your application, and your intended
audience. If you set your sights too high, you may leave many visitors behind; if
you set them too low, your competition may win over visitors with engaging con-
tent and interactivity.

It should be clear from the sheer size of the reference section in this book that
those good ol’ days of flourishing with only a few dozen HTML tags in your head
are gone forever. As much as I’d like to tell you that you can master DHTML with
one hand tied behind your back, I would only be deceiving you. Using Dynamic
HTML effectively is a multidisciplinary endeavor. Perhaps it’s for the best that con-
tent, formatting, and scripting have become separate enough to allow specialists in
each area to contribute to a major project. I’ve been the scripter on many such
projects, while other people handled the content and design. This is a model that
works, and it is likely that it will become more prevalent, especially as each new
browser version and standards release fattens the following pages in the years to
come.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

14
Dynamic HTML: The Definitive Reference
Copyright © 1999 Danny Goodman. Al
Chapter 2Applying Dynamic HTML

In this chapter:
• What Is a Platform?
• Navigator 4 DHTML
• Internet Explorer 4

DHTML
• Cross-Platform

Strategies
• Cross-Platform

Expectations

2.

ble act. But when each web
details of still-evolving stan-

can embody ideas and exten-
browsers. With so many stan-
the release of both Netscape

plementation differences were
of each browser’s approach to
ight use for DHTML applica-
2

Cross-Platform
Compromises
Declaring support for industry standards is a no
browser maker is also out to put its stamp on the
dards, it’s easy to see how a new browser release
sions to standards that are not available in other
dards efforts related to Dynamic HTML in play at
Navigator 4 and Microsoft Internet Explorer 4, im
bound to occur. This chapter provides an overview
DHTML. It also explores some strategies that you m
tions that must run identically on Navigator and Internet Explorer.

What Is a Platform?
The term platform has multiple meanings in web application circles, depending on
how you slice the computing world. Typically, a platform denotes any hardware
and/or software system that forms the basis for further product development.
Operating system developers regard each microprocessor family as a platform
(Pentium, PowerPC, or SPARC CPUs, for example); desktop computer application
developers treat the operating system as the platform (Win16, Windows 95/NT,
MacOS8, Unix, Linux, and the rest); peripherals makers perceive a combination of
hardware and operating system as the platform (for example, a Wintel machine or
a Macintosh).

The de facto acceptance of the web protocols, such as HTTP, means that a web
application developer doesn’t have to worry about the underlying network trans-
port protocols that are being used. Theoretically, all client computers equipped
with browsers that support the web protocols—regardless of the operating system
or CPU—should be treated as a single platform. The real world, however, doesn’t
work that way.
, eMatter Edition
l rights reserved.

Applying
Dynam

ic
HTM

L
Navigator 4 DHTML 15
Today’s crop of web browsers are far more than data readers. Each one includes a
highly customized content rendering engine, a scripting language interpreter, a
link to a custom Java virtual machine, security access mechanisms, and connec-
tions to related software modules. The instant you decide to author content that
will be displayed in a web browser, you must concern yourself with the capabili-
ties built into each browser. Despite a certain level of interoperability due to
industry-wide standards, you must treat each major browser brand as a distinct
development platform. Writing content to the scripting API or HTML tags known
to be supported by one browser does not guarantee support in the other browser.

If you are creating content, you must also be aware of differences in the way each
browser has been tailored to each operating system. For example, even though the
HTML code for embedding a clickable button inside a form is the same for both
Navigator and Internet Explorer, the look of that button is vastly different when
rendered in Windows, Macintosh, and Unix versions of either browser. That’s
because the browser makers have appropriately observed the traditions of the user
interface look and feel for each operating system. Thus, a form whose elements
are neatly laid out to fit inside a window or frame of a fixed size in Windows may
be aligned in a completely unacceptable way when displayed in the same browser
on a Macintosh or a Unix system.

Even though much of the discussion in this book uses “cross-platform” to mean
compatible with both Netscape and Microsoft browsers (“cross-browser” some
might call it), you must also be mindful of operating-system-specific details. Even
the precise positioning capabilities of “cross-platform” cascading style sheets do
not eliminate the operating-system-specific vagaries of form elements and font ren-
dering. If you are developing DHTML applications, you can eliminate pre-version
4 browsers from your testing matrix, but there are still a number of browser and
operating system combinations that you need to test.

Navigator 4 DHTML
As early as Navigator 2, JavaScript offered the possibility of altering the content
being delivered to a browser as a page loaded. It was Navigator 3, however, that
showed the first glimpse of what Dynamic HTML could be. This browser imple-
mented the IMG HTML element as a document object whose SRC attribute could
be changed on the fly to load an entirely different image file into the space
reserved by the tag. In DHTML parlance, this is known as a replaced ele-
ment because it is rendered as an inline element (capable of flowing in the mid-
dle of a text line), yet its content can be replaced afterward. The most common
application of this replacement feature is the mouse rollover, in which an image is
replaced by a highlighted version of that image whenever the user positions the
cursor atop the image. If you surround the tag with a link (<A>) tag, you
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

16 Chapter 2: Cross-Platform Compromises
can use the link’s mouse event handlers to set the image object’s source file when
the cursor rolls atop the image and when it rolls away from the image:

<A HREF="someURL.html"
 onMouseOver="document.images['logo'].src = 'images/logoHOT.jpg'"
 onMouseOut="document.images['logo'].src = 'images/logoNORMAL.jpg'">

At the time, this capability was a breakthrough that allowed dynamic content with-
out the delay of loading a Java applet or rich media for a plug-in. Navigator 3 even
allowed JavaScript to pre-cache all images on a page during the initial page down-
load, so that the first image transition was instantaneous.

A glaring limitation of this scheme, however, hindered some designs. The size of
the image area was fixed by the IMG element’s HEIGHT and WIDTH attributes when
the page loaded. All other images assigned to that object had to be the same size
or risk being scaled to fit. While rarely a problem for mouse rollovers, the lack of
size flexibility got in the way of more grandiose plans.

While the replaceable image object is still a part of Navigator 4, if for no other rea-
son than backward compatibility, this version of the browser has added even more
dynamic capabilities.

Cascading Style Sheets Level 1

Navigator 4 includes support for the majority of the CSS1 recommendation (see
Chapter 1, The State of the Art). The unsupported features in Navigator 4 are
detailed in Chapter 3, Adding Style Sheets to Documents. CSS1 style sheets are not
as dynamic in Navigator 4 as you might wish, however. Styles and properties of
content already loaded in the browser cannot be changed. To do something like
flash the color of a block of text, you must create the content for each color as a
separate positioned element that can be hidden and shown with the help of a
script.

JavaScript Style Sheet Syntax

To further support the use of JavaScript in Navigator 4, Netscape has devised an
alternate syntax for setting style attributes that uses JavaScript. The “dot” syntax for
specifying styles follows the syntax of the core JavaScript language, rather than the
CSS1 attribute:value syntax. The TYPE attribute of the <STYLE> tag lets you
define the style sheet syntax you are using for a definition. For example, the fol-
lowing samples set the left margin for all <H1> elements in a document to 20 pix-
els, using CSS1 and JavaScript syntax, respectively:

<STYLE TYPE="text/css">
H1 {marginLeft:20px}
</STYLE>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Navigator 4 DHTML 17
<STYLE TYPE="text/javascript">
tags.H1.marginLeft=20
</STYLE>

The JavaScript style sheet syntax is supported only in Navigator, whereas the CSS1
syntax is supported in both Navigator and Internet Explorer.

CSS-Positioning

Navigator supports the CSS-P recommendation as it was defined in the most recent
working draft prior to the release of Navigator 4 (see Chapter 1). You can use the
cascading style sheet syntax to define items on a page whose location and visibil-
ity can be changed after a document has fully loaded. If an element is position-
able, its style sheet rule must include the position attribute. In the following
example, positioning attributes are set for an element that identifies itself with an
ID of item1:

<STYLE type="text/css">
#item1 {position:absolute; top:50px; left:100px}
</STYLE>

In the body of the document, the style sheet rule is connected to an element by
assigning item1 to the ID attribute of an element (a DIV element in this exam-
ple):

<DIV ID="item1">

</DIV>

Alternatively, you can use the STYLE attribute (from CSS1-type style sheets) inside
the affected element to set position properties:

<DIV STYLE="position:absolute; top:50; left:100">

</DIV>

A positionable container is reflected as an object in the Navigator document object
model. Each of these objects has a number of properties and methods that a script
can use to move, clip, hide, and show the content of that container.

Layers

A Netscape-specific alternative to CSS-Positioning utilizes a document model object
created with the <LAYER> tag. You can think of each layer as a content holder that
exists in its own transparent plane above the base document in the window. Many
graphic programs, such as Photoshop, use the same metaphor. The content, posi-
tion, and visibility of each layer are independent of the base document and any
other layer(s) defined within the window. Layers can also be created anew by
JavaScript (with the Layer() constructor) after a page has been loaded, allowing
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

18 Chapter 2: Cross-Platform Compromises
for the dynamic addition of new content to a page (content in its own layer, rather
than inserted into the existing content space).

Content for a layer is defined as HTML content, most often loaded in from a sepa-
rate HTML file. As a result, each layer contains its own document object, distinct
from the base document object. Such a document may also include definitions for
additional layers, which can be nested as many levels deep as needed for the
application design.

As document model objects, layer objects have properties and methods that are
accessible to JavaScript. As a convenience for cross-platform compatibility, Naviga-
tor treats a positionable element defined via CSS-P syntax or the <LAYER> tag as
the same kind of object. The same scriptable properties and methods are associ-
ated with both kinds of positionable elements in Navigator.

Limited Dynamic Content

Navigator 4’s document object model is only slightly enhanced over the first model
that appeared in Navigator 2. Once a document has loaded into a window or
frame, a script can do very little to modify a portion of the page without reloading
the entire document. Swapping images in place, loading new content into a layer,
and setting the location of a positionable element are about as far as you can go in
making HTML content dynamic in Navigator 4.

Event Capturing

When you script positionable elements, it is often convenient to have user actions
handled not by the specific objects being clicked on, typed into, or dragged, but
by scripts that encompass a range of related object behaviors. Navigator 4 sup-
ports objects that have this broader view—window, document, and layer objects
specifically—and can intercept events before they reach their intended targets. A
script then has the flexibility to respond to the event and either let the event pass
on to the target or even redirect the event to another target.

Downloadable Fonts

A document to be displayed in Navigator 4 can include a CSS style attribute or a
<LINK> tag that instructs the browser to download a Bitstream TrueDoc font defi-
nition file. Each font definition file can contain more than one font definition, so
one reference to a font file can load all the necessary fonts for a page. Here are
the two techniques for downloading a font:
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Internet Explorer 4 DHTML 19
<STYLE TYPE="text/css">
@fontdef url("http://www.mySite.com/fonts/someFonts.pfr")
</STYLE>

<LINK REL=fontdef SRC="http://www.mySite.com/fonts/someFonts.pfr">

Once a font has been downloaded into the browser, it is applied to text by way of
the tag set.

Internet Explorer 4 DHTML
While Internet Explorer 3 (for Windows) did not even allow for swapping of
images after a document loaded, IE 4 provides substantial facilities for dynami-
cally modifying the content of a page after it has loaded. In addition, you can
dynamically create content during loading with the help of VBScript or JScript, just
as you could in IE 3. IE 4 exposes virtually every element defined by HTML in a
document to the scripting language of your choice.

Cascading Style Sheets Level 1

Some CSS functionality was introduced in IE 3, but almost every aspect of the W3C
recommendation for CSS1 is implemented in IE 4. Only a few CSS1 attributes, such
as word-spacing and white-space, are missing from the IE 4 implementation.

CSS-Positioning

In addition to supporting the specifications of the working draft of CSS-Position-
ing that existed at the time of IE 4’s release in 1997, the browser also allows you to
apply CSS-P attributes to individual HTML elements—including those that are not
containers. Therefore, you can assign a specific position and visibility to, say, an
image, even when it is not surrounded by a container tag such as <DIV> or
:

<IMG SRC="myFace.jpg" HEIGHT=60 WIDTH=40
STYLE="position:absolute; left:200; top:100">

Of course, you can also assign positioning attributes to containers, if you prefer.

Dynamic Content

IE 4’s rendering engine is designed in such a way that it can respond very quickly
to changes in content. The browser’s document object model provides access to
virtually every kind of content on a page for modification after the document has
loaded. For example, a script can alter the text of a specific <H1> header or the
size of an image at any time. The rendering engine instantaneously reflows the
page to accommodate the newly sized content. With each HTML element exposed
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

20 Chapter 2: Cross-Platform Compromises
to scripting as an object, most properties can be changed on the fly. The model
even accommodates changing the HTML associated with an element. For exam-
ple, you can demote an <H1> heading to an <H3> heading, with the same or dif-
ferent text, by adjusting one property of the original object.

Event Bubbling

As part of IE 4’s document object model definition, virtually every object has event
handlers that can be scripted to respond to user and system actions. For example,
it is possible to associate different actions with user clicks over different headings
(even if they are not visibly displayed as links) by assigning a different script state-
ment to each heading’s onClick event handler. Moreover, unless otherwise
instructed by script, an event continues to “bubble up” through the HTML element
containment hierarchy of the document. Consider the following simple HTML doc-
ument:

<HTML>
<BODY>
<DIV>
<P>Some Text:</P>
<FORM>
<INPUT TYPE="button" VALUE="Click me" onClick="alert('Hi!')">
</FORM>
</DIV>
</BODY>
</HTML>

When the user clicks on the button, the click event is first processed by the
onClick event handler in the button’s own tag. Then the click event propagates
through the FORM, DIV, and BODY elements. If the tag for one of those elements
were to have an onClick event handler defined in it, the click event would trig-
ger that handler. Event bubbling can also be programmatically canceled at any
level along the way.

Transitions and Filters

Building atop the syntactical conventions of CSS1, IE 4 includes a style attribute
called filter. This attribute serves double duty. One set of attribute parameters
supplies extra display characteristics for certain types of HTML content. For exam-
ple, you can set a filter to render content with a drop shadow or with its content
flipped horizontally. The other set of attributes lets you define visual transition
effects for when an object is hidden or shown, very much like the transition effects
you set in presentation programs such as PowerPoint.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Cross-Platform Strategies 21
Downloadable Fonts

A document to be displayed in Internet Explorer 4 can embed TrueType font fami-
lies downloaded from the server. You download the font via CSS style attributes:

<STYLE TYPE="text/css">
@font-face {
 font-family:familyName;
 font-style:normal;
 font-weight:normal;
 src:url("someFont.eot")}
</STYLE>

With the basic font family downloaded into the browser, the family can be
assigned to content via CSS styles or tags.

Note that the downloadable font format differs between Internet Explorer and
Navigator. Each browser requires that the font definition files be generated with a
different tool.

Data Binding

IE 4 provides hooks for ActiveX controls and Java applets that communicate with
text files or databases on the server. Elements from these server-based data
sources can be associated with the content of HTML elements, essentially allow-
ing the document to access server data without processing a CGI script. While data
binding is not covered in depth in this book, I mention it here because it is one of
Microsoft’s dynamic content features.

Cross-Platform Strategies
If your DHTML application must run on both Netscape and Microsoft browsers,
you have a choice of several deployment strategies to pursue: page branching,
internal branching, common denominator design, and custom API development. In
all likelihood, your application will employ a combination of these techniques to
get the same (or nearly the same) results on both platforms. No matter how you
go about it, you must know the capabilities of each browser to provide equivalent
experiences for users of both browsers. The rest of this book is designed to help
you understand the capabilities of each browser, so the material in this section is
mostly about the different strategies you can use.

Page Branching

Web pages that use absolute-positioned elements degrade poorly when displayed
in older browsers. The positioned elements do not appear where their attributes
call for, and, even worse, the elements render themselves from top to bottom in
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

22 Chapter 2: Cross-Platform Compromises
the browser window, in the order in which they appear in the HTML file. Also,
any elements that are to be hidden when the page loads appear in the older
browsers in their source code order. To prevent users of older browsers from see-
ing visual gibberish, you should have a plan in place to direct users of non-
DHTML-capable browsers to pages containing less flashy content or instructions
on how to view your fancy pages. A server-side CGI program can perform this
redirection by checking the USER_AGENT environment variable sent by the client
at connect-time and redirecting different HTML content to each browser brand or
version.

Alternatively, you can do the same branching strictly via client-side scripting.
Depending on the amount of granularity you wish to establish for different
browser brands and versions at your site, you have many branching techniques to
choose from. All these techniques are based on a predominantly blank page that
has some scripted intelligence behind it to automatically handle JavaScript-enabled
browsers. Any script-enabled browser can execute a script that looks into the visi-
tor’s browser version and loads the appropriate starter page for that user.
Example 2-1 shows one example of how such a page accommodates both scripted
and unscripted browsers.

Example 2-1. Branching Index Page

<HTML>
<HEAD>
<TITLE>MegaCorp On The Web</TITLE>
<SCRIPT LANGUAGE="JavaScript">
<!--
if (parseInt(navigator.appVersion) >= 4) {
 if (navigator.appName == "Netscape") {
 window.location.href = "startNavDHTML.html"
 } else if (navigator.appName.indexOf("Internet Explorer") != -1) {
 window.location.href = "startIEDHTML.html"
 } else {
 window.location.href = "startPlainScripted.html"
 }
} else {
 window.location.href = "startPlainScripted.html"
}
//-->
</SCRIPT>
<META HTTP-EQUIV="REFRESH"
CONTENT="1;URL=http://www.megacorp.com/startUnscripted.html">
</HEAD>

<BODY>
<CENTER>

 <IMG SRC="images/megaCorpLogo.gif" HEIGHT=60 WIDTH=120 BORDER=0
 ALT="MegaCorp Home Page">
</CENTER>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Cross-Platform Strategies 23
The script portion of Example 2-1 provides three possible branches, depending on
the browser level. If the browser version is 4 or later, this index page automati-
cally loads a Navigator-specific starter page for Netscape Navigator users, an IE-
specific starter page for IE users, or a starter page that accommodates the outside
chance of there being a Version 4 browser of yet another brand. That same plain
scripted starter page is the one that all other JavaScript-enabled browsers load.

For browsers that either don’t have JavaScript built in or have JavaScript turned off,
a <META> tag refreshes this page after one second by loading a starter page for
unscripted browsers. For “bare bones” browsers that may not recognize scripting
or <META> tags (including Lynx and browsers built into a lot of handheld devices),
a simple image link leads to the unscripted starter page. Users of these browsers
will have to “click” on this link to enter the content portion of the web site.

Example 2-1 is an extreme example. It assumes that the application has as many
as four different paths for four different classes of visitor. This may seem like a
good idea at first, but it seriously complicates the maintenance chores for the
application in the future. At best, it provides a way to filter access between
DHTML-capable browsers and all the rest.

Internal Branching

Instead of creating separate documents for Navigator and IE 4 users, you can use
JavaScript to write browser-specific content for a page within a single document.
For example, you may find that some style sheet specifications are not rendered
the same in both browsers. To get the same look for an element, you can create a
browser-specific branch to use the JavaScript document.write() method to gen-
erate content suited to each browser. Example 2-2 show a simplified page that
writes HTML for a positionable element two different ways. For Internet Explorer,
the HTML is a DIV container; for Navigator, it is a <LAYER> tag that loads an
external file (whose content is not shown in the example).

</BODY>
</HTML>

Example 2-2. Internal Branching for Browsers

<HTML>
<HEAD>
<TITLE>MegaCorp On The Web</TITLE>
<SCRIPT LANGUAGE="JavaScript">
<!--
var isNav4, isIE4
if (parseInt(navigator.appVersion) >= 4) {
 isNav4 = (navigator.appName == "Netscape")
 isIE4 = (navigator.appName.indexOf("Microsoft") != -1)
}

Example 2-1. Branching Index Page (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

24 Chapter 2: Cross-Platform Compromises
The key to efficient branching in such a page is establishing a Boolean global vari-
able for each browser at the top of the document (isNav4 and isIE4 in
Example 2-2). This allows scripts elsewhere in the document to make decisions
based on the browser that is running the script and writing the HTML that applies
to that browser. Notice in Example 2-2 that the if construction writes HTML con-
tent only if one of the two global variables is true. Conceivably, a user who does
not have a DHTML-capable browser could gain access to the URL of this page. In
this example, the only content such a user would see is the short line of text after
the <BODY> tag.

Designing for the Common Denominator

From a maintenance point of view, the ideal DHTML page is one that uses a com-
mon denominator of syntax that both browsers interpret and render identically.
You can achieve some success with this approach, but you must be very careful in
selecting standards-based syntax (e.g., CSS1 and CSS-P) that is implemented identi-
cally in both browsers. Because some of these standards were little more than

//-->
</SCRIPT>
</HEAD>

<BODY>
Some regular text
<SCRIPT LANGUAGE="JavaScript">
<!--
var output = ""
if (isIE4) {
 output += "<DIV ID='help' "
 output += "STYLE='position:absolute; top:75; width:350; border:none; "
 output += "background-color:#98FB98;'>"
 output += "<P STYLE='margin-top:5; align:center'>Instructions</
P>"
 output += "<HR><OL STYLE='margin-right:20'>"
 output += "Step 1."
 output += "Step 2."
 output += "Step 3."
 output += "<DIV align='center'><BUTTON "
 output += "onClick='document.all.help.style.visibility=\"hidden\" '>"
 output += "Click Here</BUTTON></DIV></DIV>"
} else if (isNav4) {
 output += "<LAYER ID='help' TOP=75 WIDTH=350 SRC='help.html'></LAYER>"
}
document.write(output)
//-->
</SCRIPT>
</BODY>
</HTML>

Example 2-2. Internal Branching for Browsers (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Cross-Platform Strategies 25
working drafts as the browsers were released to the world, the implementations
are not consistent across the board.

DHTML feature sets that you can use as starting points for a common denomina-
tor approach are the standards for Cascading Style Sheets Level 1 and CSS-Posi-
tioning. When you peruse the documentation from the browser vendors in this
arena, it is nigh impossible to distinguish support for the recommended standard
from a company’s proprietary extension that adheres to the spirit, but not the let-
ter, of the standard. Just because a feature is designated as being “compatible with
CSS” does not mean that it is actually in the published recommendation. Refer to
the reference chapters in Part II of this book for accurate information on the
implementations in the browsers as it relates to the standards.

You are likely to encounter situations in which the same style sheet syntax is inter-
preted or rendered slightly differently in each browser. This is one reason why it is
vital to test even recommended standards on both browser platforms. When an
incompatibility occurs, there is probably a platform-specific solution that makes
the result look and behave the same in both browsers. To achieve this parity,
you’ll need to use internal branching for part of the page’s content. This is still a
more maintainable solution than creating an entirely separate page for each
browser.

Some features that are available in one browser cannot be translated into the other
browser. Internet Explorer 4 includes a few DHTML capabilities that have no par-
allel features in Navigator 4. Therefore, don’t expect to find common denomina-
tors for dynamic content (beyond swapping images of the same size), transitions,
or filters. DHTML facilities in Navigator 4 can be re-created in IE 4 either directly
or via internal branching. For example, the IE 4 <IFRAME> element closely resem-
bles the Navigator 4 <ILAYER> element.

If this short lesson in finding a common denominator of functionality reveals any-
thing about the Version 4 browsers, it is that if you start your design with Naviga-
tor 4 in mind, you can probably develop an IE 4 version using some or all of the
techniques described in this chapter. But if you start with IE 4 and get carried
away with its DHTML features, you may be disappointed when you run your
application in Navigator 4.

Custom APIs

Despite the common denominator of CSS1 and CSS-P recommendations for the
HTML elements in documents, scripted access to these objects and their proper-
ties can vary substantially from one browser to the other. Even when the two
browsers have similar objects with similar properties, the syntax for the property
names may be different enough that you need to use internal branching for your
application to work seamlessly across platforms.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

26 Chapter 2: Cross-Platform Compromises
Once you go to the trouble of writing scripts that perform internal branching, you
might prefer to avoid doing it again for the next document. Both browsers allow
JavaScript to load libraries of script functions (files named with the .js extension)
that you can link into any HTML document you like. You can therefore create
your own meta language for scripted DHTML operations by writing a set of func-
tions whose terminology you design. Place the functions in a library file and rely
on them as if they were part of your scripting vocabulary. The language and func-
tion set you create is called an application programming interface—an API.
Example 2-3 shows a small portion of a sample DHTML API library.

One of the incompatibilities between positionable elements in Navigator 4 and IE
4 is the format of references to the element’s properties and methods. For an
unnested Navigator layer object (remember that all positionable items in Naviga-

Example 2-3. Portion of a DHTML Library

// Global variables
var isNav4, isIE4
var range = ""
var styleObj = ""
if (parseInt(navigator.appVersion) >= 4) {
 if (navigator.appName.indexOf("Microsoft") != -1) {
 isNav4 = true
 } else {
 isIE4 = true
 range = "all."
 styleObj = ".style"
 }
}

// Convert object name string or object reference
// into a valid object reference
function getObject(obj) {
 var theObj
 if (typeof obj == "string") {
 theObj = eval("document." + range + obj + styleObj)
 } else {
 theObj = obj
 }
 return theObj
}

// Positioning an object at a specific pixel coordinate
function shiftTo(obj, x, y) {

var theObj = getObject(obj)
if (isNav4) {

theObj.moveTo(x,y)
} else {

theObj.pixelLeft = x
theObj.pixelTop = y

}
}

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Cross-Platform Expectations 27
tor are treated as layer objects), a reference must begin with the document object
reference (e.g., document.layerName). In contrast, properties that govern IE 4
positionable elements are properties of a style property associated with the
object. Moreover, every named object, no matter how deeply nested within other
containers, can be referenced from the document object if the all keyword is
included in the reference (e.g., document.all.objectName.style).

The getObject() function of Example 2-3 is an all-purpose function that returns
a reference to an object that is passed originally as either a string that contains the
object name or a ready-to-go object reference. When the incoming object name is
passed as a string, the eval() function assembles a valid reference based on the
browser running the script. If the browser is Navigator 4, the range and style-
Obj variables are empty strings, and the resulting reference being evaluated is
"document.objectName"; in IE 4, the keywords all and style are assembled as
part of the reference. For both browsers, when the incoming parameter is already
an object reference, it is passed straight through: the assumption is that the object
reference is valid for the current browser (probably based on internal branching in
the main document that calls this function).

The more interesting function in Example 2-3 is shiftTo(), which changes the
position of an object, so that it is located at the specific coordinates that are passed
as parameters. Each browser has its own way to set the position of an object in a
script. Navigator 4 features a one-step moveTo() method of a layer object; IE 4
requires setting the pixelLeft and pixelTop properties of the object’s style
property. Those differences, however, are handled by the function. Any time you
need scripted control of the movement of an item in a document, you can call the
shiftTo() function to do the job in whatever browser is currently running.

Building an API along these lines lets you raise the common denominator of
DHTML functionality for your applications. You free yourself from limits that
would be imposed by adhering to 100% syntactical compatibility. In Chapter 4,
Adding Dynamic Positioning to Documents, I present a more complete custom API
that smooths over potentially crushing CSS-Positioning incompatibilities.

Cross-Platform Expectations
Before undertaking cross-platform DHTML development, be sure you understand
that the features you can exploit in both browsers—regardless of the techniques
you use—are limited to comparable feature sets within the realms of style sheets,
positionable elements, event models, object models, and downloadable fonts.
Dynamic content on a small scale is also a cross-platform possibility, but the
instantaneous reflowing of modified content, display filters, and transitions that are
available in Internet Explorer 4 have no parallels in Navigator 4.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

28
Dynamic HTML: The Definitive Reference
Copyright © 1999 Danny Goodman. Al
Chapter 3Applying Dynamic HTML

In this chapter:
• Rethinking HTML

Structures
• Understanding Block-

Level Elements
• Two Types of

Containment
• CSS Platforms
• Of Style Sheets,

Elements, Attributes,
and Values

• Embedding Style
Sheets

• Subgroup Selectors
• Attribute Selector

Futures: CSS2
• JavaScript Style Sheet

Syntax
• Cascade Precedence

Rules
• Cross-Platform Style

Differences

3.
3

Adding Style Sheets
to Documents
Like their counterparts in word processing and desktop publishing programs,
HTML style sheets are supposed to simplify the deployment of fine-tuned format-
ting associated with content. Instead of surrounding every H1 element in a docu-
ment with tags to make all of those headings the same color, you can use
a one-line style definition in a style sheet to assign a color to every instance of the
H1 element on the page. Of course, now that style sheets make it easier to specify
colors, margins, borders, and unusual element alignments, you are probably add-
ing more HTML elements to your documents. So your documents may not be any
smaller, but they should be more aesthetically pleasing, or at least closer to what
you might design in a desktop publishing program.

Rethinking HTML Structures
In order to successfully incorporate style sheets into HTML documents, you may
have to reexamine your current tagging practices. How much you’ll have to
change your ways depends on how and when you learned HTML in the first
place. Over the years, popular browsers have generally been accommodating with
, eMatter Edition
l rights reserved.

Applying
Dynam

ic
HTM

L
Rethinking HTML Structures 29
regard to—how shall I say it—less-than-perfect HTML. Consider the <P> tag,
which has long been regarded as a single tag that separates paragraphs with a
wider line space than the
 line break tag. HTML standards even encourage
this start-tag-only thinking by making some end tags optional. You can define an
entire row of table cells without once specifying a </TD> or </TR> tag: the
browser automatically closes a tag pair when it encounters a logical start tag for,
say, the next table cell or row.

The “new thinking” that you may have to adopt is triggered by an important fact:
style sheets, and the browser object models that work with them, are largely con-
tainer oriented. With rare exception (the
 tag is one), an element in a docu-
ment should be treated as a container whose territory is bounded by its start and
end tags (even if the end tag is optional). This container territory does not always
translate to space on the page, but rather applies to the structure of the HTML
source code. To see how “HTML-think” has changed, let's look at a progression of
simple HTML pages. Here’s a page that might have been excerpted from a tutorial
for HTML Version 2:

<HTML>
<HEAD>
<TITLE>Welcome to HypeCo</TITLE>
</HEAD>
<BODY>
<H1>Welcome to HypeCo's Home Page</H1>
We're glad you're here.
<P>
You can find details of all of HypeCo's latest products and special offers.
Our goal is to provide the highest quality products and the best customer
service in the industry.
<P>
Click here to view our on-line catalog.
</BODY>
</HTML>

While the preceding HTML produces a perfectly fine, if boring, page, a modern
browser does not have enough information from the tags to turn the content
below the H1 element into three genuine paragraph elements. Before you can
apply a document-wide paragraph style to all three paragraphs, you must make
each paragraph its own container. For example, you can surround the text of the
paragraph with a <P>/</P> tag pair:

<HTML>
<HEAD>
<TITLE>Welcome to HypeCo</TITLE>
</HEAD>
<BODY>
<H1>Welcome to HypeCo's Home Page</H1>
<P>We're glad you're here.</P>
<P>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

30 Chapter 3: Adding Style Sheets to Documents
You can find details of all of HypeCo's latest products and special offers.
Our goal is to provide the highest quality products and the best customer
service in the industry.
</P>
<P>
Click here to view our on-line catalog.
</P>
</BODY>
</HTML>

When viewed in a modern browser, the pages created by the two preceding
examples look identical. But internally, the browser recognizes three paragraph
elements in the second example, and, more importantly, the style of these para-
graphs can be controlled by style sheets.

The HTML vocabulary for DHTML-capable browsers includes two additional tags
you can use to establish containment: <DIV> and . A DIV element creates a
container shaped like a block that begins at the starting point of one line and ends
with a line break. A SPAN element is an inline container, meaning that it is sur-
rounded by chunks of running text. For example, if you want to assign a special
style to the first two paragraphs in our example, one approach is to group those
two elements inside a surrounding DIV container:

<BODY>
<H1>Welcome to HypeCo's Home Page</H1>
<DIV>
<P>We're glad you're here.</P>
<P>
You can find details of all of HypeCo's latest products and special offers.
Our goal is to provide the highest quality products and the best customer
service in the industry.
</P>
</DIV>
<P>
Click here to view our on-line catalog.
</P>
</BODY>

Surrounding the two paragraph elements by the <DIV> tag pair does not affect
how the content is rendered in the browser, but as shown in Figure 3-1, it does
alter the containment structure of the elements in the document.

As you can see from Figure 3-1, even a simple document has a number of contain-
ment relationships. The link in the last paragraph is contained by the third para-
graph element; the paragraph element is contained by the body element; the body
element is contained by the document (represented in HTML by the <HTML> tag
pair).
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Understanding Block-Level Elements 31
Understanding Block-Level Elements
If you are a style sheet coder, you must be aware of the element containment dic-
tated by HTML tags. If you are a page designer, however, you need to understand
an entirely different kind of containment structure: block-level elements. A block-
level element is a self-contained unit of content that normally begins at the start-
ing margin of one line and ends in a way that forces the next bit of content to
appear on a new line following the block. Each of the heading tags (H1, H2, etc.)
is a block-level element because it stands alone on a page (unless you use DHTML
positioning tricks to overlay other elements). Other common block-level elements
are P, UL, OL, and LI.

A CSS-enabled browser automatically defines a set of physical features to every
block-level element. By default, the values for all these features are set to zero or
none, so that they don’t appear or occupy space on the page when you use sim-
ple HTML tags without style sheets. But one of the purposes of style sheets is to
let you modify the values of those features to create graphical borders, adjust mar-
gin spacing, and insert padding between the content and border. In fact, those
three terms—border, margin, and padding—account for about half the style sheet
attributes implemented in the Version 4 browsers.

Figure 3-1. Element containment before and after the addition of the <DIV> tag

Document

H1 Heading

Link

Head

Body

Paragraph 1

Paragraph 2

Paragraph 3

Document

H1 Heading

Link

Head

Body

Paragraph 1

Paragraph 2

Paragraph 3

DIV 1
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

32 Chapter 3: Adding Style Sheets to Documents
Box Pieces

You can think of the content and features of a block-level element as a box. To
help you visualize the role and relative position of the features of a block-level
element, Figure 3-2 shows a schematic diagram of a generic chunk of block-level
content (imagine it’s a paragraph, if that helps), where the margin, border, and
padding are indicated in relation to the content. The width and height of the con-
tent are the same, regardless of extra stuff being tacked on outside of the content.
Each of the surrounding features—padding, borders, and margins—can occupy
space based on its corresponding dimensions. The width and height of the entire
box is the sum of the element content, plus padding, borders, and margins. If you
don’t assign any values to those features, their dimensions are zero and, therefore,
they contribute nothing to the dimensions of the box. In other words, without any
padding, borders, or margins, the content and box dimensions are identical. With
style sheets, you can assign values to your choice of edges (top, right, bottom, or
left) for any feature.

All margin space is transparent. Thus, any colors or images that exist in the next
outer containing box (the BODY element always provides the base-level box) show
through the margin space. Borders are opaque and always have a color associ-
ated with them. Padding space is also transparent, so you cannot set the padding
to any color; the background color or image of the content shows through the

Figure 3-2. Schematic diagram of block-level elements

margin space (transparent)

border space

padding space

content space

box top

box left

element width

el
em

en
t

he
ig

ht

box width

bo
x

he
ig

ht
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Two Types of Containment 33
padding space. Thus, this space “pads” the content to give some extra breathing
room between the content and any border and/or margin defined for the element.

Some style sheet attributes provide a one-statement shortcut for applying indepen-
dent values to each of the four edges of the margin, border, or padding. For exam-
ple, you can set the top and bottom border widths to one size and apply a differ-
ent size to the left and right sides of the same border. When such shortcuts are
available (see the border, margin, and padding style attributes in Chapter 10,
Style Sheet Attribute Reference), the values are applied in the same order: clock-
wise from the top—top, right, bottom, left.

Box Positioning

While the content dimensions remain the same regardless of the dimensions
assigned to various box features, the size of the box expands when you assign
padding, borders, and margins to the element. As you will see in Chapter 4, Add-
ing Dynamic Positioning to Documents, the “thing” that gets positioned within the
various coordinate planes is the box. The left and top outer edges of the box are
emphasized in Figure 3-2 to reinforce this idea.

It is important to understand the difference between a piece of content and its
containing box, especially if you start nesting positioned elements or need to rely
on extremely accurate locations of elements on the page. Nesting multiple block-
level elements inside each other offers a whole range of possible visual effects, so
page designers have much to experiment with while developing unique looks.

Two Types of Containment
If you have worked with JavaScript and the scriptable document object models
inside Navigator and Internet Explorer, you are aware that scriptable document
objects have a containment hierarchy of their own—an object containment hierar-
chy. The window object, which represents the content area of a browser window
or frame, is at the top of the hierarchy. The window object contains objects such as
the history, location, and document objects. The document object contains
objects such as images and forms, and, among the most deeply nested objects, the
form object contains form elements, such as text fields and radio buttons.

Document object containment is important in JavaScript because the hierarchy
defines how you refer to objects and their methods and properties in your scripts.
References usually start with the outermost element and work their way inward,
using the JavaScript dot syntax to delimit each object. For example, here’s how to
reference the content of a text field (the value property) named zipCode inside a
form named userInfo:

window.document.userInfo.zipCode.value
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

34 Chapter 3: Adding Style Sheets to Documents
Unlike most object-oriented worlds (such as Java), the object-based world of
scriptable browsers does not strictly adhere to the notion of parents and children.
In fact, except for the relationship between a frameset document and the frames it
creates, the word “parent” is not part of the object containment vocabulary. Docu-
ment objects do not inherit properties or methods of objects higher in the contain-
ment hierarchy.

In contrast to this structure, styles adhere more closely to the element contain-
ment as defined by the tag geography of a document. In this context, you do see
frequent references to parents and children. That’s because an element can inherit
a style assigned to another element higher in the element containment hierarchy.

Inheritance

All HTML document elements belong to the document’s inheritance chain. The
root of that chain is the HTML element. Its immediate children (also called descen-
dants) are the next elements in the containment hierarchy. The inheritance chain
depends entirely on the structure of HTML elements in the document. Figure 3-3
shows the inheritance chains of the documents whose containment structures were
depicted in Figure 3-1.

The importance of inheritance chains becomes clear when you begin assigning
style attributes to elements that have descendants. In many cases, you want a
descendant to inherit a style assigned to a parent or grandparent. For example, if
you assign a red text color to all paragraphs (P elements), you more than likely
want all descendant elements, such as portions designated as EM elements inside a
paragraph, to render their content in the same red color.

Figure 3-3. Inheritance chains of two simple documents

HTML

HEAD BODY

TITLE H1 P P P

A

HTML

HEAD BODY

TITLE H1

P P

P

A

DIV
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
CSS Platforms 35
Not all style attributes are inherited. Therefore, the style sheet attribute reference in
Chapter 10 indicates whether or not each attribute is passed from parent to child.

The Cascade

Element containment also plays a role in helping the browser determine which, of
potentially several, overlapping style sheet rule should be applied to an element.
As you will see later in this chapter, it is possible to assign multiple styles to the
same element, by importing multiple style sheet definition files and by defining
multiple styles for the same element, or its parent, directly in the document. Cas-
cading style sheets are so called because styles can flow from a number of
sources; the outcome of this cascade is what is displayed by the browser.

I’ll come back to cascading later in this chapter, but for now you should be aware
that the first step in predicting the outcome of overlapping style sheets is deter-
mining the element containment structure of the document. Once you know
where an element stands within the document’s inheritance chain, you can apply
strict CSS principles that assign varying weights to the way a style is defined for a
particular element.

CSS Platforms
Starting with Cascading Style Sheet Level 1, you can use an attribute of the STYLE
element to specify the syntax you are using to define style sheets. The value of the
TYPE attribute is in the form of a content-type declaration; it defines the syntax
used to assign style attributes. The formal CSS recommendation by the W3C pro-
motes a syntax of content type text/css. This TYPE attribute is not required in
today’s leading browsers, but the CSS recommendation does not believe that there
should be a default type. Therefore, I strongly recommend specifying the TYPE
attribute for all style sheets, in case some other user agent (an HTML-empowered
email reader, for example) should implement a strict interpretation of the CSS stan-
dard in the future. A STYLE element that relies on the CSS syntax should look like
the following:

<STYLE TYPE="text/css">
...
</STYLE>

Internet Explorer 4 and Navigator 4 both recognize the text/css type of CSS syn-
tax. Navigator 4 also includes an alternative syntax that follows the JavaScript
object reference format. This alternate type, text/javascript, provides Java-
Script equivalents for most of the style attributes and structures provided by the
text/css syntax. The Navigator implementation also includes the power to use
JavaScript statements and constructions inside <STYLE> tags to assist in defining
styles based on client- or user-specific settings (as demonstrated later in this chap-
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

36 Chapter 3: Adding Style Sheets to Documents
ter). In other words, the implementation of style sheets in Navigator 4 is largely
CSS compatible, and style sheets can be specified using either CSS or JavaScript
syntax.

NOTE In the early days of Navigator 4 (prerelease and early final versions),
Netscape referred to style sheets of type text/javascript with
names such as JavaScript Style Sheets (JSS or JSSS, depending on
whom you talk to) or JavaScript-Accessible Style Sheets. The official
terminology changes with the wind, but these earlier names are no
longer part of the Netscape marketing vocabulary. At last reading,
the company referred to this technology as “accessing style sheet
properties from JavaScript via the Document Object Model”—even
though the formal Document Object Model standard was far from
complete at the time.

Of Style Sheets, Elements, Attributes,
and Values
Regardless of the syntax you use to define a style sheet, the basic concepts are the
same. A style sheet is a collection of one or more rules. Each rule has two parts to
it:

• One or more elements (or groups of elements) that are having style sheets
defined for them

• One or more style sheet attributes that apply to the element(s)

In other words, each rule defines a particular look and feel and the item(s) in the
document that are to be governed by that look and feel.

Style Attributes

A style attribute is the name of a (usually) visible property of a piece of content on
the page. An attribute such as foreground color can apply to any element because
that color can be applied to foreground content, such as text. Some attributes,
such as borders and margins, can apply only to elements rendered as blocks on
the page—they have a clear beginning and ending in both the HTML source code
and in the layout. Details on all the CSS style sheet attributes can be found in
Chapter 10, but Table 3-1 shows a summary of CSS1 attributes implemented in
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Of Style Sheets, Elements, Attributes, and Values 37
both Internet Explorer 4 and Navigator 4 (in both CSS and JavaScript syntax). Each
browser also defines other style attributes that are noted in Chapter 10.

Table 3-1. Summary of CSS1 Style Sheet Attributes in Version 4 Browsers

Attribute Name—CSS Syntax (IE 4 and NN 4) Attribute Name—JavaScript Syntax (NN 4)
Box Properties
border
border-top a

border-righta

border-bottom a

border-left a

border-color borderColor
border-top-color a

border-right-color a

border-bottom-color a

border-left-color a

border-style borderStyle
border-top-style a

border-right-style
border-bottom-style a

border-left-style a

border-width borderWidths()
border-top-width borderTopWidth
border-right-width borderRightWidth
border-bottom-width borderBottomWidth
border-left-width borderLeftWidth
clear
float
margin margins()
margin-top marginTop
margin-right marginRight
margin-bottom marginBottom
margin-left marginLeft
padding paddings()
padding-top paddingTop
padding-right paddingRight
padding-bottom paddingBottom
padding-left paddingLeft
Color and Background Properties
background
background-attachmenta

background-color backgroundColor
background-image backgroundImage
background-position
background-repeat
color color
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

38 Chapter 3: Adding Style Sheets to Documents
CSS Attribute Assignment Syntax

The syntax for assigning a value to an attribute is different from what you know
about HTML attributes and their values. Moreover, the precise syntax is different
between CSS and JavaScript style sheets.

For CSS syntax, value assignment is made via the colon operator (in contrast to the
equal sign operator in HTML). The combination of an attribute name, colon opera-
tor, and value to be assigned to the attribute is called a declaration. To assign the
color red to the foreground of an element, you could use either of the following
declarations:

color:#ff0000
color:red

If a style sheet rule includes more than one declaration, separate declarations with
semicolons:

color:#ff0000; font-size:12pt;

Classification Properties
display display
list-style-type listStyleType
list-style-imagea

list-style-position a

list-style
white-spaceb whiteSpace
Font Properties
font
font-family fontFamily
font-size fontSize
font-style fontStyle
font-variant a

font-weight fontWeight
Text Properties
letter-spacing a

text-align textAlign
text-decoration textDecoration
line-height lineHeight
text-indent
text-transform textTransform
vertical-align verticalAlign

a Not implemented in CSS for Navigator 4
b Not implemented in Internet Explorer 4

Table 3-1. Summary of CSS1 Style Sheet Attributes in Version 4 Browsers (continued)

Attribute Name—CSS Syntax (IE 4 and NN 4) Attribute Name—JavaScript Syntax (NN 4)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Embedding Style Sheets 39
A trailing semicolon after the last declaration is optional, as is a space after the
colon.

Notice, however, that unlike HTML attribute values, CSS syntax attribute values do
not—and cannot—have double quotes around the values, even when the value
appears to be a string value with spaces.

Binding CSS Style Sheets to Elements

Defining a rule’s declarations is only half the job. The other half involves binding
that declaration to an HTML element—also called a selector in CSS jargon. In a
simple case, you bind a declaration to a single element or a single type of ele-
ment (e.g., all P elements). The CSS standard also provides for additional ways of
binding a declaration to a subgroup of elements scattered throughout a docu-
ment; you define the relationship of the elements as a selector. Finally, you can
define exceptions to the grouping rules you establish in the document.

JavaScript Attributes and Element Binding

It should be no surprise that the JavaScript style sheet syntax in Navigator assigns
values to style attributes in JavaScript statements. As we’ll discuss in detail later in
the chapter, using such statements is very much like assigning values to other doc-
ument object properties in client-side JavaScript.

Embedding Style Sheets
If you want to develop style sheet-enhanced pages that work in both Internet
Explorer and Navigator, you should use the CSS syntax. In the next few sections,
all of examples I present are going to use the CSS syntax, since it works in both
browsers. Later, I’ll discuss the Navigator-specific JavaScript syntax for style sheets.

Style sheets can be added directly to a document or imported from one or more
external files. In-document and external style sheets coexist well in the same docu-
ment; you can have as many of each type as your page design requires.

In-Document Styles

There are two ways to embed CSS information directly in an HTML document:
using the <STYLE> tag pair or using STYLE attributes of HTML tags. For ease of
maintenance and consistency throughout a document, I recommend using a
<STYLE> tag inside the HEAD section of the document. But you can also include
STYLE attributes directly inside the tag for almost any HTML element.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

40 Chapter 3: Adding Style Sheets to Documents
The <STYLE> tag

It is convenient to define style sheet rules between <STYLE> and </STYLE> tags.
The collection of rules within these tags is the classic instance of a CSS style sheet.
Because the elements to which you bind style declarations can appear early in the
body of the document (and may be bound to the BODY element itself), you should
use the <STYLE> tag in the HEAD section of your document. This guarantees that
the style sheet is loaded and in effect before any elements of the document are
rendered. Include the TYPE attribute in the opening tag, as in:

<STYLE TYPE="text/css">
style sheet rule(s) here

</STYLE>

Some older browsers ignore the start and end tags and attempt to render the con-
tents as if they were part of the document body. If you fear that this will affect
users of your pages, you can surround the statements inside the STYLE element
with HTML comment symbols. Such a framework looks as follows:

<STYLE TYPE="text/css">
<!--

style sheet rule(s) here
-->
</STYLE>

This technique is similar to the one used to hide the contents of <SCRIPT> tag
pairs from older browsers, except that the end-comment statement in a script must
include a JavaScript comment (//-->). The content is still downloaded to the cli-
ent and is visible in the source code, but for all but the most brain-dead browsers,
the style sheet rules are hidden from plain view in the browser window. In the
examples in this book, I have omitted these comment symbols to conserve space
and improve readability, but you should take care to use them as necessary in
your STYLE elements.

As I mentioned earlier, the element to which a style declaration is assigned is
called a selector. In practice, selector has a wide range of meanings. In its sim-
plest form, a selector is the name of one type of HTML element—the case-insensi-
tive HTML tag stripped of its enclosing angle brackets (e.g., the P selector, which
represents all the paragraphs in a document). As you will see as this chapter
progresses, a selector can take on additional forms, including some that have no
resemblance at all to HTML elements. Just remember that a selector defines the
part (or parts) of an HTML document that is governed by a style declaration.

In the most common application, each style rule binds a declaration to a particu-
lar type of HTML element. When a rule is specified in a <STYLE> tag, the declara-
tion portion of the rule must appear inside curly braces, even if there is just one
style attribute in the declaration. The style sheet in the following example includes
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Embedding Style Sheets 41
two rules. The first assigns the red foreground (text) color and initial capital text
transform to all H1 elements in the document; the second assigns the blue text
color to all P elements:

<HTML>
<HEAD>
<STYLE TYPE="text/css">
 H1 {color:red; text-transform:capitalize}
 P {color:blue}
</STYLE>
</HEAD>
<BODY>
<H1>Some heading</H1>
<P>Some paragraph text.</P>
</BODY>
</HTML>

There is no practical limit to the number of rules that can be listed inside the
<STYLE> tag pair, nor is there a limit to the number of style attributes that can be
used in a style rule. Also, rules can appear in any order within a style sheet, and
the indenting shown in the preceding example is purely optional. If you prefer,
you can also break up a series of declarations (inside the curly braces), placing
them on separate lines.

CSS syntax provides a shortcut for assigning the same style declaration to more
than one selector. By preceding the curly-braced style declaration with a comma-
delimited list of selectors, you can have one statement do the work of two or more
statements. For example, if you want to assign a specific color to H1, H2, and H3
elements in the document, you can do so with one statement:

<STYLE TYPE="text/css">
 H1, H2, H3 {color:blue}
</STYLE>

The STYLE attribute in other tags

Another way to bind a style declaration to an HTML element is to include the dec-
laration as an attribute of the actual HTML element tag. The declaration is assigned
to the STYLE attribute; almost every HTML element recognizes the STYLE attribute.

Because the STYLE attribute is a regular HTML attribute, you assign a value to it
via the equal sign operator. The value is a double-quoted string that consists of
one or more style attribute/value pairs. These style attribute/value pairs use the
colon assignment operator. Use a semicolon to separate multiple style attribute set-
tings within the same STYLE attribute. Here is a STYLE attribute version of the
<STYLE> tag example shown in the preceding section. Because the style sheets are
attached to the actual HTML element tags, all this takes place in the BODY section
of the document:
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

42 Chapter 3: Adding Style Sheets to Documents
<BODY>
<H1 STYLE="color:red; text-transform:capitalize">Some heading</H1>
<P STYLE="color:blue">Some paragraph text.</P>
</BODY>

Notice, too, that when a style sheet definition is specified as a STYLE attribute,
there are no curly braces involved. The double quotes surrounding the entire style
sheet definition function as the curly brace grouping characters.

Selecting a style sheet style

In deciding whether to use the <STYLE> tag or STYLE attribute methodology for
defining style sheets, you need to consider how important it is for you to separate
design from content. The <STYLE> tag technique distances HTML content from the
styles associated with elements throughout the document. If you need to change a
font family or size for a particular kind of element, you can do so quickly and reli-
ably by making the change to one location in the document. If, on the other hand,
your style definitions are scattered among dozens or hundreds of tags throughout
the document, such a change requires much more effort and the possibility for
mistakes increases. However, for small-scale deployment of style sheets, the STYLE
attribute will certainly do the job. And, if one person is responsible for both con-
tent and design, it isn’t too difficult to keep the content and design in sync.

Current web development trends lean toward the separation of design from con-
tent. In large projects involving writers, designers, and programmers, it is usually
easier to manage the entire project if different contributors to the application can
work toward the same goal without stepping on each other’s code along the way.
Using the <STYLE> tag offers the best growth path for an evolving web site, and it
smooths the eventual transition to external style sheet files.

Importing External Style Sheets

Perhaps the most common use of style sheets in the publishing world is to estab-
lish a “look” designed to pervade across all documents, or at least across all sec-
tions of a large document. To facilitate applying a style sheet across multiple
HTML pages, the CSS specification provides two ways to include external style
sheet files: an implementation of the <LINK> tag and a special type of style sheet
rule selector (the @import rule).

Style sheet files

No matter how you import an external style sheet, the external file must be writ-
ten in such a way that the browser can use it to build the library of style sheets
that controls the currently loaded document. In other words, the browser must
take into account not only external styles, but any other styles that might also be
defined inside the document. Because there is an opportunity for the overlap of
multiple style sheets in a document, the browser must see how all the styles are
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Embedding Style Sheets 43
bound to elements, so it can apply cascading rules (described later in this chap-
ter) to render the content.

An external style sheet file consists exclusively of style sheet rules without any
HTML tags. The file can be saved with any filename extension (you can use .htm,
.html, or .css if the file is written in CSS syntax). For example, to convert the style
sheet used in the previous sections to an external style sheet file, create a text file
that contains the following and save the file as basestyl.css:

H1 {color:red; text-transform:capitalize}
P {color:blue}

When a browser encounters either technique for importing an external style sheet,
the content of the file is loaded into the browser as if it were typed into the main
HTML document at that location (although it doesn’t become part of the source
code if you use the browser to view the source).

The LINK element

More recent versions of the HTML recommendation include a general-purpose tag
for linking media-independent content into a document. This is not a link like the
<A> tag because the LINK element can appear only in the HEAD portion of a docu-
ment. It is up to the browser to know how to work with the various attributes of
this tag (see Chapter 8, HTML Reference).

The CSS2 specification claims one application of the LINK element as a way to
link an external style sheet file into a document. The attributes and format for the
tag are rather simple:

<LINK REL=STYLESHEET TYPE="sheetMimeType" HREF="filename.css"

If the style sheet in the previous section is saved as basestyl.css, you can import
that style sheet as follows:

<HTML>
<HEAD>
<LINK REL=STYLESHEET TYPE="text/css" HREF="basestyl.css">
</HEAD>
<BODY>
<H1>Some heading</H1>
<P>Some paragraph text.</P>
</BODY>
</HTML>

A document can have multiple LINK elements for importing multiple external style
sheet files. The document can also contain STYLE elements as well as STYLE
attributes embedded within element tags. But if there is any overlap of more than
one style applying to the same element, the cascade rules (described later in this
chapter) determine the specific style sheet rule that governs the element’s display.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

44 Chapter 3: Adding Style Sheets to Documents
The @import rule

CSS2 describes an extensible system for declarations or directives (commands, if
you will) that become a part of a style sheet definition. They are called at-rules
because a rule starts with the “at” symbol (@), followed by an identifier for the
declaration. Each at-rule includes one or more descriptors that define the charac-
teristics of the rule. (For more about at-rules, see Chapter 10.)

One such at-rule that is implemented in Internet Explorer 4 (but not Navigator 4)
imports an external style sheet file from inside a STYLE element. It performs the
same function as the LINK import technique described in the previous section. In
the following example, a file containing style sheet rules is imported into the cur-
rent document:

<STYLE TYPE="text/css">
 @import url(styles/corporate.css)
</STYLE>

If you are creating documents for browser versions that support the @import rule,
it may be more convenient to keep all style sheet definitions within the STYLE ele-
ment rather than spreading the import job to a separate LINK element.

Subgroup Selectors
While a selector for a style sheet rule is most often an HTML element name, that
scenario is not flexible enough for more complex documents. Consider the follow-
ing possibilities:

• You want certain paragraphs scattered throughout the document to be set
apart from running text by having wider left and right margins.

• You want all H2 elements in the document but one to be set to the color red;
the exception must be blue.

• In a three-level ordered list (OL) group, you want to assign different font sizes
to each level.

Each of these possibilities calls for a different way of creating a new selector group
or specifying an exception to the regular selectors. In an effort to distance design
from content, CSS style sheets provide three ways of creating subgroups that can
handle almost every design possibility:

• Class selectors

• ID selectors

• Contextual selectors
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Subgroup Selectors 45
Using these subgroup selectors requires special ways of defining selectors in style
sheet rules. These selectors also require the addition of attributes to the HTML tags
they apply to in the document.

Class Selectors

A class selector is an identifier you can use to assign a style to a subset of ele-
ments in a document. To apply a class selector, you first invent an identifier for
the class name. To allow for the potential scripting of class names, it is wise to
adhere to the rules of JavaScript identifiers when devising class names. A Java-
Script identifier is a one-word name (i.e., no spaces) that can include numerals,
letters, and limited punctuation (such as the underscore character). Also, the first
character of an identifier cannot be a numeral. The CSS2 guidelines for selector
identifiers are less stringent: you can embed hyphens, Unicode characters above
160, and escaped characters (characters that begin with a backslash character) in
an identifier, but the name must not begin with a numeral or hyphen. If you are
now or may eventually script class selectors, follow the JavaScript rules instead of
the more liberal CSS2 rules.

The class identifier goes in both the style sheet rule and the HTML tag (assigned to
the CLASS attribute) for the element that is to obey the rule. While the identifier
name is the same in both cases, the syntax for specifying it is quite different in
each place.

Binding a class identifier to an element type

In the style sheet rule, the class identifier is part of the rule’s selector. When a class
selector is intended to apply to only one kind of HTML element, the selector con-
sists of the element name, a period, and the identifier. The following rule assigns a
specific margin setting for all P elements flagged as belonging to the narrow class:

P.narrow {margin-left:5em; margin-right:5em}

To force a P element to obey the P.narrow rule, you must include a CLASS
attribute in the <P> tag and set the value to the class identifier:

<P CLASS="narrow">Content for the narrow paragraph</P>

Any P elements that don’t have the CLASS attribute set to narrow follow whatever
style is applied to the generic P element.

As implemented in Navigator 4 and Internet Explorer 4, class selectors permit only
one class identifier for each selector. In other words, you cannot create a nested
hierarchy of classes (e.g., a selector P.narrow.redHot is not allowed). The cur-
rent browsers are very forgiving if you reassign the same class name to different
element types in different rules. Be aware, however, that for purposes of present-
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

46 Chapter 3: Adding Style Sheets to Documents
day or future scriptability of style classes, you should avoid reusing a class identi-
fier in a document for any other purpose.

Example 3-1 shows a complete document that includes style sheet rules for all P
elements and a subclass of P.narrow elements. The rule for all P elements speci-
fies a 2-em margin on the left and right as well as a 14-point font size. For all P
elements tagged with the CLASS=narrow attribute, the margins are set to 5 ems
and the text color is set to red. It is important to note that the P.narrow rule
inherits (or is affected by) style settings from the P rule. Therefore, all text in the
P.narrow elements is displayed at a font size of 14 points. But when the margin
attributes are set in both rules, the settings for the named class override the set-
tings of the broader P element rule (the language of CSS does not include the
object-oriented concepts of subclass or superclass). Following the inheritance trail
one level higher in the containment hierarchy, all P elements (and all other ele-
ments in the document if there were any) obey the style sheet rule for the BODY
element, which is where the font face is specified.

Example 3-1. Applying the P.narrow Class Rule

<HTML>
<HEAD>
<TITLE>Class Society</TITLE>
<STYLE TYPE="text/css">
 P {font-size:14pt; margin-left:2em; margin-right:2em}
 P.narrow {color:red; margin-left:5em; margin-right:5em}
 BODY {font-face:Arial, serif}
</STYLE>
</HEAD>

<BODY>
<P>
This is a normal paragraph. This is a normal paragraph. This is a normal
paragraph. This is a normal paragraph. This is a normal paragraph.
</P>
<P CLASS=narrow>
This is a paragraph to be set apart with wider margins and red color. This is a
paragraph to be set apart with wider margins and red color. This is a paragraph
to be set apart with wider margins and red color.
</P>
<P>
This is a normal paragraph. This is a normal paragraph. This is a normal
paragraph. This is a normal paragraph. This is a normal paragraph.
</P>
<P CLASS=narrow>
This is a paragraph to be set apart with wider margins and red color. This is a
paragraph to be set apart with wider margins and red color. This is a paragraph
to be set apart with wider margins and red color.
</P>
</BODY>
</HTML>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Subgroup Selectors 47
Defining a free-range class rule

Most of the time, you don’t want to limit a class selector to a single element type
in a document. Fortunately, you can define a rule with a class selector that can be
applied to any element in the document. The selector of such a rule is nothing
more than the identifier preceded by a period. Example 3-2 contains a rule that
assigns a red underline style to a class named hot. The hot class is then assigned
to different elements scattered throughout the document. Notice inheritance at
work in this example. When the hot class is assigned to a DIV element, it applies
to the P element nested inside the DIV element: the entire paragraph is rendered
in the hot style and follows the P.narrow rule as well, since the rules do not
have any overlapping style attributes.

Example 3-2. Applying a Class Rule to a Variety of HTML Elements

<HTML>
<HEAD><TITLE>Free Range Class</TITLE>
<STYLE TYPE="text/css">
 P {font-size:14pt; margin-left:2em; margin-right:2em}
 P.narrow {margin-left:5em; margin-right:5em}
 .hot {color:red; text-decoration:underline}
 BODY {font-face:Arial, serif}
</STYLE>
</HEAD>

<BODY>
<H1 CLASS=hot>Get a Load of This!</H1>
<P>
This is a normal paragraph. This is a normal paragraph. This is a normal
paragraph. This is a normal paragraph. This is a normal paragraph.
</P>
<DIV CLASS=hot>
<P CLASS="narrow">
This is a paragraph to be set apart with wider margins and red color. This is a
paragraph to be set apart with wider margins and red color. This is a paragraph
to be set apart with wider margins and red color.
</P>
</DIV>
<P>
This is a normal paragraph. This is a normal paragraph but with a
red-hot spot. This is a normal paragraph. This is a normal paragraph. This
is a normal paragraph.
</P>
<P CLASS=narrow>
This is a paragraph to be set apart with wider margins and red color. This is a
paragraph to be set apart with wider margins and red color. This is a paragraph
to be set apart with wider margins and red color.
</P>
</BODY>
</HTML>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

48 Chapter 3: Adding Style Sheets to Documents
ID Selectors

In contrast to the class selector, the ID selector lets you define a rule that applies
to only one element in the entire document. Like the class selector, the ID selec-
tor requires a special way of defining the selector in the style sheet rule and a spe-
cial tag attribute (ID) in the tag that is the recipient of that rule. The ID attribute of
a tag is similar to the NAME attribute applied to elements for scripting purposes.
This means that to maintain integrity of the object model for the current docu-
ment, the ID selector identifier must be unique within the document.

The style rule syntax for defining an ID selector calls for the identifier to be pre-
ceded with the # symbol. This can be in conjunction with an element selector or
by itself. Therefore, both of the following rules are valid:

P#special4 {border:5px ridge red}
#special4{border:5px ridge red}

To apply this rule for this ID to a P element, you have to add the ID attribute to
that element’s tag:

<P ID=special4>Content for a special paragraph.</P>

There is an important difference between the two style rule examples just shown.
By specifying the ID selector in concert with the P element selector in the first
example, we’ve told the browser to obey the ID=special4 attribute only if it
appears in a P element. The second rule, however, is a generic rule. This means
that the ID=special4 attribute can appear in any kind of element. Since an ID
attribute value should be used in only one element throughout the entire docu-
ment, the first rule is unnecessarily limiting.

Example 3-3 shows the ID selector at work, where it is used to assign a rule
(defining a red, ridge-style border for a block) to only one of several P elements in
the document. Notice that it is assigned to a P element that also has a class selec-
tor assigned to it: two rules are applied to the same element. In this example, the
style rules do not conflict with each other, but if they did, the cascade precedence
rules (described later in this chapter) would automatically determine precisely
which rule wins the battle of the dueling style attributes.

Example 3-3. Applying an ID Selector to a Document

<HTML>
<HEAD><TITLE>ID Selector</TITLE>
<STYLE TYPE="text/css">
 P {font-size:14pt; margin-left:2em; margin-right:2em}
 P.narrow {color:red; margin-left:5em; margin-right:5em}
 #special4 {border:5px ridge red}
 BODY {font-face:Arial, serif}
</STYLE>
</HEAD>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Subgroup Selectors 49
Contextual Selectors

One more way to assign styles to specific categories of elements is the contextual
selector. To use a contextual selector, you should be comfortable with the contain-
ment hierarchy of elements in a document and how inheritance affects the appli-
cation of styles to a chunk of content. Consider the two single-selector rules in the
following style sheet:

<STYLE TYPE="text/css">
 P {font-size:14pt; color:black}
 EM {font-size:16pt; color:red}
</STYLE>

This style sheet dictates that all EM elements throughout the document be dis-
played in red with a 16-point font. If you were to add an EM element as part of an
H1 element, the effect might be less than desirable. What you really want from the
style sheet is to apply the EM style declaration to EM elements only when they are
contained by—are in the context of—P elements. A contextual selector lets you do
just that. In a contextual selector, you list the elements of the containment hierar-
chy that are to be affected by the style, with the elements separated by spaces.

To turn the second rule of the previous style sheet into a contextual selector, mod-
ify it as follows:

<STYLE TYPE="text/css">
 P {font-size:14pt; color:black}
 P EM {font-size:16pt; color:red}
</STYLE>

<BODY BGCOLOR="#FFFFFF">
<H1>Get a Load of This!</H1>
<P>
This is a normal paragraph. This is a normal paragraph. This is a normal
paragraph. This is a normal paragraph. This is a normal paragraph.
</P>
<P CLASS=narrow ID=special4>This is a paragraph to be set apart with wider
margins, red color AND a red border. This is a paragraph to be set apart with
wider margins, red color AND a red border.
</P>
<P>
This is a normal paragraph. This is a normal paragraph. This is a normal
paragraph. This is a normal paragraph. This is a normal paragraph.
</P>
<P CLASS=narrow>This is a paragraph to be set apart with wider margins and red
color. This is a paragraph to be set apart with wider margins and red color. This
is a paragraph to be set apart with wider margins and red color.
</P>
</BODY>
</HTML>

Example 3-3. Applying an ID Selector to a Document (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

50 Chapter 3: Adding Style Sheets to Documents
You still need the rule for the base P element in this case because the style is
something other than the browser default. There is no practical limit to the num-
ber of containment levels you can use in a contextual selector. For example, if the
design calls for a section of an EM element to have a yellow background color, you
can assign that job to a SPAN element and set the contextual selector to affect a
SPAN element only when it is nested inside an EM element that is nested inside a P
element. Example 3-4 shows what the source code for such a document looks
like. The example goes one step further in that one element of the contextual
selectors is a class selector (P.narrow). Each element selector in a contextual
selector can be any valid selector, including a class or ID selector. You can also
apply the same style declaration to more than one contextual selector by separat-
ing the contextual selector groups with commas:

P EM SPAN, H3 B {background-color:yellow}

It’s an odd-looking construction, but it’s perfectly legal (and byte conservative).

Example 3-4. Applying a Three-Level Contextual Selector

<HTML>
<HEAD><TITLE>ID Selector</TITLE>
<STYLE TYPE="text/css">
 P {font-size:14pt; margin-left:2em; margin-right:2em}
 P.narrow {color:red; margin-left:5em; margin-right:5em}
 P.narrow EM {font-weight:bold}
 P.narrow EM SPAN {background-color:yellow}
 #special4 {border:5px ridge red}
 BODY {font-face:Arial, serif}
</STYLE>
</HEAD>

<BODY>
<H1>Get a Load of This!</H1>
<P>
This is a normal paragraph. This is a normal paragraph. This is a normal
paragraph. This is a normal paragraph. This is a normal paragraph.
</P>
<P CLASS=narrow ID=special4>This is a paragraph to be set apart with
wider margins, red color AND a red border. This is a paragraph to be set apart
with wider margins, red color AND a red border.
</P>
<P>
This is a normal paragraph. This is a normal paragraph. This is a normal
paragraph. This is a normal paragraph. This is a normal paragraph.
</P>
<P CLASS=narrow>This is a paragraph to be set apart with
wider margins and red color. This is a paragraph to be set apart with wider
margins and red color. This is a paragraph to be set apart with wider margins and
red color.
</P>
</BODY>
</HTML>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Attribute Selector Futures: CSS2 51
Attribute Selector Futures: CSS2
Navigator 4 and Internet Explorer 4 implement the individual, class, ID, and con-
textual selector schemes described in the previous sections. The newer CSS2 speci-
fication makes further enhancements to the way selectors can be specified in style
sheet rules. Some of these recommendations may find their way into future ver-
sions of the browsers (IE 4 already uses a few of them) or other implementations
of style sheets (such as in XML-enabled applications). These items are noted here
briefly to offer a preview of what you might expect in the next generation of
DHTML-capable browsers. However, since specifications like CSS do not insist on
100% compliance (some items are optional), don’t be surprised if some of the
items described in this section do not appear in the next version of your browser.

Pseudo-Element and Pseudo-Class Selectors

The original idea for pseudo-elements and pseudo-classes was defined as part of
the CSS1 recommendation; these selectors have been expanded in CSS2. A fine
line distinguishes these two concepts, but they do share one important factor:
there are no direct HTML tag equivalents for the elements or classes described by
these selectors. Therefore, you must imagine how the selectors will affect the real
tags in your document.

Using pseudo-elements

A pseudo-element is a well-defined chunk of content in an HTML element. Two
pseudo-elements specified in the CSS1 recommendation point to the first letter and
the first line of a paragraph. The elements are named :first-letter and
:first-line, respectively. It is up to the browser to figure out where, for exam-
ple, the first line ends (based on the content and window width) and apply the
style only to the content in that line. If the browser is told to format the :first-
letter pseudo-element with a drop cap, the browser must also take care of ren-
dering the rest of the text in the paragraph so that it wraps around the drop cap.

For example, to apply styles for the first letter and first line of all P elements, use
the following style rules:

<STYLE TYPE="text/css">
 P:first-letter {font-face:Gothic, serif; font-size:300%; float:left}
 P:first-line {font-style:small-caps}
</STYLE>

Style attributes that can be set for :first-letter and :first-line include a
large subset of the full CSS attribute set. They include all font, color, background,
margin, padding, and border attributes, as well as a handful of element-specific
attributes that logically apply to a given element.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

52 Chapter 3: Adding Style Sheets to Documents
Using pseudo-classes

In contrast to a pseudo-element, a pseudo-class applies to an element whose look
or content may change as the user interacts with the content. Pseudo-classes
defined in the CSS1 recommendation are for three states of the A element: a link
not yet visited, a link being clicked on by the user, and a link that has been vis-
ited. Default behavior in most browsers is to differentiate these states by colors
(default colors can usually be set by user preferences as well as by attributes of
the BODY element). The syntax for pseudo-class selectors follows the same pattern
as for pseudo-elements. This style sheet defines rules for the three A element
pseudo-classes:

<STYLE TYPE="text/css">
 A:link {color:darkred}
 A:active {color:coral}
 A:visited {color:lightblue; font-size:-1}
</STYLE>

As with other selectors, you can combine class or ID selectors with pseudo-ele-
ments or pseudo-classes to narrow the application of a special style. For instance,
you may want a large drop cap to appear only in the first paragraph of a page.
See Chapter 10 for an example, plus a list of CSS2 pseudo-elements and pseudo-
classes.

Attribute Selectors

The CSS2 specification expands the facilities in Navigator 4 and Internet Explorer 4
for selectors based on plain elements, classes, and IDs. In the enhanced scheme, it
is helpful to think of a selector as an expression that helps the user agent (browser
or application) locate a match of HTML elements or attributes to determine
whether the style should be applied. In many respects, the functionality mimics
that of a scripting language that you would use to inspect the value assigned to an
element’s attribute before assigning a specific style. But the CSS2 attribute selector
model is nothing at all like JavaScript syntax for style sheets (described later).

Table 3-2 shows the three attribute selector formats and what they mean. A new
syntactical feature for selectors—square brackets—adds another level of complex-
ity to defining style sheet rules, but the added flexibility may be worth the effort.

Table 3-2. Attribute Selector Syntax

Syntax Format Description
[attributeName] Matches an element if the attribute is defined in the HTML

tag
[attributeName=value] Matches an element if the attribute is set to the specified

value in the HTML tag
[attributeName~=value] Matches an element if the specified value is present

among the values assigned to the attribute in the HTML
tag
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Attribute Selector Futures: CSS2 53
To see how these selector formats work, observe how the sample style sheet rules
in Table 3-3 apply to an associated HTML tag.

Universal Selectors

In practice, the absence of an element selector before an attribute selector implies
that the rule is to apply to any and all elements of the document. But a special
symbol more clearly states your intentions. The asterisk symbol (*) acts like a
wildcard character to select all elements. You can use this to a greater advantage
when you combine selector types, such as the universal and attribute selector. The
following selector applies to all elements whose ALIGN attributes are set to a spe-
cific value:

*[ALIGN="middle"]

Parent-Child Selectors

Element containment is a key factor in the parent-child selector. Again, following
the notion of a style rule selector matching a pattern in a document, the parent-
child selector looks for element patterns that match a specific sequence of parent
and child elements. The behavior of a parent-child selector is very similar to that
of a contextual selector, but the notation is different—a greater-than symbol (>)
separates the element names in the selector, as in:

BODY > P {font-size:12pt}

Another difference is that the two elements on either side of the symbol must be
direct relations of each other, as a paragraph is of a body.

Adjacent Selectors

An adjacent selector lets you define a rule for an element based on its position rel-
ative to another element or, rather, the sequence of elements. Such adjacent selec-
tors consist of two or more element selectors, with a plus symbol (+) between the
selectors. For example, if your design calls for an extra top margin for an H2 block

Table 3-3. How Attribute Selectors Work

Style Sheet Selector Applies To Does Not Apply To
P[ALIGN] <P ALIGN="left">

<P ALIGN="left"
TITLE="Summary">

<P>
<P TITLE="Summary">

HR[ALIGN="left"] <HR ALIGN="left"> <HR ALIGN="middle">
IMG[ALT~="Temporary"] <IMG ALT="Temporary

placeholder"
SRC="picture.gif">

<APPLET ALT="Temporary
Applet" CODE=... >
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

54 Chapter 3: Adding Style Sheets to Documents
whenever it comes immediately below an H1 element in the document, the rule
looks like the following:

H1 + H2 {margin-top: 6pt}

JavaScript Style Sheet Syntax
So far throughout this chapter, all style sheet examples have used the CSS syntax
promoted in the W3C recommendations and implemented to varying degrees in
both Navigator 4 and Internet Explorer 4. In this section, we discuss Netscape’s
alternative syntax for specifying style sheets. This syntax follows the rules of the
JavaScript (and, by extension, ECMAScript) language, but the object model is
unique to Navigator 4. Unless you exercise browser branching safeguards, you will
encounter script errors if you attempt to load documents equipped with this style
sheet syntax into Internet Explorer 4. It’s important to emphasize that this is not an
alternate style sheet mechanism; rather, it is just another way to program CSS style
sheets. The advantage of this syntax is that you gain the power of using other
JavaScript statements inside <STYLE> tags to create, for example, algorithmically
derived values for style sheet rules.*

As you may have noticed in Table 3-1, not every CSS attribute implemented in
Navigator 4 has a JavaScript equivalent. The most common attributes are
accounted for, but some design choices, such as setting independent colors for
border sides, aren’t available in Navigator 4—in JavaScript or CSS syntax.

Attributes and Elements

JavaScript syntax simplifies assigning values to style attributes and then assigning
those attributes to HTML elements, in that you don’t have to learn the CSS syntax.
Each statement in a JavaScript style sheet is a property assignment statement. The
object reference on the left side of the statement is an element type, class, or ID.
These objects all have style properties to which you can assign values.

To demonstrate the difference in syntax, the next listing is a duplicate of one ear-
lier in the chapter that showed a simple setting of two style rules in CSS syntax:

<HTML>
<HEAD>
<STYLE TYPE="text/css">
 H1 {color:red; text-transform:capitalize}
 P {color:blue}
</STYLE>
</HEAD>

* If you want to use algorithmically derived values in style sheets in IE 4, you can create a custom API
that inserts style rules into an existing style sheet, using IE’s document object model.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
JavaScript Style Sheet Syntax 55
<BODY>
<H1>Some heading</H1>
<P>Some paragraph text.</P>
</BODY>
</HTML>

In JavaScript syntax, the document looks as follows:

<HTML>
<HEAD>
<STYLE TYPE="text/javascript">
 tags.H1.color = "red"
 tags.H1.textTransform = "capitalize"
 tags.P.color = "blue"
</STYLE>
</HEAD>
<BODY>
<H1>Some heading</H1>
<P>Some paragraph text.</P>
</BODY>
</HTML>

Note three primary differences between the two versions:

• The TYPE attribute of the <STYLE> tag is text/javascript.

• Style attributes use the JavaScript versions, which turn multiword hyphenated
CSS attribute names into one-word, intercapitalized JavaScript identifiers.

• Property values other than numbers are quoted strings, so as not to be con-
fused with JavaScript variables.

You can also use JavaScript syntax to assign values to style properties inside other
HTML tags with the STYLE attribute. The attribute value must be a quoted string of
a style property assignment statement; values being assigned to these properties
must then be written as a nested string. For example, the following tag uses Java-
Script syntax to set the font size and color of the paragraph:

<P STYLE="fontSize='18pt'; color='blue'">

The construction is a little awkward. But as I mentioned earlier in this chapter,
inline STYLE attributes are more difficult to maintain over time, so you’re better off
using the <STYLE> tag set for your style sheets.

JavaScript Selectors

Like the CSS syntax, the JavaScript syntax for style sheets allows you to select plain
elements, classes, IDs, and contextual subgroups. A JavaScript style rule begins
with one of the object names tags, classes, or ids or the contextual()
method. Technically, all four of these entities belong to the document object, but
Navigator assumes the document context whenever you use these references
inside a <STYLE> tag. Therefore, you can omit document from all such references.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

56 Chapter 3: Adding Style Sheets to Documents
Don’t forget, however, that you are in a JavaScript context whenever the <STYLE>
tag is of type text/javascript. As a result, you can use a JavaScript shortcut,
such as the with statement, to set many properties of the same element with less
code. Outside of the <STYLE> tag context, you can use references to these objects
for read-only access to the style sheet properties.

Plain element selectors

Use the tags object to start a rule involving a single element. Element names are
the same as in CSS syntax. The format for setting a plain element style property is:

tags.tagName.propertyName = "value"

The name of the tag is not case sensitive in this construction, but all other compo-
nents of the reference are case sensitive. The following fragment sets three style
properties for all the P elements in a document:

tags.P.fontSize = "14pt"
tags.P.marginLeft = "2em"
tags.P.marginRight = "2em"

As a shortcut, you can use the JavaScript with statement to group these state-
ments together:

with (tags.P) {
 fontSize = "14pt"
 marginLeft = "2em"
 marginRight = "2em"
}

In other words, all three property setting statements are applied to the tags.P
object.

Class selectors

You can define a class selector that matches all tags whose CLASS attributes are set
to the same class name. Such classes can be bound to a particular element type or
can be “free-range” classes, if your design calls for it.

To set the style property of a class bound to a single element type, the syntax is as
follows:

classes.className.elementName.propertyName = "value"

If, on the other hand, you wish to apply a class to any element that includes a
CLASS attribute set to that class name, you substitute the all keyword for the ele-
ment name, as in the following format:

classes.className.all.propertyName = "value"
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
JavaScript Style Sheet Syntax 57
NOTE This application of the all keyword applies only to style sheet class
selectors in Navigator 4. The identical keyword is used in an entirely
different context (element positioning) in Internet Explorer 4. Do not
try to establish any relationship between the two applications of this
keyword.

An example of class-to-element-type binding is shown later in Example 3-5.

ID selectors

An ID is an identifier assigned to one HTML element in the document with the ID
attribute. Therefore, the ID selector lets you target a single element for a particular
style setting, even if it is also targeted by a plain element selector or a class ele-
ment selector (just like the CSS ID selector described earlier in this chapter).

Syntax for the ID selector follows the same structure as other JavaScript style prop-
erties:

ids.idName.propertyName = "value"

Contextual selectors

The construction of a contextual selector in JavaScript syntax is a little different
compared to the other selector styles. The need is to group two or more other
selectors into a sequence, so that the browser applies the style to an element only
if it appears in the context of related elements. The JavaScript syntax turns the
contextual reference into a JavaScript method whose parameters are the compo-
nent selectors that define the pattern to be matched for context. In JavaScript, mul-
tiple parameters are delimited by commas.

Earlier in this chapter, you saw the following CSS syntax for a style sheet that
defined a rule for all P elements and a rule for all EM elements nested inside P ele-
ments:

<STYLE TYPE="text/css">
 P {font-size:14pt; color:black}
 P EM {font-size:16pt; color:red}
</STYLE>

In JavaScript, the first rule is converted to a tags reference. The second rule must
use the contextual() method, which has the following syntax:

contextual(selector1, ..., selectorN).propertyName = "value"

Therefore, the JavaScript syntax equivalent for the preceding CSS style sheet is:

<STYLE TYPE="text/javascript">
 tags.P.fontSize = "14pt"
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

58 Chapter 3: Adding Style Sheets to Documents
 tags.P.color = "black"
 contextual(tags.P, tags.EM).fontSize = "16pt"
 contextual(tags.P, tags.EM).color = "red"
</STYLE>

You could also use two with statements for the style sheet, but with only two
statements per group, you don’t gain much in the way of code size.

To demonstrate a number of JavaScript style sheet properties being set and used in
a document, Example 3-5 is a JavaScript syntax version of the document in
Example 3-4. Notice that the HTML portion of the document—notably the usage of
CLASS and ID attributes—is identical for both versions. The only differences are in
the style sheet definitions.

Example 3-5. A JavaScript Syntax Version of Example 3-4

<HTML>
<HEAD><TITLE>ID Selector</TITLE>
<STYLE TYPE="text/javascript">
with (tags.P) {
 fontSize = "14pt"
 marginLeft = "2em"
 marginRight = "2em"
}
with (classes.narrow.P) {
 color = "red"
 marginLeft= "5em"
 marginRight = "5em"
}
with (ids.special4) {
 borderWidths("5px","5px","5px","5px")
 borderStyle = "ridge"
 borderColor = "red"
}
contextual(classes.narrow.p, tags.EM).fontWeight = "bold"
contextual(classes.narrow.P, tags.EM, tags.SPAN).backgroundColor = "yellow"
tags.BODY.fontFamily = "Times New Roman, serif"
</STYLE>
</HEAD>

<BODY>
<H1>Get a Load of This!</H1>
<P>
This is a normal paragraph. This is a normal paragraph. This is a normal
paragraph. This is a normal paragraph. This is a normal paragraph.
</P>
<P CLASS=narrow ID=special4>This is a paragraph to be set apart with
wider margins, red color AND a red border. This is a paragraph to be set apart
with wider margins, red color AND a red border.
</P>
<P>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Cascade Precedence Rules 59
When viewed in Navigator 4, Example 3-4 and Example 3-5 render absolutely
identically. They should, since the two listings are simply using two different syn-
taxes to control the same underlying style sheet mechanisms in the browser.

Cascade Precedence Rules
By now it should be clear that there are many ways styles can be applied to an
element—from an external style sheet file, from a <STYLE> tag set, and from a
STYLE attribute in a tag—and there is the possibility that multiple style rules can
easily apply to the same element in a document (intentionally or not). To deal
with these issues, the CSS recommendation had to devise a set of rules for resolv-
ing conflicts among overlapping rules. These rules are intended primarily for the
browser (and other user agent) makers, but if you are designing complex style
sheets or are seeing unexpected results in a complex document, you need to be
aware of how the browser resolves these conflicts for you.

Conflict resolution is mostly a matter of assigning a relative weight to every rule
that applies to a particular element. Rules with the most weight are the ones that
most specifically target the element. At the lightweight end of the spectrum is the
“nonrule,” or default style setting for the document, generally governed by the
browser’s internal design and sometimes influenced by preference settings (e.g.,
the base font size for text content). Such a “nonrule” may actually apply directly
only to a high-level object, such as the BODY element; only by way of inheritance
does the default rule apply to some element buried within the content. At the
heavyweight end of the spectrum is the style rule that is targeted specifically at a
particular element. This may be by way of an ID selector or the ultimate in speci-
ficity: a STYLE attribute inside the tag. No rule can override an embedded STYLE
attribute.

Between those two extremes are dozens of potential conflicts that depend on the
way style sheets are defined for the document. Before rendering any style-sheet-
capable element, the browser uses the following decision path to determine how
that element should be rendered:

This is a normal paragraph. This is a normal paragraph. This is a normal
paragraph. This is a normal paragraph. This is a normal paragraph.
</P>
<P CLASS=narrow>This is a paragraph to be set apart with
wider margins and red color. This is a paragraph to be set apart with wider
margins and red color. This is a paragraph to be set apart with wider margins and
red color.
</P>
</BODY>
</HTML>

Example 3-5. A JavaScript Syntax Version of Example 3-4 (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

60 Chapter 3: Adding Style Sheets to Documents
1. Scan the document for any style declarations that have a selector that matches
the element. If the element is not selected by any rules, short-circuit the rest of
the decision path and render the element according to the browser’s current
settings.

2. Sort all applicable declarations according to weight as indicated by a special
!important declaration (see the following section). Declarations marked
important are assigned greater weight than unmarked declarations. If only one
declaration bubbles to the top of the order, apply that style to the element and
short-circuit the rest of the decision path.

3. Sort the applicable declarations again, this time by origin. In today’s browsers,
this simply assigns greater weight to all author-defined declarations than to the
browser’s default or preferences settings.

4. Now sort the applicable declarations by the specificity of the rule’s selector.
The more specific the selector (see the section on selector specificity later in
this chapter), the greater the weight assigned to that declaration.

5. Finally, if more than one declaration is assigned the same weight after previ-
ous sorting, sort one last time based on the order in which the rules are
defined in the document. The last applicable rule with the greatest weight
wins the conflict. Rules defined in multiple imported style sheets are defined
in the order of the statements that trigger the import; a rule defined in a
<STYLE> tag set comes after any imported style sheet; a rule defined in an ele-
ment’s STYLE attribute is the last and heaviest rule.

Making a Declaration Important

You can give an individual declaration within a rule an extra boost in its battle for
superiority in the cascading order. When you do this to a declaration, the declara-
tion is called the important declaration; it is signified by an exclamation mark and
the word important following the declaration. For example, in the following style
sheet, the margin-left attribute for the P element is marked important:

<STYLE TYPE="text/css">
 P {font-size:14pt; margin-left:2em ! important; margin-right:2em}
 P.narrow {color:red; margin-left:5em; margin-right:5em}
</STYLE>

When the document encounters a <P> tag with a CLASS attribute set to narrow,
the left margin setting of the less specific P tag overrides the setting of the more
specific P.narrow class because of the important declaration. Note that this is an
artificial example because you typically would not include conflicting style rules in
the same style sheet. The important declaration can play a role when a document
imports one or more style sheets. If a generic rule for the specific document must
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Cascade Precedence Rules 61
override a more specific rule in an imported style sheet, the important declaration
can influence the cascading order.

NOTE The important declaration is not implemented in Navigator 4, but
does work in Internet Explorer 4.

Determining a Selector’s Specificity

The fourth cascading precedence rule refers to the notion of specificity, or how
well a rule selector targets a particular element in a document. The CSS recom-
mendation establishes a ranking system that assigns values to three categories,
arbitrarily designated a, b, and c. These categories represent the counts of items
within a rule selector, as follows:

a The count of ID selectors

b The count of other selector types

c The count of elements mentioned by name in the selector

For any rule selector, the browser calculates the counts and then concatenates the
values to come up with a specificity value. Table 3-4 displays a sequence of rule
selectors in increasing specificity.

Browsers use the highest applicable specificity rating value to determine which
rule wins any conflict. For example, if a style sheet defines the six rules for EM ele-
ments shown in Table 3-4 (with the #hotStuff rule being an ID selector), the
browser applies the highest relevant specificity rating to each instance of the EM
element. For example, an element with the tag <EM CLASS=hot> inside an H1 ele-
ment most closely matches the EM.hot rule selector (specificity rating of 11), and
therefore ignores all other selectors. But if the same EM element is placed inside a
P element, the more specific rule selector (P EM.hot) wins.

Table 3-4. Specificity Ratings for Rule Selectors

Rule Selector a b c Specificity Rating
EM 0 0 1 1
P EM 0 0 2 2
DIV P EM 0 0 3 3
EM.hot 0 1 1 11
P EM.hot 0 1 2 12
#hotStuff 1 0 0 100
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

62 Chapter 3: Adding Style Sheets to Documents
Cross-Platform Style Differences
Despite the commonality that CSS brings to Navigator and Internet Explorer, there
is no guarantee that the visual representation of a particular style will be the same
in both browsers. Differences can be attributed to browser bugs, varying interpre-
tations of the standard, and disagreements in design philosophies. Differences can
also accrue even among different operating system versions of the same browser.

To demonstrate this point, Figures 3-4, 3-5, and 3-6 show three different rendi-
tions of the same CSS-enhanced page (Example 3-4) in Internet Explorer 4 for
Windows 95, Navigator 4 for Windows 95, and Navigator 4 for the Macintosh. All
browser windows were sized to fill a 640-by-480 monitor, minus the Windows 95
Taskbar and Macintosh menu bar.

Notice how each browser shows a vastly different quantity of the document, even
though a specific font point size is assigned for all paragraph elements. Next,
check out how Internet Explorer and Navigator treat default padding between a
border and its content: Navigator automatically builds in a three-pixel padding
(which cannot be overridden) to keep content away from a border. Another point

Figure 3-4. Example 3-4 loaded into Internet Explorer 4 for Windows 95
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Cross-Platform Style Differences 63
that may not be clearly visible from the figures is that the precise shades and shad-
owing of the border are different between the two browser brands (detailed galler-
ies are available in the border-style section of Chapter 10).

There are some bugs that may bite you from time to time. For example, if you
specify a color attribute for an LI element inside a UL or OL element in Navigator
4, only the bullet or number gets the color, not the text for the item. This is a
known bug and is detailed in Netscape’s release notes for Navigator.

You may also encounter outrageously frustrating anomalous behavior when apply-
ing some CSS syntax attributes, especially when elements are nested within one
another. With rare exceptions (such as Navigator’s built-in padding), it is difficult
to predict errant behavior patterns. Different combinations of style attributes, ele-
ment nesting, and especially positioning specifications (covered in Chapter 4) can
make each page design a new challenge. Except where the browser embodies
pure buggy behavior (Internet Explorer 4.0 for the Macintosh is particularly trou-
blesome), you should eventually be able to find workarounds to make the Ver-
sion 4 browsers behave within an acceptable range of compatibility. Just remem-
ber, at this stage of style sheet deployment the simpler you make your design, the
more likely it is you’ll succeed in making it look the same on both browsers.

Figure 3-5. Example 3-4 loaded into Navigator 4 for Windows 95
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

64 Chapter 3: Adding Style Sheets to Documents
All these discrepancies point to the fact that deployment of CSS style sheets across
all DHTML-capable browsers requires testing on both browser brands and on as
many operating systems as you can get your hands on. Carefully study the output
on each to make sure that your design goals are met, even if the exact implemen-
tation doesn’t match pixel for pixel on the screen.

Figure 3-6. Example 3-4 loaded into Navigator 4 for the Macintosh
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L

Chapter 4Applying Dynamic HTML

In this chapter:
• Creating Positionable

Elements
• Positioning Attributes
• Changing Attribute

Values via Scripting
• Cross-Platform

Position Scripting
• Handling Navigator

Window Resizing
• Common Positioning

Tasks

Cascading style sheets, as des
ments, are primarily concerned
looks on a page printed from
tioning (or CSS-P), is primaril
pa!fs!fcge. CSS-P is blended wit
the Version 4 browsers were d
effort, I use the CSS-P term freq
Dynamic H
Copyright
4

4.Adding Dynamic

Positioning to
Documents
cribed in Chapter 3, Adding Style Sheets to Docu-
with how content looks on the screen (or how it

the screen). An extension to CSS, called CSS-Posi-
y concerned with where content appears on the
h regular CSS in the CSS2 specification, but because
esigned while positioning was a separate standards
uently.

The CSS-P recommendation from the W3C focuses on the HTML code that authors
put into documents to govern the position of elements on the page when the
browser-controlled flow of content just isn’t good enough. To accomplish element
positioning, a browser must be able to treat positionable elements as layers* that
can be dropped anywhere on the page, even overlapping other fixed or position-
able elements—something that normal HTML rendering scrupulously avoids.

The notion of layering adds a third dimension to a page, even if a video monitor
(or a printed page) is undoubtedly a two-dimensional realm. That third dimen-
sion—the layering of elements—is of concern to you as the author of positionable
content, but is probably of no concern to the page’s human viewer.

* I use the term “layer” guardedly here. While the word appears in the Netscape DHTML lexicon (Nav-
igator has a <LAYER> tag and a scriptable layer object), you probably won’t see the same word being
used by the Microsoft camp. My application of the term is generic and it aptly describes what’s going on
here: a positionable element is like an acetate layer of a film cartoon cel. The cartoon artist starts with a
base layer for the scene’s backdrop and then positions one or more acetate layers atop the background;
each layer is transparent except for some or all of the art for a single frame of the film. For the next frame
of the cartoon, perhaps one of the layers for a character in the background must move a fraction of an
inch. The artist repositions that layer, while the others stay the same. That’s what I mean by “layer” in this
context.
65
TML: The Definitive Reference, eMatter Edition
 © 1999 Danny Goodman. All rights reserved.

66 Chapter 4: Adding Dynamic Positioning to Documents
While the CSS-P recommendation offers a cross-platform way to lay out position-
able elements, the browsers have extended the idea by turning positionable ele-
ments into scriptable objects whose properties can be changed in response to user
action. Now you have the opportunity to create some very interactive content:
content that flies around the page, hides and shows itself at will, centers itself hori-
zontally and vertically in the currently sized browser window, and even lets itself
be dragged around the page by the user.

The implementations of positionable elements in Navigator 4 and Internet Explorer
4 are perhaps the most divergent parts of DHTML to grace both browsers. If you
have the luxury of designing an application for only one browser platform, you
can focus on the implementation for that browser to the exclusion of the other
browser’s idiosyncrasies. Successful cross-platform development, however,
requires knowledge of both browsers’ object models (at least as they relate to
positionable elements) and the range of DHTML authoring capabilities in both
browsers. As you will see in this chapter, there is a common denominator of func-
tionality, but it is often up to you to raise the level of commonality in order to get
a highly interactive page to work identically in both browsers.

Creating Positionable Elements
Regardless of browser, you can make any HTML container element (an element
with a start and end tag) a positionable element. As a ridiculous example of how
true the preceding statement is, you could direct a browser to render a word sur-
rounded by / tags at a position that is 236 pixels below its normal place
in a paragraph (but why would you?).

CSS-P Elements

To turn an HTML element into a positionable element that works in both Naviga-
tor 4 and Internet Explorer 4, you must assign it a CSS style rule that has a special
attribute: position. As demonstrated in Chapter 3, you can assign this style
attribute by including a STYLE attribute in the actual HTML tag or using an ID
selector for the rule and setting the corresponding ID attribute in the element’s
HTML tag.

The following HTML document demonstrates the two techniques you can use to
turn an element into a positionable element:

<HTML>
<HEAD>
<STYLE TYPE="text/css">
 #someSpan {position:absolute; left:10; top:30}
</STYLE>
</HEAD>
<BODY>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Creating Positionable Elements 67
<DIV ID="someDiv" STYLE="position:absolute; left:100; top:50">
Hello.

Hello, again.

</DIV>
</BODY>
</HTML>

The first technique defines an ID selector inside a <STYLE> tag that is mated to an
ID attribute of a SPAN element in the document’s body. The second method
defines the style as an inline attribute of a <DIV> tag. As with ordinary CSS style
sheets, you can use any combination of methodologies to apply position style
rules to elements in a document.

Once you have set the position attribute, you can set other CSS-P attributes,
such as left and top, to position the element. Possible values for the position
attribute are:

absolute
Element becomes a block element and is positionable relative to the ele-
ment’s positioning context.

relative
Element maintains its normal position in element geography (unless you over-
ride it) and establishes a positioning context for nested items.

static
Item is not positionable and maintains its normal position in element geogra-
phy (default value).

Absolute Versus Relative Positioning

The position attribute terminology can be confusing because the coordinate sys-
tem used to place an element depends on the positioning context of the element,
rather than on a universally absolute or relative coordinate system. A positioning
context defines a point somewhere on the screen that is coordinate point 0,0. The
most basic positioning context is the invisible box created by virtue of the <HTML>
tag set of the document, corresponding to the BODY element. In other words, the
entire (scrollable, if necessary) space of the browser window or frame that dis-
plays the content of the document is the default positioning context. The 0,0 coor-
dinate point for the default positioning context is the upper left corner of the win-
dow or frame. You can position an element within this context by setting the
position attribute to absolute and assigning values to the left and top attributes
of the style rule:

<DIV ID="someDiv" STYLE="position:absolute; left:50; top:100">
Hello. And now it's time to say goodbye.
</DIV>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

68 Chapter 4: Adding Dynamic Positioning to Documents
Figure 4-1 shows how this simple block-level element appears in a browser win-
dow.

Each time an element is positioned, it spawns a new positioning context with the
0,0 position located at the top left corner of that element. Therefore, if we insert a
positioned element in the previous example nested within the DIV element that
forms the new positioning context, the newly inserted element lives in the new
context. In the following example, we insert a SPAN element inside the DIV ele-
ment. Positioning attributes for the SPAN element place it 10 pixels in from the left
and 30 pixels down from the top of its positioning context—the DIV element in
this case:

<DIV ID="someDiv" STYLE="position:absolute; left:100; top:50">
Hello.

Hello, again.

And now it's time to say goodbye.
</DIV>

Figure 4-2 shows the results; note how the DIV element’s positioning context gov-
erns the SPAN element’s location on the page.

Notice in the code listing that the position attribute for each element is abso-
lute, even though you might say that the nested SPAN element is positioned rela-
tive to its parent element. Now you see why the terminology gets confusing. The
absolute positioning of the SPAN element removes that element from the docu-
ment’s content flow entirely. The split content of the parent DIV element closes
up, as if the content of the SPAN element wasn’t there. But the SPAN element is in
the document—in its own plane and shifted into a position within the DIV ele-
ment’s positioning context. All other parent-child relationships of the DIV and
SPAN elements remain intact (style sheet rule inheritance, for instance), but physi-
cally on the page, the two elements appear to be disconnected.

Figure 4-1. An element positioned within the default positioning context
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Creating Positionable Elements 69
The true meaning of relative positioning can be difficult to visualize because
experiments with the combination of absolute and relative positioning often yield
bewildering results. Whereas an absolute-positioned element adopts the position-
ing context of its HTML element parent, a relative-positioned element adopts the
positioning context of the element’s normal (unpositioned) location within the
document’s content flow. A sequence of modifications to some content should
help demonstrate these concepts.

To begin, here is a fragment with a single absolute-positioned DIV element that
contains three sentences:

<DIV ID="someDiv" STYLE="position:absolute; left:100; top:50">
Hello.
Hello, again.
And now it's time to say goodbye.
</DIV>

This code generates a simple line of text on the page, as shown in Figure 4-3.

Pay special attention to the location of the middle sentence as it flows in normal
HTML. Now, if that second sentence is made into a relative-positioned SPAN ele-
ment supplied with some offset (left and top) values, something quite unusual

Figure 4-2. A second element nested inside another

Figure 4-3. A simple three-sentence DIV element
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

70 Chapter 4: Adding Dynamic Positioning to Documents
happens on the screen. The following fragment positions the second sentence 10
pixels in from the left and 30 pixels down from the top of some positioning con-
text:

<DIV ID="someDiv" STYLE="position:absolute; left:100; top:50">
Hello.

Hello, again.

And now it's time to say goodbye.
</DIV>

But what is that context? With a relative-positioned element, the anchor point of its
positioning context is the top left corner of the place (the box) where the normal
flow of the content would go. Therefore, by setting the left and top attributes of
a relative-positioned element, as in the previous code fragment, you instruct the
browser to offset the content relative to its normal location. You can see the
results in Figure 4-4.

Note how the middle sentence is shifted within the context of its normal flow loca-
tion. The positioning context established by the relative-positioned element is now
available for positioning of other elements (most likely as absolute-positioned ele-
ments) that you may wish to insert within the tag pair. Take special notice
in Figure 4-4 that the browser does not close up the space normally occupied by
the SPAN element’s content because it is a relative-positioned element; had it been
absolute-positioned, the surrounding text would have closed the gap. All this
behavior is dictated by the CSS-P recommendation.

In most cases, you don’t assign values for left and top to a relative-positioned
element because you want to use a relative-positioned element to create a posi-
tioning context for more deeply nested elements that are absolutely positioned
within that context. Using this technique, regular content flows according to the
browser window’s current size or as its appearance is affected by style rules, while
elements that must be positioned relative to some running content are always
positioned properly.

Figure 4-4. The relative-positioned element generates its own positioning context
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Creating Positionable Elements 71
To demonstrate this concept, consider the following fragment that produces a long
string of one-word sentences. The goal is to have the final sentence always appear
aligned with the final period of the last “Hello” and 20 pixels down. This means
that the final sentence needs to be positioned within a context created for the final
period of the last “Hello.” In other words, the period character must be defined as
a relative-positioned element, so that the nested SPAN element can be positioned
absolutely with respect to the period. The following code shows how it’s done:

<DIV ID="someDiv" STYLE="position:absolute; left:100; top:50">Hello. Hello.
Hello. Hello. Hello. Hello. Hello. Hello. Hello. Hello. Hello. Hello. Hello.
Hello. Hello. Hello.

And now it's time to say goodbye.

</DIV>

Carefully observe the nesting of the elements in the previous example. Figure 4-5
shows the results in a small browser window.

If you resize the browser window so that the final “Hello” appears on another line
or in another vertical position on the page, the final sentence moves so that it
always starts 20 pixels and just to the right of the period of the final “Hello” of the
content. When applied in this fashion, the term “relative positioning” makes per-
fect sense.

Overlapping Versus Wrapping Elements

One of the advantages of CSS-Positioning is that you can set an absolute position
for any element along both the horizontal and vertical axes as well as its position
in stacking order—the third dimension. This makes it possible for more than one
element to occupy the same pixel on the page, if you so desire. It is also impor-

Figure 4-5. A relative-positioned element creates a positioning context for another element
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

72 Chapter 4: Adding Dynamic Positioning to Documents
tant to remember that absolute-positioned elements exist independently of the sur-
rounding content of the document. In other words, if a script shifts the position of
such an element, the surrounding content does not automatically wrap itself
around the new position of the element.

If your design calls for the content of an element to wrap around another ele-
ment, you should use the CSS float attribute, rather than CSS-Positioning. Proper-
ties of the float attribute let you affix an element at the left or right margin of a
containing block element and at a specific location within the running content. For
example, if you want to place an image in the middle of a paragraph, you wrap
that image element inside a SPAN element whose style sets the float attribute, as
follows:

<P>Lots of text.

And more text.</P>

Now, no matter how the browser window is sized or how the font rendering var-
ies from platform to platform, the text in the paragraph always wraps around the
image. A floating element defined in this manner, however, is not a positionable
element in that you cannot script positionable element properties of such an item.

Netscape Layers

Netscape Navigator 4 provides an alternate syntax for creating positionable ele-
ments in the form of two sets of tags that are not recognized by IE 4 or HTML 4.0.
They are the <LAYER> and <ILAYER> tags, which correspond to absolute and rela-
tive positioning styles, respectively. The basic concepts of absolute and relative
positioning from CSS-P apply to these tags, so the discussion earlier in this chap-
ter about the two positioning styles applies equally well to Netscape layers.
Because you use HTML tags to generate these elements, attributes are set like reg-
ular HTML attributes (attributeName="value"), rather than with the CSS-style
rule syntax (attributeName:value).

The <LAYER> tag generates an element that can be absolute-positioned within the
positioning context of the next outer layer (or the base document if that’s the next
outer layer). The following code fragment from the body of a document generates
the same content shown earlier in Figure 4-2:

<LAYER NAME="someLayer" LEFT=100 TOP=50>
Hello.
<LAYER NAME="anotherLayer" LEFT=10 TOP=30>
Hello, again.
</LAYER>
And now it's time to say goodbye.
</LAYER>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Creating Positionable Elements 73
The inner layer (anotherLayer) is absolute-positioned relative to the next outer
layer (someLayer). That outer layer is absolute-positioned relative to the default
positioning context of the document.

In the following fragment, the inner layer is changed to be a relative-positioned
element by using the <ILAYER> tag (inline layer):

<LAYER NAME="someLayer" LEFT=100 TOP=50>
Hello.
<ILAYER NAME="inLineLayer" LEFT=10 TOP=30>
Hello, again.
</ILAYER>
And now it's time to say goodbye.
</LAYER>

The <ILAYER> tag lets you designate a piece of running content that has its own
positioning context. In this case, the <ILAYER> content is positioned within that
context, leaving a gap in the running content, as shown earlier in Figure 4-4.

A more practical application of the <ILAYER> tag is to use it to set a positioning
context for further nested absolute-positioned layers. Thus, in the following code
fragment, an <ILAYER> is applied to the final period of the outer layer. The
<LAYER> tag nested inside the <ILAYER> tag obeys the positioning context of that
inline layer, such that the final content tracks the location of the period regardless
of normal content wrapping, as shown earlier in Figure 4-5:

<LAYER ID="someLayer" LEFT=100 TOP=50>Hello. Hello. Hello.
Hello. Hello. Hello. Hello. Hello. Hello. Hello. Hello. Hello. Hello. Hello.
Hello. Hello<ILAYER NAME="inLineLayer">.
<LAYER NAME="anotherLayer" TOP=20>
And now it's time to say goodbye.
</LAYER>
</ILAYER>
</LAYER>

There is more to the Netscape layer than its simply being an alternative syntax to
CSS-Positioning. Each layer and inline layer object can have external content
associated with it (via an SRC attribute, as documented in Chapter 8, HTML Refer-
ence). In fact, in the document object model for Navigator 4, each layer object
contains its own document object, which a script can manipulate like any docu-
ment object. This object model is vastly different from the one Internet Explorer 4
uses for positionable objects, so when it comes to writing scripts that reference
positionable objects, the situation gets a bit gnarly, as described later.

One other point about the relationship between Netscape layers and CSS-P objects
is that Navigator automatically converts CSS-P objects into layers for the object
model of the currently loaded document. For example, the following document
defines one positionable element in CSS-P syntax:

<HTML>
<HEAD>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

74 Chapter 4: Adding Dynamic Positioning to Documents
</HEAD>
<BODY>
<DIV STYLE="position:absolute; left:100; top:50">
Hello.
</DIV>
</BODY>
</HTML>

Navigator 4’s object model treats the DIV element as a layer; “Hello.” is the con-
tent of the layer’s document object. Therefore, while Navigator’s scripting environ-
ment works only with layer objects for controlling positioning, you have the
same level of scriptability whether a positionable element is defined as a Naviga-
tor layer or as a CSS-P element.

Positioning Attributes
The CSS-Positioning recommendation specifies several properties that can be set as
style sheet rule attributes. These attributes are used only when the position
attribute is included in the rule; otherwise they have no meaning. Implementation
of all the CSS-P attributes varies from browser to browser. Table 4-1 provides a
summary of all the attributes defined in the W3C recommendation as well as how
those attributes are implemented in the browsers. A separate column shows the
Navigator <LAYER> tag attribute that corresponds to the CSS-P attribute.

Table 4-1. Summary of Positioning Attributes

CSS Attribute Description CSS-P IE NN Layer Attribute
position Defines a style rule as being for a

positionable element
1 4 4 -

left The offset distance from the left
edge of the element’s positioning
context to the left edge of the
element’s box

1 4 4 LEFT

top The offset distance from the top
edge of the element’s positioning
context to the top edge of the
element’s box

1 4 4 TOP

width The width of an absolute-posi-
tioned element’s content

1 4 4 WIDTH

height The height of an absolute-posi-
tioned element’s content

1 4 4 HEIGHT

clip The shape and dimension of the
viewable area of an absolute-posi-
tioned element

1 4 4 CLIP

overflow How to handle content that
exceeds its height/width settings

1 4 4 -

visibility Whether a positionable element is
visible or not

1 4 4 VISIBILITY

z-index The stacking order of a position-
able element

1 4 4 Z-INDEX
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Positioning Attributes 75
The implementation of these positioning attributes is not completely identical in
both Version 4 browsers, but there is a large degree of compatibility, with the
exception of the clip and overflow attributes.

left, top, height, and width Attributes

Four attributes deal with lengths, whether they are for positioning of the element
or determining its physical dimensions on the page. Recall from Chapter 3
(Figure 3-2) that height and width refer to the size of the content, exclusive of
any padding, borders, or margins assigned to the element. The left and top val-
ues, however, apply to the location of the box edges (content + padding + border
+ margin). When using the CSS syntax, each of these four attributes can be speci-
fied as a fixed length or a percentage. Fixed-length units are borrowed from the
CSS specification, as shown in Table 4-2. Percentage values are specified with an
optional + or - symbol, a number, and a % symbol. Percentage values are applied
to the parent element’s value.

The length unit you choose should be based on the primary output device for the
document. Most HTML pages are designed for output solely on a video display, so
the pixel unit is most commonly used for length measures. But if you intend your
output to be printed, you may obtain more accurate placement and relative align-
ment of elements if you use one of the absolute units: inch, centimeter, millime-
ter, point, or pica. Print quality also depends on the quality of the printing engine
built into the browser.

For attributes of the <LAYER> tag that correspond to the CSS attributes, the values
you assign do not include units. All measurements are in pixels.

Navigator 4 and Internet Explorer 4 also disagree on how to render certain types
of block elements, as described at the end of Chapter 3. Navigator closes up the
height of a block around its content, regardless of the height setting of the ele-
ment. Moreover, any content, such as text, an image, or even a solid background
color, is inset from the edges of the element by a forced padding of about three
pixels that cannot be removed. On the other hand, if you define a positionable

Table 4-2. Length Value Units (CSS and CSS-P)

Length Unit Example Description
em 1.5em Element’s font height
ex 1ex Element’s font x-height
px 14px Pixel (precise length is depends on the display device)
in 0.75in Inch (absolute measure)
cm 5cm Centimeter (absolute measure)
mm 55mm Millimeter (absolute measure)
pt 10pt Point (equal to 1/72 of an inch)
pc 1.5pc Pica (equivalent to 12 points)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

76 Chapter 4: Adding Dynamic Positioning to Documents
object via the <LAYER> tag in Navigator, these problems disappear, and the width
and height attributes truly set the size of the block element.

The clip Attribute

A clipping region is a geometric area (currently limited to rectangles) through
which you can see a positioned element’s content. For example, if you include an
image in a document, but want only a small rectangular segment of the whole
image to appear, you can set the clip attribute of the element to limit the view-
able area of the image to that smaller rectangle. It is important to remember that
the element does not shrink in overall size for the purposes of document flow, but
any area that is beyond the clipping rectangle becomes transparent, allowing ele-
ments below it in the stacking to show through. If you want to position the view-
able, clipped region so that it appears without a transparent border, you must
position the entire element (whose top left corner still governs the element’s posi-
tion in the grid). Similarly, because the clipping region encompasses viewable
items such as borders, you must nest a clipped image inside another element that
sets its own border.

Figure 4-6 demonstrates (in three stages) the concept of a clipping region relative
to an image. It also shows how positioning a clipped view requires setting the
location of the element based on the element’s original size.

Figure 4-6. How element clipping works
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Positioning Attributes 77
Setting the values for a clip region requires slightly different thinking from how
you might otherwise describe the points of an rectangle. The clip attribute
includes a shape and four numeric values in the sequence of top, right, bottom,
left—the same clockwise sequence used by CSS to assign values to edge-related
attributes (borders, padding, and margins) of block-level elements. Moreover, the
values are entered as a space-delimited sequence of values in this format:

clip:rect(top right bottom left)

In Figure 4-6, the goal is to crop out the critter from the image and align the
clipped image to the left. The original image (396 by 84 pixels) is at the top. To
trim the critter requires bringing in the left clip edge 98 pixels. The bottom, one-
pixel rule is also clipped:

Then, to reposition this image so that the clipped area abuts the left edge of its
positioning context, the style rule for the element must assign a negative value to
take up the slack of the now blank space:

The overflow Attribute

If you define a fixed width and height for a relative- or absolute-positioned ele-
ment, you can tell the browser how to handle content that extends beyond the
physical dimensions of the element block. While the overflow attribute is defined
to help in this regard, unfortunately the implementation of this attribute is not the
same in Navigator 4 and Internet Explorer 4. Consider the following document
fragment that affects how much of the upper left corner of an image appears in
the browser window:

In the previous example, even though the width and height style attributes are
set for a SPAN wrapper around an image, the natural width and height of the
image force both browsers to show every pixel of the image. In other words, the
content overflows the edges of the block containing the image. By adding an
overflow attribute and value to the style rule, you can instruct the browser to cut
the view at the edges of the block defined by the style rule:

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

78 Chapter 4: Adding Dynamic Positioning to Documents
Thus, any content (between the and tag pair) is clipped to the
size of the SPAN element’s box. Navigator 4, however, exhibits slightly different
behavior in that the horizontal dimension is never clipped by the overflow
attribute. In the preceding example, the visible portion of the image is 50 pixels
square in Internet Explorer 4 and 120 pixels wide by 50 pixels high in Navigator 4.
If you truly want to clip the view of any content, it is best to use the clip attribute
(described in the previous section) to set the viewing boundaries of content.

Internet Explorer also supports an optional CSS-P recommendation for setting the
overflow attribute to scroll. This setting automatically displays scrollbars (a full
set, unfortunately) inside the clipped rectangle defined by the positioned ele-
ment’s height and width attributes. Content is clipped to the remaining visible
space; the user clicks or drags the scrollbars to maneuver through the content
(image or text). This attribute setting is not available in Navigator 4.

The visibility Attribute

The purpose of the visibility attribute is obvious: it makes an element visible
or hidden. Unless the element is under script control, however, it is unlikely that
you would bother setting the attribute’s value (to inherit, visible, or hidden).
There is rarely a need to load a normally visible HTML element into a page as hid-
den, unless you also have a script that changes its state as the user visits the
page—perhaps in response to mouse clicks or a timed event.

It is, however, important to understand the difference between setting a position-
able element’s visibility attribute and setting the CSS display attribute to
none. When a positionable element is set to be hidden, the space occupied by the
element—whether it be a position in the stacking order or the location for flowed
content set off as a relative-positioned element—does not go away. If you hide a
relative-positioned element that happens to be an emphasized chunk of text
within a sentence, the rest of the sentence text does not close up when the posi-
tioned portion is hidden.

In contrast, if you set the CSS attribute of an element to display:none, this tells
the browser to ignore the element as it flows the document. Navigator 4 does not
have a scriptable property to correspond to the display style attribute, so you
cannot modify this property on the fly (although Navigator does recognize the
display attribute when a page loads). But in Internet Explorer 4, you can change
the display property on the fly under script control. When you do, the content
automatically reflows, closing up any gap left by the “undisplayed” element. This
is how some DHTML-driven collapsible menus are created and controlled.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Positioning Attributes 79
The z-index Attribute

Positioned elements can overlap each other. While overlapping text doesn’t usu-
ally make for a good page design, overlapping opaque elements, such as images
and blocks with backgrounds, can be put to good use, particularly when the ele-
ments are under script control. The z-index attribute lets you direct the stacking
order (also called the z-order, where Z stands for the third dimension, after X and
Y) of elements within a positioning context. The higher the z-index value (values
are integers), the closer the element layer is to the user’s eye.

Positioned elements—even if their z-index attributes are not specified in their
style rules—exist as a group in a plane closer to the user’s eye than nonposi-
tioned content. The notable exception to this is Navigator 4’s belief that any form
element (positioned or otherwise) should exist in a plane in front of positioned
elements, regardless of z-index setting. In other words, you cannot obscure a form
element behind a positioned element in Navigator 4.

If you do not specify the z-index attribute for any positioned elements in a docu-
ment, the default stacking order is based on the sequence in which the positioned
elements are defined in the HTML source code. Even so, these positioned items
are in front of nonpositioned items (except form elements in Navigator 4). There-
fore, you need to specify z-index values only when the desired stacking order is
other than the natural sequence of elements in the source code.

More commonly, z-index values are adjusted by scripts when a user interacts with
maneuverable content (by dragging or resizing), or when a script moves an ele-
ment as a form of animation. For example, if your page allows dragging of ele-
ments (perhaps an image acting as a piece of a jigsaw puzzle), it may be valuable
to set the z-index attribute of that element to an arbitrarily high value as the user
drags the image. This keeps the image in front of all other positionable puzzle
pieces while being dragged (so it doesn’t “submarine” and get lost behind other
elements). When the user releases the piece, you can reset the z-index attribute
to, say, zero to move it back among the pool of other inactive positioned ele-
ments.

You cannot interleave elements that belong to different positioning contexts. This
is because z-index values are relative only to sibling elements. For example, imag-
ine you have two positioned DIV elements named Div1 and Div2 (see
Figure 4-7). Div1 contains two positioned SPAN elements; Div2 contains three
positioned SPAN elements. A script can adjust the z-index values of the elements in
Div1 all they want, but the two elements are always kept together; similarly the
three elements in Div2 are always “contiguous” in their stacking order. If you
swap the z-index values of Div1 and Div2, the group of elements contained by
each DIV swaps positions as well.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

80 Chapter 4: Adding Dynamic Positioning to Documents
Changing Attribute Values via Scripting
Despite the similarity of the Version 4 browsers’ support for defining positionable
elements, the two browsers diverge widely in how you control attribute values
from a script. The primary differences can be attributed to the way each browser
implements its document object model. When these browser versions were
released in 1997, the DOM standardization effort was only at the earliest stages in
defining the requirements for such a standard. As a result, each browser company
extended its object model from its previous version along clashing philosophical
lines. The level of compatibility is fairly low, but the regular nature of both object
models makes it possible to raise that compatibility level to embed sophisticated
DHTML capabilities for both browsers in the same document.

Referencing Positionable Objects

In comparing the document object models of the two browsers, it is clear that
Internet Explorer 4 went to extremes to make virtually every HTML element a
scriptable object. Navigator 4, on the other hand, restricts access to element prop-
erties by making them read-only except when being set inside JavaScript-syntax
style sheet rules. The first piece of the cross-browser positioning puzzle involves
referring to the positionable elements in a document.

Navigator 4 references

For controlling positionable element properties on the fly, Navigator uses its
layer object model to supply a wide range of methods and directly settable prop-
erties for adjusting an element’s location, size, z-index, and visibility: the family of
CSS-P attributes. Because Navigator internally turns a CSS-P element into a layer
object, you use the same mechanism to manipulate positionable elements, whether
they are created with CSS-P or the <LAYER> tag.

Figure 4-7. Stacking order is relative to the positioning context of the element

DIV2

SPAN 2.1
SPAN 2.2
SPAN 2.3

DIV1

SPAN 1.1
SPAN 1.2

BODY
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Changing Attribute Values via Scripting 81
NOTE Netscape doesn’t like to use the term layer object when referring to
positionable elements. The company’s official wording is “accessing
style sheet properties from JavaScript via the Document Object
Model.” This implies a Document Object Model standard, which
didn’t exist when this wording was created. Also, it’s nearly impossi-
ble to refer to these objects in a Navigator context without using the
word “layer,” since, as you will see, the word can become part of a
reference to a positionable object. It’s like someone introducing him-
self as: “Hi, my name is Fred, but please call me Alice.” This book
uses layer object when referring to an object that uses the proper-
ties, methods, and event handlers of Navigator’s explicitly named
layer object (see Chapter 9, Document Object Reference).

Building a reference to a layer object requires knowledge of the containment
hierarchy of the element within the document. This is because Navigator 4 does
not provide a shortcut referencing mechanism that can dive through all nested ele-
ments of a document and pick one out by name. Instead, the reference must rep-
resent the containment hierarchy starting with the base document object. More-
over, recall that a layer always contains a document. For one layer to contain
another means that the outer layer contains a document, which, in turn, contains
the nested layer. These relationships must be reflected in a reference to a layer
object.

As an example of a one-layer-deep reference, consider the following code:

<HTML>
<BODY>
<DIV STYLE="position:absolute; left:20; top:20">

</DIV>
</BODY>
</HTML>

To access one of the position style attributes, you must build a reference that spec-
ifies the hierarchical path to the layer in the document. Here’s how to set the left
property to a different value:

document.layers[0].left = 50

Navigator reflects the ID attribute of a CSS-P element as the layer’s name property.
If you assign an ID attribute to the DIV element, you can use that name in the ref-
erence:

document.myLayer.left = 50

To access the content of the layer object, you must extend the reference hierar-
chy to include the document contained by the layer. For example, to change the
image source file in the preceding example, the statement is:

document.layers[0].document.images[0].src = "otherImage.gif"
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

82 Chapter 4: Adding Dynamic Positioning to Documents
Once the reference reaches the document holding the content, regular Navigator
document object model references take over, as shown earlier by the reference to
the image object and its src property.

The situation gets more complex when there are two nested levels of positionable
elements. In the following example, a SPAN element defines a relative-positioned
grid for the absolute-positioned DIV element that contains an image:

<HTML>
<BODY>
Here's an image
:
 <DIV ID="inner" STYLE="position:absolute; left:5; top:3">

 </DIV>

</BODY>
</HTML>

To change the left property of the DIV element, the reference becomes:

document.layers[0].document.layers[0].left = 10

And to change a property of the deeply nested content, the reference gets quite
long:

document.layers[0].document.layers[0].document.images[0].src = "otherImage.gif"

When scripting deeply nested items such as this, your script statements will be
more manageable if you set a variable to represent an object level somewhere
down the containment hierarchy. For example, if you must refer to the inner layer
and its content in two or more statements, initialize a variable to represent the
inner layer. Then use that variable to simplify references to specific properties or
document objects:

var innerDiv = document.layers[0].document.layers[0]
innerDiv.left = 10
innerDiv.document.images[0].src = "otherImage.gif"

Assigning ID attributes to elements also assists in making long references more
readable, since it is easier to determine which objects from the document are
being referenced:

document.outer.document.inner.document.images[0].src = "otherImage.gif

Even though you assign unique names to positioned and nested elements, Naviga-
tor 4’s object model has no instant way to slice through the hierarchy to reach
such a nested element.

Internet Explorer 4 references

Internet Explorer 4 provides a syntax for pinpointing any uniquely named (via the
ID attribute) element in a document (positioned or not). The keyword that makes
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Changing Attribute Values via Scripting 83
it possible is all. This keyword represents a collection of all HTML elements in a
document; it is a property of the base document object. Another important distinc-
tion between browser object models is that each positionable element in IE 4 does
not have its own document object (except for the IFRAME element, which defines
a new frame object within the current document). Therefore, objects that are nor-
mally reflected as collections (Microsoft’s way of describing arrays of objects, such
as images, applets, and links) are referenced directly from the base docu-
ment, rather than through an element hierarchy.

Style sheet rules, including those that affect positioning attributes, are accessible
through a style property of an element. So, while an element may have some of
its own properties that are accessible directly (such as the innerHTML property),
in order to read or modify one of the style sheet rules associated with the ele-
ment, you must include a reference to the style property.

To demonstrate how references work in IE 4, consider the following simple docu-
ment with a DIV element nested inside and a SPAN element:

<HTML>
<BODY>
Here's an image
:
 <DIV ID="inner" STYLE="position:absolute; left:5; top:3">

 </DIV>

</BODY>
</HTML>

References to the three items influenced by positioning are as follows:

document.all.outer
document.all.inner
document.images[0]

If you want to access one of the style sheet properties, the reference gets a little
longer, to include the style property of the positioned element:

document.all.inner.style.pixelLeft = 10

And yet, to change a property of even the deeply nested image object, the refer-
ence is a simple one:

document.images[0].src = "otherImage.gif"

Positionable Element Properties

The next piece of the cross-browser positioning puzzle involves the actual prop-
erty names. Table 4-3 shows the primary properties that control a positionable ele-
ment’s location, size, visibility, z-order, and background (many of which mirror
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

84 Chapter 4: Adding Dynamic Positioning to Documents
CSS-P attributes). For Navigator 4, these properties belong to the layer object; for
IE 4, these properties belong to the style object.

Navigator 4 generally assigns default values to positionable object properties, even
if the style rule (or <LAYER> tag) does not specifically set the corresponding
attribute values. Internet Explorer 4 tends to leave properties empty if the associ-
ated style attributes are not set in the rule.

Layer Object Methods

The third and final piece of the cross-browser positioning puzzle concerns the
techniques you use to alter the positionable properties. The Internet Explorer 4

Table 4-3. Common Scriptable Positioning Properties

NN Layer Property Notes IE Style Property
left The offset in pixels from the left edge of the

current positioning context. The IE 4 style
object has a left property, but the value is a
string with the unit of measure (e.g.,
"20px"). So, to manipulate the value of the
left property in IE 4, you should use the
pixelLeft property.

pixelLeft

top The offset in pixels from the top edge of the
current positioning context. The same situa-
tion applies here as with the left versus
pixelLeft property in IE 4.

pixelTop

clip.height The height (in pixels) of the displayed
content, including overflow.

-

clip.width The width (in pixels) of the displayed
content, including overflow.

-

- The width (in current units) of the element,
as directed by the CSS width attribute.

posWidth

- The height (in current units) of the element,
as directed by the CSS height attribute.

posHeight

visibility The layer object returns one of "show",
"hide", or "inherit"; the style object
returns one of the CSS-P standard values of
"visible", "hidden", or "inherit". But
the layer object property can be set to the
standard property values without complaint.

visibility

 zIndex The stacking order of the element. There is
complete agreement between the two
browsers with regard to this property.

zIndex

 background The URL of a background image. background
 bgColor The background color of the element.

Although the browsers use different property
names, they use the same color values,
including Netscape plain-language names.

backgroundColor
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Changing Attribute Values via Scripting 85
style object is heavy on properties, but very light on methods. Aside from two
generic methods that get and set style attributes (getAttribute() and set-
Attribute()), there are no facilities for directly influencing object behavior with
methods. Navigator 4’s layer object, on the other hand, provides eight methods
that you can use to efficiently change the location, size, and stacking order of an
element.

The layer.moveBy() method demonstrates just how efficient these methods are.
The method takes two parameters that specify the number of pixels to move an
element along the X and Y axes. Positive values indicate movement to the right
and downward; negative values direct movement to the left and upward. Thus, to
repeatedly move an object diagonally to the right and down, in 5 incremental
steps of 10 pixels each, you can use the following for loop in JavaScript:

for (var i = 0; i < 5; i++) {
 document.layers[0].moveBy(10, 10)
}

Doing this same action with an Internet Explorer 4 positionable element requires
adjusting each property that controls the pixel location of the element:

for (var i = 0; i < 5; i++) {
 document.all.elementName.style.pixelLeft += 10
 document.all.elementName.style.pixelTop += 10
}

Despite what might appear to be stair-stepped action in IE 4, the browser buffers
the changes so that the animation appears in the straight line intended by the
author.

The full set of Netscape layer methods consists of the following items:

• load("filename", y)

• moveAbove(layerObj)

• moveBelow(layerObj)

• moveBy(deltaX, deltaY)

• moveTo(x, y)

• moveToAbsolute(x, y)

• resizeBy(deltaX, deltaY)

• resizeTo(width, height)

Not every method has a scriptable property equivalent in IE 4 because the object
and rendering models vary in some key places, such as specifying the viewable
size of a positionable element. Mastering one platform’s way of scripting position-
able elements may mean having to “unlearn” or ignore items that don’t have a
cross-platform equivalent.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

86 Chapter 4: Adding Dynamic Positioning to Documents
Cross-Platform Position Scripting
Reconciling the differences between the object and rendering models of Navigator
4 and Internet Explorer 4 is one of the biggest challenges you face if you want to
script positionable elements for both platforms in the same HTML document. The
key factors to take into account are:

• How to address positionable elements when the object references are so vastly
different

• How to make adjustments to differently named properties in a truly interac-
tive and dynamic environment

You cannot avoid having your scripts branch to execute platform-specific state-
ments. What you must decide for your application is how and where the branch-
ing occurs. There are three basic techniques you can use to implement cross-plat-
form position scripting in a document:

• Explicit branching

• Platform-equivalent referencing

• Custom APIs

Explicit branching and platform-equivalent referencing place the branching code
directly in your scripts. For a limited amount of scripted positioning, having all the
branching code in your scripts is manageable and actually easier to debug. But if
you are doing a serious amounts of scripted positioning, a custom API lets you
push the ugly branching code off to the side in an external library. In essence, you
create a meta-language that gives you control over the specific syntax used in both
browsers. A custom API requires a lot more work up front, but once the API code
is debugged, the API simplifies not only the current scripting job, but any subse-
quent pages that need the same level of scriptability.

Browser Flags

Regardless of the approach you take, you will need to set up global variable Bool-
ean flags (JavaScript global variables scope only within the current document) that
indicate which browser is running the script. In the same code that establishes
those variables, you should include code that redirects browsers not capable of
rendering positionable elements to another page that explains the browser require-
ments. Unlike pages that use regular style sheets, which generally degrade accept-
ably for older browsers, pages with positioned elements fare very poorly when
viewed with older browsers, especially if the intended design includes overlap-
ping and/or hidden elements.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Cross-Platform Position Scripting 87
JavaScript provides many ways to set browser flags. Some of the variation depends
on how granular you want the detection to be. Browser detection can get down to
the x.0x version, if a particular feature you use is buggy in earlier releases. You
must also decide if detection only needs to find a floor for compatibility (e.g., Ver-
sion 4 or later) or should be restricted to one generation of browser only.

Browser makers have been pretty good about maintaining backward compatibility
for browsers. Therefore, it is generally safe to let the browser detection script set
the flag when the browser version is greater than or equal to the minimum ver-
sion you need for your application. This technique lets the page you write today
run tomorrow on the next major release of the browser. Example 4-1 shows a
script sequence that should run as a page loads, to set flags arbitrarily named
isNav and isIE; the script also redirects older browsers to another page.

With the two flags initialized as null values in the first statement, you can safely
use either one as a control structure condition expression, since a value of null
evaluates to false in those situations. That’s precisely how the last if statement
operates (but with the flags preceded by the ! operator, since the script is inter-
ested in the values not being true).

Explicit Branching

For the occasional need to control the property of a positionable element, an
explicit branch does the job without a lot of fuss. All you need to do is determine
the platform-specific versions of the statement(s) to be executed and embed them
inside a simple if construction. Example 4-2 shows a script fragment whose job it
is to move an element (named face) to a particular coordinate point relative to
the positioning context of the body. For the Navigator version, the script takes
advantage of the layer object’s moveTo() method; for IE, the script adjusts the

Example 4-1. A JavaScript Browser Detection Script

var isNav, isIE
if (parseInt(navigator.appVersion) >= 4) {
 if (navigator.appName == "Netscape") {
 isNav = true
 } else {
 isIE = true
 }
}
if (!isNav && !isIE) {
 top.location.href = "noDHTML.htm"
}

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

88 Chapter 4: Adding Dynamic Positioning to Documents
pixelLeft and pixelTop properties. Notice, too, that the object references fol-
low the conventions of the respective browser’s object model.

There is no prohibition against using this technique on a complex document
involving dozens of such branches. The primary penalty is the unnecessarily
expanded amount of script code in the document. For some scripters, however,
this technique is easiest to debug. It also comes in handy when the positionable
objects are nested to different depths. Other techniques discussed in the following
sections can also work with layers at different levels in Navigator, but usually not
as easily.

Platform-Equivalent Referencing

Platform-equivalent referencing involves finding a common denominator approach
to building references to positionable objects on both platforms. One way to do
this is to create global variables to hold the platform-specific components of object
references.

If you study the format of references to the Internet Explorer style properties of
positionable objects, you see they always fall into the following format:

document.all.elementName.style

In contrast, single-level-deep Navigator layer objects are referenced according to
the following format:

document.layerName

If you assign the unique Internet Explorer pieces to global variables when run-
ning in that browser, but assign empty strings to those same globals when run-
ning in Navigator, you can use the JavaScript eval() function to derive a valid
object reference for either browser by assembling one reference, as shown in
Example 4-3. This example embeds the global variable setting in the script seg-
ment that also sets the browser Boolean flags. It concludes with a function that

Example 4-2. Simple Branching

function placeIt() {
 if (isNav) {
 document.face.moveTo(25,15)
 } else {
 document.all.face.style.pixelLeft = 25
 document.all.face.style.pixelTop = 15
 }
}

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Cross-Platform Position Scripting 89
takes advantage of the identical property names for a particular positioning prop-
erty in both browsers.

Notice that the variables for the IE reference pieces—coll (for collection) and
styleObj (for style object)—contain specific punctuation to assist the eval()
function in assembling a proper string representation of the reference for conver-
sion to a genuine object reference.

The platform-equivalent reference technique is particularly helpful for cases where
the property names are identical on both platforms, as shown in Example 4-3. But
you can also combine this technique with explicit branching to handle more com-
plex tasks. Example 4-4 shows a hybrid approach to moving an element, adapted
from Example 4-2.

Custom APIs

If you find yourself doing a lot of scripting of positionable elements in your appli-
cations, it is probably worth the effort to create a custom API that you can link
into any application you create. A custom API can take care of the “grunt” work

Example 4-3. Platform-Equivalent Variable Setting and Object Evaluation

var isNav, isIE
var coll = ""
var styleObj = ""
if (parseInt(navigator.appVersion) >= 4) {
 if (navigator.appName == "Netscape") {
 isNav = true
 } else {
 isIE = true
 coll = "all."
 styleObj = ".style"
 }
}
// set stacking order of "face" element
function setFaceZOrder(n) {
 var obj = eval("document." + coll + "face" + styleObj)
 obj.zIndex = n
}

Example 4-4. A Hybrid Approach: Explicit Branching and Platform Equivalency

function placeIt() {
 var obj = eval("document." + coll + "face" + styleObj)
 if (isNav) {
 obj.moveTo(25,15)
 } else {
 obj.pixelLeft = 25
 obj.pixelTop = 15
 }
}

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

90 Chapter 4: Adding Dynamic Positioning to Documents
for common position-scripting tasks, such as moving, hiding, showing, and resiz-
ing elements, as well as setting background colors or patterns. When you define a
custom API library, the methods you write become the interface between your
application’s scripts and various positioning tasks.

Example 4-5 gives you a sample of what such an API library might look like. The
API defines the following functions:

getObject(obj)
Takes a positionable element from the default positioning context and returns
an object reference for either the Navigator layer or the Internet Explorer
style object

shiftTo(obj, x, y)
Moves an object to a coordinate point within its positioning context

shiftBy(obj, deltaX, deltaY)
Moves an object by the specified number of pixels in the X and Y axes of the
object’s positioning context

setZIndex(obj, zOrder)
Sets the z-index value of the object

setBGColor(obj, color)
Sets the background color of the object

show(obj)
Makes the object visible

hide(obj)
Makes the object invisible

getObjectLeft(obj)
Returns the left pixel coordinate of the object within its positioning context

getObjectTop(obj)
Returns the top pixel coordinate of the object within its positioning context

Example 4-5. A Custom API for Positionable Elements

// DHTMLapi.js custom API for cross-platform
// object positioning by Danny Goodman (http://www.dannyg.com)

// Global variables
var isNav, isIE
var coll = ""
var styleObj = ""
if (parseInt(navigator.appVersion) >= 4) {
 if (navigator.appName == "Netscape") {
 isNav = true
 } else {
 isIE = true
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Cross-Platform Position Scripting 91
 coll = "all."
 styleObj = ".style"
 }
}

// Convert object name string or object reference
// into a valid object reference
function getObject(obj) {
 var theObj
 if (typeof obj == "string") {
 theObj = eval("document." + coll + obj + styleObj)
 } else {
 theObj = obj
 }
 return theObj
}

// Positioning an object at a specific pixel coordinate
function shiftTo(obj, x, y) {
 var theObj = getObject(obj)
 if (isNav4) {
 theObj.moveTo(x,y)
 } else {
 theObj.pixelLeft = x
 theObj.pixelTop = y
 }
}

// Moving an object by x and/or y pixels
function shiftBy(obj, deltaX, deltaY) {
 var theObj = getObject(obj)
 if (isNav4) {
 theObj.moveBy(deltaX, deltaY)
 } else {
 theObj.pixelLeft += deltaX
 theObj.pixelTop += deltaY
 }
}

// Setting the z-order of an object
function setZIndex(obj, zOrder) {
 var theObj = getObject(obj)
 theObj.zIndex = zOrder
}

// Setting the background color of an object
function setBGColor(obj, color) {
 var theObj = getObject(obj)
 if (isNav4) {
 theObj.bgColor = color
 } else {
 theObj.backgroundColor = color
 }
}

Example 4-5. A Custom API for Positionable Elements (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

92 Chapter 4: Adding Dynamic Positioning to Documents
Notice that every function call in the API invokes the getObject() function. If
the parameter passed to a function is already an object, the object reference is
passed through to the function’s other statements. Thus, you might use a combina-
tion of techniques to work with nested objects, as in the following call to a cus-
tom API function:

if (isNav) {
 setBGColor(document.outer.document.inner, "red")
} else {
 setBGColor(document.all.inner.style, "red")
}

The custom API in Example 4-5 is provided as a starting point for you to create
your own extensions that fit the kinds of positioning tasks your applications
require. Your version will probably grow over time, as you further enhance the
positioning techniques used in your applications.

// Setting the visibility of an object to visible
function show(obj) {
 var theObj = getObject(obj)
 theObj.visibility = "visible"
}

// Setting the visibility of an object to hidden
function hide(obj) {
 var theObj = getObject(obj)
 theObj.visibility = "hidden"
}

// Retrieving the x coordinate of a positionable object
function getObjectLeft(obj) {
 var theObj = getObject(obj)
 if (isNav4) {
 return theObj.left
 } else {
 return theObj.pixelLeft
 }
}

// Retrieving the y coordinate of a positionable object
function getObjectTop(obj) {
 var theObj = getObject(obj)
 if (isNav4) {
 return theObj.top
 } else {
 return theObj.pixelTop
 }
}

Example 4-5. A Custom API for Positionable Elements (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Handling Navigator Window Resizing 93
When you write a custom API, save the code in a file with any filename that uses
the .js extension. Then, you can link the library into an HTML document with the
following tag pair in the HEAD portion of the document:

<SCRIPT LANGUAGE="JavaScript" SRC="myAPI.js"></SCRIPT>

Once you do this, all the functions and global variables in the custom API library
become immediately available to all script statements in the HTML document.

Handling Navigator Window Resizing
Navigator 4 has a nasty habit of destroying the layout of positioned elements
(including LAYER elements) if the user resizes the browser window. The user may
see overlapped text and elements shaped very peculiarly after the resize. There is
a scripted workaround you should include in all pages that use positioned ele-
ments.

The workaround requires trapping for the resize event and forcing the page to
reload. This sequence causes the page to flicker briefly between the jumbled page
and the reloaded, properly proportioned page, but it’s better than nothing. The
following script, taken from the HEAD section of a document, assumes you’ve
included the utility code described earlier in this chapter that defines a global vari-
able called isNav when the current browser is Navigator 4 or later:

function handleResize() {
 location.reload()
 return false
}
if (isNav) {
 window.captureEvents(Event.RESIZE)
 window.onresize = handleResize
}

Internet Explorer 4 handles window resizing more gracefully, automatically reflow-
ing the content without the need for intervention.

Common Positioning Tasks
This chapter concludes with examples of two common positioning tasks: center-
ing objects and flying objects. A third task, user-controlled dragging of objects, is
kept on hold until Chapter 6, Scripting Events, where we discuss the browser
event models.

Centering an Object

The common way to center an element within a rectangle is to calculate the half-
way point along each axis for both the element and its containing rectangle (posi-
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

94 Chapter 4: Adding Dynamic Positioning to Documents
tioning context). Then subtract the element value from the container value for
each axis. The resulting values are the coordinates for the top and left edges of the
element that center the element.

Document object properties and references differ so widely for these attributes in
Navigator and Internet Explorer that it takes a bit of code to handle the centering
task for both browsers in the same document. The calculations rely on browser-
specific functions that might best be placed into a custom API and linked in from
an external .js file. For purposes of demonstration, however, the library functions
are embedded into the example document shown here.

The element being centered in the browser window is an outer DIV element with
a yellow background. Inside this DIV element is a one-word P element, which,
itself, is positioned inside the context of the DIV element. The goal is to center the
outer DIV element, bringing the contained paragraph along for the ride.
Example 4-6 shows the complete page listing.

Example 4-6. A Page That Centers an Element Upon Loading

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
// ***Begin library code better placed in an external API***
// Set global variables for browser detection and reference building
var isNav, isIE
var coll = ""
var styleObj = ""
if (parseInt(navigator.appVersion) >= 4) {
 if (navigator.appName == "Netscape") {
 isNav = true
 } else {
 isIE = true
 coll = "all."
 styleObj = ".style"
 }
}
// Utility function returns rendered height of object content in pixels
function getObjHeight(obj) {
 if (isNav) {
 return obj.clip.height
 } else {
 return obj.clientHeight
 }
}
// Utility function returns rendered width of object content in pixels
function getObjWidth(obj) {
 if (isNav) {
 return obj.clip.width
 } else {
 return obj.clientWidth
 }
}

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Common Positioning Tasks 95
// Utility function returns the available content width space in browser window
function getInsideWindowWidth() {
 if (isNav) {
 return window.innerWidth
 } else {
 return document.body.clientWidth
 }
}
// Utility function returns the available content height space in browser window
function getInsideWindowHeight() {
 if (isNav) {
 return window.innerHeight
 } else {
 return document.body.clientHeight
 }
}
// Utility function to position an element at a specific x,y location
function shiftTo(obj, x, y) {
 if (isNav) {
 obj.moveTo(x,y)
 } else {
 obj.pixelLeft = x
 obj.pixelTop = y
 }
}
// ***End library code***

// Center an element named banner in the current window/frame, and show it
function centerIt() {
 // 'obj' is the positionable object
 var obj = eval("document." + coll + "banner" + styleObj)
 // 'contentObj' is the element content, necessary for IE 4 to return the
 // true current width
 var contentObj = eval("document." + coll + "banner")
 var x = Math.round((getInsideWindowWidth()/2)-(getObjWidth(contentObj)/2))
 var y = Math.round((getInsideWindowHeight()/2)-(getObjHeight(contentObj)/2))
 shiftTo(obj, x, y)
 obj.visibility = "visible"
}
// Special handling for CSS-P redraw bug in Navigator 4
function handleResize() {
 if (isNav) {
 // causes extra re-draw, but must do it to get banner object color drawn
 location.reload()
 } else {
 centerIt()
 }
}
</SCRIPT>
</HEAD>

<BODY onLoad="centerIt()" onResize="handleResize()">
<DIV ID="banner" STYLE="position:absolute; visibility:hidden; left:0; top:0;
 background-color:yellow; width:1; height:1">

Example 4-6. A Page That Centers an Element Upon Loading (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

96 Chapter 4: Adding Dynamic Positioning to Documents
No matter what size the browser window is initially, or how the user resizes the
window, the element always positions itself dead center in the window space.
Notice that the outer positionable element is initially loaded as a hidden element
positioned at 0,0. This allows a script (triggered by the onLoad event handler of
the BODY element) to perform calculations based on the element properties and
then show the properly positioned element. The page allows the browser to deter-
mine the current height and width of the content, based on how each browser
(and operating system) calculates its fonts (initial width and height are arbitrarily
set to 1). This is preferable to hard-wiring the height, width, and clipping region of
the element. It means, however, that when the script is running in IE 4, it cannot
rely on style object properties. Those properties always pick up the style sheet
attributes; they do not change unless the properties are changed by a script.
Instead, the script in Example 4-6 uses the clientWidth and clientHeight
properties of the element itself, when running in IE 4.

Many of the concepts shown in Example 4-6 can be extended to centering nested
elements inside other elements. Be aware, however, that Navigator 4 handles
nested items best when they are specified in the document with <LAYER> tags
rather than with CSS-P syntax. You may find it worthwhile to include browser-spe-
cific branches in your document that use the document.write() method to write
CSS-P or <LAYER> HTML content, depending on the current browser (using the
isNav and isIE globals). Using the <LAYER> tag for Navigator positionable
objects does not affect the syntax of scripted access to those items: the same prop-
erties and methods apply whether the object is defined in CSS-P or as a genuine
layer. Rendering, however, is more reliable in Navigator 4 with genuine layers.
Support for CSS should certainly improve in future versions of Navigator.

Flying Objects

Moving objects around the screen is one of the features that can make Dynamic
HTML pay off for your page—provided you use the animation to add value to the
presentation. Gratuitous animation (like the example in this section) more often
annoys frequent visitors than it helps convey information. Still, I’m sure you are
interested to know how animation tricks are performed with DHTML, including
cross-platform deployment.

<P ID="txt" STYLE="position:absolute; left:0; top:0; font-size:36pt; color:red">
Congratulations!
</P>
</DIV>
</BODY>
</HTML>

Example 4-6. A Page That Centers an Element Upon Loading (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Common Positioning Tasks 97
Straight-line paths are relatively easy to script. However, when you need to
account for object centering and a variety of browser window sizes, the scripts can
bulk up a bit. A page that requires as many utility functions as the one shown here
is best served by linking in a custom API.

The example in this section builds somewhat on the centering application in
Example 4-6. The goal of this demonstration is to have a banner object fly in from
the right edge of the window (centered vertically in the window), until it reaches
the center of the currently sized window. The source code for the page is shown
in Example 4-7.

Example 4-7. A Page with a “Flying” Banner

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
// ***Begin library code better placed in an external API***
// Set global variables for browser detection and reference building
var isNav, isIE, intervalID
var coll = ""
var styleObj = ""
if (parseInt(navigator.appVersion) >= 4) {
 if (navigator.appName == "Netscape") {
 isNav = true
 } else {
 isIE = true
 coll = "all."
 styleObj = ".style"
 }
}
// Utility function returns height of object in pixels
function getObjHeight(obj) {
 if (isNav) {
 return obj.clip.height
 } else {
 return obj.clientHeight
 }
}
// Utility function returns width of object in pixels
function getObjWidth(obj) {
 if (isNav) {
 return obj.clip.width
 } else {
 return obj.clientWidth
 }
}
// Utility function returns the x coordinate of a positionable object
function getObjLeft(obj) {
 if (isNav) {
 return obj.left
 } else {
 return obj.pixelLeft
 }
}

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

98 Chapter 4: Adding Dynamic Positioning to Documents
// Utility function returns the y coordinate of a positionable object
function getObjTop(obj) {
 if (isNav) {
 return obj.top
 } else {
 return obj.pixelTop
 }
}
// Utility function returns the available content width space in browser window
function getInsideWindowWidth() {
 if (isNav) {
 return window.innerWidth
 } else {
 return document.body.clientWidth
 }
}
// Utility function returns the available content height space in browser window
function getInsideWindowHeight() {
 if (isNav) {
 return window.innerHeight
 } else {
 return document.body.clientHeight
 }
}
// Utility function sets the visibility of an object to visible
function show(obj) {
 obj.visibility = "visible"
}

// Utility function sets the visibility of an object to hidden
function hide(obj) {
 obj.visibility = "hidden"
}
// Utility function to position an element at a specific x,y location
function shiftTo(obj, x, y) {
 if (isNav) {
 obj.moveTo(x,y)
 } else {
 obj.pixelLeft = x
 obj.pixelTop = y
 }
}
// Utility function to move an object by x and/or y pixels
function shiftBy(obj, deltaX, deltaY) {
 if (isNav) {
 obj.moveBy(deltaX, deltaY)
 } else {
 obj.pixelLeft += deltaX
 obj.pixelTop += deltaY
 }
}
// ***End library code***

Example 4-7. A Page with a “Flying” Banner (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Common Positioning Tasks 99
The bulk of the utility functions in Example 4-7 get the pixel sizes and left-edge
locations of the window and the flying object. These are all important because the
main operation of this page requires those calculated values, to take into account
the current size of the browser window.

All action is triggered by the onLoad event handler of the BODY element. In the
intro() function, platform equivalency is used to get a valid reference to the
banner object (this would not be necessary if we were using the API shown in
Example 4-5 because the API automatically converts object names to object refer-
ences for each utility function call). The first positioning task is to move the ini-
tially hidden banner object off the screen to the right, so that the banner’s left
edge lines up with the right edge of the window. At the same time, the script cal-
culates the proper vertical position of the banner, so that it is centered from top to

// Set initial position offscreen and show object and
// start timer by calling glideToCenter()
function intro() {
 var obj = eval("document." + coll + "banner" + styleObj)
 var contentObj = eval("document." + coll + "banner")
 shiftTo(obj, getInsideWindowWidth(),
 Math.round((getInsideWindowHeight()/2)-(getObjHeight(contentObj)/2)))
 show(obj)
 glideToCenter()
}
// Move the object to the left by 5 pixels until it's centered
function glideToCenter() {
 var obj = eval("document." + coll + "banner" + styleObj)
 var contentObj = eval("document." + coll + "banner")
 shiftBy(obj,-5,0)
 var a = getObjLeft(obj)
 var b = Math.round((getInsideWindowWidth()/2) - (getObjWidth(contentObj)/2))
 if (a <= b) {
 clearTimeout(intervalID)
 } else {
 intervalID = setTimeout("glideToCenter()",1)
 }
}
</SCRIPT>
</HEAD>
<BODY onLoad="intro()" >
<DIV ID="banner" STYLE="position:absolute; visibility:hidden; left:0; top:0;
 background-color:yellow; width:1; height:1">
<P ID="txt" STYLE="position:absolute; left:0; top:0; font-size:36pt; color:red">
Congratulations!
</P>
</DIV>

</BODY>
</HTML>

Example 4-7. A Page with a “Flying” Banner (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

100 Chapter 4: Adding Dynamic Positioning to Documents
bottom. With the banner safely out of view, it’s safe to make the object visible.
Then the magic begins.

JavaScript 1.2, in Navigator 4 and Internet Explorer 4, adds the setInterval()
and clearInterval() functions specifically to assist in animation. But because
clearInterval() doesn’t work correctly in IE 4 for the Macintosh, this example
reverts to the setTimeout() methodology, which also does the job. The final
script statement of intro() invokes the glideToCenter() function, which ends
with a setTimeout() function that keeps calling glideToCenter() until the ele-
ment is centered horizontally. Each millisecond (or as quickly as the rendering
engine allows), the browser invokes the glideToCenter() function and refreshes
its display.

Each time glideToCenter() runs, it shifts the banner object to the left by five
pixels without adjusting the vertical position. Then it checks whether the left edge
of the banner has arrived at the position where the banner is centered on the
screen. If it is at (or to the left of) that point, the timer is cleared and the browser
ceases to invoke glideToCenter() anymore.

If you want to move an element along a more complicated path, the strategy is
similar, but you have to maintain one or more additional global variables to store
loop counters or other values that change from point to point. Example 4-8 shows
replacements for the intro() and glideToCenter() functions in Example 4-7.
The new functions roll the banner around in a circle. An extra global variable for
counting steps along the route is all that is required.

Example 4-8. Rolling a Banner in a Circle

// Set initial position centered horizontally and 50 pixels down; start timer
function intro() {
 var obj = eval("document." + coll + "banner" + styleObj)
 var contentObj = eval("document." + coll + "banner")
 var objX = Math.round((getInsideWindowWidth() - getObjWidth(contentObj))/2)
 var objY = 50
 shiftTo(obj, objX, objY)
 show(obj)
 goAround()
}
// Iteration counter global variable
var i = 1
// Move element along an arc that is 1/36 of a circle; stop at full circle
function goAround() {
 var obj = eval("document." + coll + "banner" + styleObj)
 var objX = getObjLeft(obj) + Math.cos(i * (Math.PI/18)) * 5
 var objY = getObjTop(obj) + Math.sin(i * (Math.PI/18)) * 5
 shiftTo(obj, objX, objY)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Common Positioning Tasks 101
In Chapter 6, we’ll come back to the dynamic positioning of elements and exam-
ine how to make an object track the mouse pointer. That application requires
knowledge of the partially conflicting event models built into Navigator 4 and
Internet Explorer 4, which is why we can’t cover it here.

 if (i++ == 36) {
 clearTimeout(intervalID)
 } else {
 intervalID = setTimeout("goAround()",1)
 }
}

Example 4-8. Rolling a Banner in a Circle (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

102
Dynamic HTML: The Definitive Reference
Copyright © 1999 Danny Goodman. Al
Chapter 5Applying Dynamic HTML

In this chapter:
• Writing Variable

Content
• Writing to Other

Frames and Windows
• Links to Multiple

Frames
• Image Swapping
• Changing Tag

Attribute Values
• Changing Style

Attribute Values
• Changing Content

5.

f elements, as described in
ts, Dynamic HTML is meant to
djust styles on the fly. Prior to
ic content was limited to con-
loading HTML documents into
ing images during mouse roll-

the way of altering the content
een displayed in response to
5

Making Content
Dynamic
In addition to letting you script the positions o
Chapter 4, Adding Dynamic Positioning to Documen
allow you to write scripts that modify content and a
the Version 4 browsers, your ability to script dynam
trolling the HTML being written to the current page,
other frames, and, in some browser versions, swapp
overs. The Version 4 browsers offer much more in
and appearance of documents that have already b
user activity.

Unfortunately for those of us on the leading edge of DHTML deployment, Naviga-
tor 4 and Internet Explorer 4 have very different ideas about how content should
be made dynamic. In particular, IE 4 exposes much more of every document ele-
ment to scripting, and the browser automatically reflows a document to accommo-
date any changes you make. Navigator 4’s capabilities are more limited in this
regard. Notably, Navigator’s lack of automatic reflow puts the browser at a disad-
vantage if your design calls for dynamically changing inline elements of a page.

This chapter provides an overview of the most common ways of dynamically
changing content, including some that date back to Navigator 2. It also offers some
suggestions about how to develop workarounds for the widely divergent
approaches to dynamic content practiced in the two Version 4 browsers.

Writing Variable Content
While a page is loading, you can use the JavaScript document.write() method
to fill in content that cannot be stored as part of the document. Example 5-1 shows
a simple example of combining hard-wired HTML with dynamically written con-
, eMatter Edition
l rights reserved.

Applying
Dynam

ic
HTM

L
Writing Variable Content 103
tent to fill a page. In this case, the dynamically written content consists of proper-
ties that only the client computer and browser can determine (without the help of
a server-based CGI program). The user is oblivious to the fact that a script creates
some of the text on the page.

You can use document.write() or document.writeln() in scripts that exe-
cute while a document is loading, but you cannot use either method to modify the
content of a page that has already loaded. Once a document has finished loading,
if you make a single call to document.write() directed at the current docu-
ment, the call automatically clears the current document from the browser win-
dow and writes the new content to the page. So, if you want to rewrite the con-
tents of a page, you must do so with just one call to the document.write()
method. Example 5-2 demonstrates how to accumulate content for a page in a
variable that is written in one blast.

Example 5-1. Combining Fixed and Dynamic Content in a Rendered Page

<HTML>
<BODY>
<H1>Welcome!</H1>
<HR>
<P>You are using version
<SCRIPT LANGUAGE="JavaScript">
document.write(navigator.appVersion)
document.write(" of the " + navigator.appName + " browser.")
</SCRIPT>
</P>
</BODY>
</HTML>

Example 5-2. Creating a New Document for the Current Window

<HTML>
<HEAD>
<TITLE>Welcome Page</TITLE>
<SCRIPT LANGUAGE="JavaScript">
// create custom page and replace current document with it
function rewritePage(form) {
 // accumulate HTML content for new page
 var newPage = "<HTML>\n<HEAD>\n<TITLE>Page for "
 newPage += form.entry.value
 newPage += "</TITLE>\n</HEAD>\n<BODY BGCOLOR='cornflowerblue'>\n"
 newPage += "<H1>Hello, " + form.entry.value + "!</H1>\n"
 newPage += "</BODY>\n</HTML>"
 // write it in one blast
 document.write(newPage)
 // close writing stream
 document.close()
}
</SCRIPT>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

104 Chapter 5: Making Content Dynamic
Notice that the script inserts data from the original screen’s form into the content
of the new page, including a new title that appears in the browser window’s title
bar. As a convenience to anyone looking at the source of the new document,
escaped newline characters (\n) are inserted for cosmetic purposes only. After the
call to document.write(), the rewritePage() function calls docu-
ment.close() to close the new document. While there are also docu-
ment.open() and document.clear() methods, we don’t need to use them to
replace the contents of a window. The one document.write() method clears the
old content, opens a new output stream, and writes the content.

Writing to Other Frames and Windows
You can also use the document.write() method to send dynamically created
content to another frame in a frameset or to another browser window. In this case,
you are not restricted to only one call to document.write() per page; you can
open an output stream to another frame or window and keep dumping stuff into it
until you close the output stream with document.close().

All you need for this kind of content creation is a valid reference to the other
frame or window. How you generate the frameset or secondary window influ-
ences this reference.

Framesets and Frames

A typical frameset document defines the physical layout of how the main browser
window is to be subdivided into separate panels. Framesets can, of course, be
nested many levels deep, where one frame loads a document that is, itself, a
frameset document. The key to writing a valid reference to a distant frame is
knowing the relationship between the frame that contains the script doing the
writing and the target frame.

The most common frameset structure consists of one frameset document and two
to four frames defined as part of that frameset (you can have more frames if you
like, but not everyone is fond of frames). Ideally, you should assign a unique iden-
tifier to the NAME attribute of each <FRAME> tag. Example 5-3 is a basic frameset

<BODY>
<H1>Welcome!</H1>
<HR>
<FORM onSubmit="return false">
<P>Enter your name here: <INPUT TYPE="text" NAME="entry"></P>
<INPUT TYPE="button" VALUE="New Custom Page" onClick="rewritePage(this.form)">
</FORM>
</BODY>
</HTML>

Example 5-2. Creating a New Document for the Current Window (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Writing to Other Frames and Windows 105
document that assigns a name to each of the three frames and loads an efficient
local blank page into each frame. The technique used here is to invoke a func-
tion, blank(), that exists in the frameset (parent) document. In each case, the
javascript: pseudo-URL is applied to the newly created frame. From each
frame’s point of view, the blank() function is in the parent document, hence the
parent.blank() reference. The 100-pixel wide frame down the left side of the
browser window is a navigation bar. The right portion of the window is divided
into two sections. The upper section (arbitrarily called main) occupies 70% of the
column, while the lower section (called instructions) occupies the rest of the
column.

Now imagine that a modified version of Example 5-2 is loaded into the main
frame. The job of the script, however, is to write the dynamic content to the frame
named instructions. To accomplish this, the reference to the other frame must
start with the parent document (the frameset), which the two frames have in com-
mon. Example 5-4 shows the modified page that goes into the main frame and
writes to the instructions frame. The two small changes that were made to the
original code are highlighted in boldface.

Example 5-3. A Simple Three-Frame Frameset with Blank Pages Written to Each Frame

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<!--
function blank() {
 return "<HTML></HTML>"
}
//-->
</SCRIPT>
</HEAD>
<FRAMESET COLS="100,*">
 <FRAME NAME="navBar" SRC="javascript:parent.blank()">
 <FRAMESET ROWS="70%,*">
 <FRAME NAME="main" SRC="javascript:parent.blank()">
 <FRAME NAME="instructions" SRC="javascript:parent.blank()">
 </FRAMESET>
</FRAMESET>
</HTML>

Example 5-4. Writing Dynamic Content to Another Frame

<HTML>
<HEAD>
<TITLE>Welcome Page</TITLE>
<SCRIPT LANGUAGE="JavaScript">
// create custom page and replace current document with it
function rewritePage(form) {
 // accumulate HTML content for new page
 var newPage = "<HTML>\n<HEAD>\n<TITLE>Page for "
 newPage += form.entry.value
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

106 Chapter 5: Making Content Dynamic
If, on the other hand, you simply want to load a different document from the
server into the instructions frame, you can use a script-less HTML link and set
the TARGET attribute to the instructions frame. A script in main can also spec-
ify a document for the instructions frame as follows:

parent.instructions.location.href = "nextPage.html"

Secondary Windows

JavaScript provides facilities for not only generating a new browser window, but
also setting the window’s size and (in Version 4 browsers) its location on the
screen. You can then use references to communicate from one window to the
other, although the form of those references is quite different, depending on
where the script is running.

The JavaScript method that generates a new window returns a reference to the
new window object. If you plan to communicate with that window after it has
been opened, you should store the reference in a global variable. This reference is
the only avenue to the subwindow. Example 5-5 features a script for opening a
new window and writing to it. In addition, it also takes care of a feature lacking in
Navigator 2 (described in a moment), inserts a brief delay to allow the often slug-
gish Internet Explorer 3 to finish creating the window before writing to it, and
brings an already opened but hidden window to the front, if the browser supports
that feature (Navigator 3 or later and IE 4 or later).

 newPage += "</TITLE>\n</HEAD>\n<BODY BGCOLOR='cornflowerblue'>\n"
 newPage += "<H1>Hello, " + form.entry.value + "!</H1>\n"
 newPage += "</BODY>\n</HTML>"
 // write it in one blast

parent.instructions.document.write(newPage)
 // close writing stream

parent.instructions.document.close()
}
</SCRIPT>
<BODY>
<H1>Welcome!</H1>
<HR>
<FORM onSubmit="return false">
<P>Enter your name here: <INPUT TYPE="text" NAME="entry"></P>
<INPUT TYPE="button" VALUE="New Custom Page" onClick="rewritePage(this.form)">
</FORM>
</BODY>
</HTML>

Example 5-5. Opening a New Window and Writing to It

<HTML>
<HEAD>
<TITLE>A New Window</TITLE>

Example 5-4. Writing Dynamic Content to Another Frame (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Writing to Other Frames and Windows 107
Example 5-5 shows that the reference to the subwindow (stored in the newWin-
dow global variable) can be used to call document.write() and docu-
ment.close() for that window. The window object reference is the gateway to
the subwindow.

A script in a document loaded into a subwindow can communicate back to the
window or frame that spawned the new window. Every scriptable browser (except
Navigator 2) automatically sets the opener property of a new window to a refer-
ence to the window or frame that created the window. One of the workarounds in
Example 5-5 creates and sets this property for Navigator 2, so you can use it across
the board. Therefore, to access the value property of a form text box (named

<SCRIPT LANGUAGE="JavaScript">
// Global variable for subwindow reference
var newWindow
// Version flag for old browsers (Nav2/IE3)
var oldStuff = parseInt(navigator.appversion) < 3
// Generate and fill the new window
function makeNewWindow() {
 // make sure it isn't already opened
 newWindow = window.open("","sub","status,height=200,width=300")
 // handle Navigator 2, which doesn't have an opener property
 if (!newWindow.opener) {
 newWindow.opener = window
 }
 // delay writing until window exists in IE3
 setTimeout("writeToWindow()", 500)
 if (!oldStuff) {
 // window is already open so bring it to the front
 newWindow.focus()
 }
}
function writeToWindow() {
 // assemble content for new window
 var newContent = "<HTML><HEAD><TITLE>One Sub Window</TITLE></HEAD>\n"
 newContent += "<BODY>\n<H1>This is a new window.</H1>\n"
 newContent += "</BODY>\n</HTML>"
 // write HTML to new window document
 newWindow.document.write(newContent)
 newWindow.document.close() // close layout stream
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE="button" NAME="newOne" VALUE="Create New Window"
 onClick="makeNewWindow()">
</FORM>
</BODY>
</HTML>

Example 5-5. Opening a New Window and Writing to It (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

108 Chapter 5: Making Content Dynamic
entryField) located in the main browser window, you can use the following
script statement in the subwindow:

opener.document.forms[0].entryField.value

Remember that opener refers directly to the window or frame that spawned the
subwindow. If you need to access content in another frame in the frameset, your
reference must traverse the object hierarchy accordingly:

opener.parent.otherFrameName.document.forms[0].someField.value

Links to Multiple Frames
It is not uncommon for the navigation bar in a frameset to contain links, or icons,
that must load documents into two or more other frames of the frameset at the
same time. For a single frame, the standard HTML link facilities work fine, since
they let you specify a target frame with nothing more than plain attributes. But the
attribute technique doesn’t do the job for controlling the content of multiple tar-
gets. Scripting comes to the rescue, with a few different ways to accomplish the
same goal:

• Invoke a function from the element’s onClick event handler to control both
frames

• Use a javascript: pseudo-URL to invoke a function to control both frames

• Use the default link for one frame and the onClick event handler for the
other

The first two choices require defining a JavaScript function that loads the desired
documents into their target frames. Such a function might look as follows:

function loadFrames() {
 parent.main.location.href = "section2.htm"
 parent.instructions.location.href = "instrux2.htm"
 return false
}

You can then create a link that invokes the function for browsers with JavaScript
turned on or that at least links to the main frame content if JavaScript is turned off:

...

The loadFrames() function returns false when it is done. This forces the
onClick event handler to return false as well, which preempts the actions of the
HREF and TARGET attributes (when JavaScript is turned on).

The javascript: pseudo-URL can be applied to a link’s HREF attribute as fol-
lows:

...
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Image Swapping 109
Instead of navigating directly to a URL on the server, the link invokes whatever
JavaScript function is named in the pseudo-URL. By including the void operator,
you instruct JavaScript to ignore any value returned by the function.

For the third approach, let the HREF and TARGET attributes handle one frame while
the onClick event handler takes care of the other with an inline script:

<A HREF="section2.htm" TARGET="main"
onClick="parent.instructions.location.href='instrux2.htm'">...

Client-side image maps require a little more care because the onClick event han-
dler isn’t defined for the area object until the Version 4 browsers. But you can use
the javascript: pseudo-URL trick with the HREF attribute inside a <MAP> tag.

Image Swapping
Before we had the true Dynamic HTML powers of the Version 4 browsers, Naviga-
tor 3 (and Internet Explorer 3 for the Macintosh only) gave us a glimpse of things
to come with image swapping. The basis for this technique is a document object
model that defines an image as an object whose properties can be changed (or
“replaced,” in the language of cascading style sheets) on the fly. One of those
properties, src, defines the URL of an image loaded initially by virtue of an
tag and currently displayed in the page. Change that property and the image
changes, within the same rectangular space defined by the tag’s HEIGHT
and WIDTH attributes (or, lacking those attribute settings, the first image’s dimen-
sions as calculated by the browser), while all the other content around it stays put.

Navigator 3 (and later) goes one step further by defining an Image object from
which new “virtual” images can be created in the browser’s memory with the help
of scripts. These kinds of images do not appear in the document, but can be
scripted to preload images into the browser’s image cache as the page does its
original download. Thus, when it comes time to swap an image, the switch is
nearly instantaneous because there is no need for network access to grab the
image data.

The example in this section shows you how to pre-cache and swap images for the
buttons of an imaginary video controller. There are four controls—Play, Stop,
Pause, and Rewind. Each control has its own image that acts as a button. As the
user rolls the mouse atop a button, a highlighted version of the button icon
appears in the image space; as the mouse rolls off the button, the original unhigh-
lighted version reappears.

Precaching Images

When preloading images (and later retrieving them for swapping), it is convenient
to create an array for each state that the images will be in. In Example 5-6, there
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

110 Chapter 5: Making Content Dynamic
are two states: highlighted and unhighlighted (which are more conveniently
referred to as “on” and “off”). The HEAD portion of the document contains a series
of script statements that generate the new Image objects (in memory) and assign
the URLs for the associated image files to the src properties of those memory
image objects. Example 5-6 shows the sequence of statements that makes this hap-
pen for the four “on” images and the four “off” images. Depending on your audi-
ence for this page, you may wish to use a browser-specific branch to prevent
these statements from running in Navigator 2 or Internet Explorer 3 for Windows:
the Image object is not in the object model of either of these browsers. Another
tactic, shown in Example 5-6, is to simply check for the support of the images
array object in the browser.

The act of stuffing the URL for each image file into the src property of each
Image object is enough to force the browser to actually fetch the image and store
it in its image cache without displaying the image anywhere. Also, the numeric
relationships among the array entries play a significant role in the actual image
swapping, as you’ll see shortly.

Swap Your Image

Now it’s time to look at the HTML that displays the images within the document.
For the sake of this example, the surrounding HTML is of no importance.

Example 5-6. Precaching Code for Two Sets of Four Related Images

if (document.images) {
 // create "on" array and populate with Image objects
 var onImgArray = new Array()
 onImgArray[0] = new Image(75,35)
 onImgArray[1] = new Image(75,35)
 onImgArray[2] = new Image(75,35)
 onImgArray[3] = new Image(75,35)
 // set URLs for the "on" images
 onImgArray[0].src = "images/playon.gif"
 onImgArray[1].src = "images/stopon.gif"
 onImgArray[2].src = "images/pauseon.gif"
 onImgArray[3].src = "images/rewindon.gif"

 // create "off" array and populate with Image objects
 var offImgArray = new Array()
 offImgArray[0] = new Image(75,35)
 offImgArray[1] = new Image(75,35)
 offImgArray[2] = new Image(75,35)
 offImgArray[3] = new Image(75,35)
 // set URLs for the "off" images
 offImgArray[0].src = "images/playoff.gif"
 offImgArray[1].src = "images/stopoff.gif"
 offImgArray[2].src = "images/pauseoff.gif"
 offImgArray[3].src = "images/rewindoff.gif"
}

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Image Swapping 111
Since image objects in a document don’t respond to mouse events (except in
IE 4), the images are wrapped inside links. To prevent the normal link color bor-
der from appearing around the images, the BORDER attribute of each tag is
set to zero. The event handlers of the surrounding links trigger all the action for
the image swapping. Example 5-7 shows the four image elements and their sur-
rounding links.

The onMouseOver and onMouseOut event handlers in each link have two tasks.
The first is to change the image and the second is to display an appropriate mes-
sage in the status bar of the browser window (to avoid displaying the java-
script: pseudo-URL there). All this is handled with three simple functions,
shown in Example 5-8.

Example 5-7. The Images to Be Swapped, Wrapped in Links with Event Handlers

<A HREF="javascript:playVideo()"
onMouseOver="imageOn(0); return setMsg('Play/Continue the clip')"
onMouseOut="imageOff(0); return setMsg('')">

<A HREF="javascript:stopVideo()"
onMouseOver="imageOn(1); return setMsg('Stop video')"
onMouseOut="imageOff(1); return setMsg('')">

<A HREF="javascript:pauseVideo()"
onMouseOver="imageOn(2); return setMsg('Pause video')"
onMouseOut="imageOff(2); return setMsg('')">

<A HREF="javascript:rewindVideo()"
onMouseOver="imageOn(3); return setMsg('Rewind to beginning')"
onMouseOut="imageOff(3); return setMsg('')">

Example 5-8. Functions that Swap Images and Display Messages in the Status Bar

function imageOn(i) {
 if (document.images) {
 document.images[i].src = onImgArray[i].src
 }
}
function imageOff(i) {
 if (document.images) {
 document.images[i].src = offImgArray[i].src
 }
}
function setMsg(msg) {
 window.status = msg
 return true
}

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

112 Chapter 5: Making Content Dynamic
Image swapping is accomplished by setting the src property of the visible image
element to the src property of the desired memory image. It is convenient in this
example that the first four images on the page are of the buttons, so the array
indexing works without a problem. But even if there were other images on the
page, you could use the index values that are part of the image object names to
reference the objects:

function imageOn(i) {
 document.images["btn" + i].src = onImgArray[i].src
}

The setMsg() function returns true, so that the last statement of all mouse-
related event handlers evaluates to true. This allows the status bar setting to take
hold.

Changing Tag Attribute Values
You’d think that with so many HTML tag attributes reflected as scriptable proper-
ties, it would be simple enough to modify the look of many elements by adjusting
their properties after the document has loaded. Unfortunately for compatibility, of
the currently released scriptable browsers, only Internet Explorer 4 lets you adjust
highly visible attributes on the fly. This is because the rendering engine in the
browser does a nice job of reflowing a page’s content in response to a change of
any property. Therefore, you can increase the size of an IMG element by altering
the height and width properties of the object, and the content around and below
the image is shifted to make room for the bigger picture. If you try to do this with
Navigator 4, however, a script error message reminds you that these properties are
read-only in that browser.

In fact, if you are aiming for cross-platform compatibility in altering the physical
appearance of a currently loaded document, your possibilities are very limited.
Outside of form element values (e.g., the contents of a text box, selected items in
a checkbox, the state of a radio button, and selected list options), about the only
tag attributes you can alter from a script in Navigator are the image object’s src
attribute (as described in the previous section) and the document’s bgColor prop-
erty. Even the document.bgColor property has some caveats when the page is
being run in Navigator 2 or 3 on an operating system other than Windows: the
color change may obscure other existing content on the page. Other color-related
properties of the document object are not settable from a script.

As you dream of creating dynamic content in a document, keep in mind that Navi-
gator through Version 4 and Internet Explorer 3 do not automatically reflow the
document in response to changes of element properties.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Changing Style Attribute Values 113
Changing Style Attribute Values
The lack of automatic content reflow in Navigator 4 prevents it from displaying
most changes to style sheet attribute values after the document has loaded, even if
the values are exposed to scripting. By contrast, the list of read-write properties
associated with IE 4’s style object (see Chapter 9, Document Object Reference) is
impressive, to say the least. If the conditions of your design are just right, how-
ever, you might be able to get away with a cross-platform workaround for the
desired style changes. The tactic is to consider the Navigator 4 methodologies as
the lowest common denominator: if the trick can be done in Navigator 4, it can be
done cross-platform, even if not in the most elegant or efficient way for IE 4.

We’ll examine both an IE 4-specific and a cross-platform way of cycling a chunk
of text through a sequence of colors. For IE 4, the job is as simple as changing the
color attribute of a SPAN element’s style. For Navigator 4 compatibility, however,
each color version of the text must be created as a separate positioned element
that is shown and hidden in the appropriate order.

Example 5-9 shows the Internet Explorer 4 version. A single SPAN element in the
body has the color property of its style changed in a for loop. For programming
convenience, the color names are stored in a global variable array, with another
global variable maintaining a record of the color currently showing. No position-
ing or other tactics are required.

Example 5-9. Internet Explorer Version of an Inline Text Color Change

<HTML>
<HEAD>
<TITLE>A Hot Time in IE</TITLE>
<STYLE TYPE="text/css">
 #hot1 {color:red}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
// Set global variables
var totalCycles = 0
var currColor = 1
var colors, intervalID
// Build array of color names
function init() {
 colors = new Array(4)
 colors[1] = "red"
 colors[2] = "green"
 colors[3] = "yellow"
 colors[4] = "blue"
}
// Advance the color by one
function cycleColors() {
 // reset counter to 1 if it reaches 4; otherwise increment by 1
 currColor = (currColor == 4) ? 1 : ++currColor
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

114 Chapter 5: Making Content Dynamic
Since Navigator 4 cannot change an inline text color on the fly, we need to use a
different approach to make this application have the same appearance on both
platforms. The tactic shown in Example 5-10 is to create four different SPAN ele-
ments—each in a different text color—and script the hiding and showing of each
element in turn.

The tricky part is getting the SPAN elements to align perfectly, since they must be
implemented as positionable elements that can be hidden and shown. At least one
element must be part of the running text so that the surrounding text flows prop-
erly around it. If that element is set as a relative-positioned element, the browser
determines where the element goes (based on normal content flow), but that ele-
ment then becomes a positioning context that can be used to position the other
three elements. However, the other three elements cannot be children of the first
SPAN element because if the parent is hidden (as it will be three-quarters of the
time), all the children are too, due to inheritance. In practice, only IE 4 hides the
children as expected, so accommodation must be made for this behavior.

The solution is to make all four elements siblings, but set only the first one as a
relative-positioned element; the other three are absolute-positioned. This means
that the script must be able to find out the left and top coordinates of the relative-
positioned element and set the positioning properties of the absolute-positioned
elements to match. The two browsers have different ways of obtaining this infor-
mation. Navigator 4 has pageX and pageY properties, which yield the coordinates
relative to the visible page; IE 4 has offsetLeft and offsetTop properties,
which yield the coordinates relative to the parent element. Since the parent ele-
ment in this case is the document, these properties are equivalent to the Naviga-
tor pageX and pageY properties. The positioning of the three hidden elements
occurs during an initialization routine triggered by the onLoad event handler. This
assures that the relative-positioned element is in its final resting place, ready to be
measured.

 // set style color to new color from array
 document.all.hot1.style.color = colors[currColor]
 // invoke this function again until total = 27 so it ends on red
 if (totalCycles++ < 27) {
 intervalID = setTimeout("cycleColors()", 100)
 } else {
 clearTimeout(intervalID)
 }
}
</SCRIPT>
</HEAD>
<BODY onLoad="init(); cycleColors()">
<H1>Welcome to the Hot Zone Web Site</H1>
<HR>
</BODY>
</HTML>

Example 5-9. Internet Explorer Version of an Inline Text Color Change (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Changing Style Attribute Values 115
WARNING A bug in Internet Explorer 4.0 for the Macintosh causes the position-
ing of the alternate-colored elements to be out of line with the rela-
tive-positioned element.

Cycling through the colors also requires a little more code than the IE 4-only ver-
sion. The cycleColors() function must obtain references to the two elements to
be affected by the current color change. The current element is hidden while the
new color element is shown.

Example 5-10. Cross-Platform Equivalent of an Inline Text Color Change

<HTML>
<HEAD>
<TITLE>A Hot Time</TITLE>
<STYLE TYPE="text/css">
 #hot1 {position:relative; color:red; visibility:visible}
 #hot2 {position:absolute; color:green; visibility:hidden}
 #hot3 {position:absolute; color:yellow; visibility:hidden}
 #hot4 {position:absolute; color:blue; visibility:hidden}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
var currHot = 1
var totalCycles = 0
var isNav, isIE, intervalID
var coll = ""
var styleObj = ""
if (parseInt(navigator.appVersion) >= 4) {
 if (navigator.appName == "Netscape") {
 isNav = true
 } else {
 isIE = true
 coll = "all."
 styleObj = ".style"
 }
}
// Utility function returns the x coordinate of a positionable object relative
// to page
function getPageLeft(obj) {
 if (isNav) {
 return obj.pageX
 } else {
 return obj.offsetLeft
 }
}
// Utility function returns the y coordinate of a positionable object relative
// to page
function getPageTop(obj) {
 if (isNav) {
 return obj.pageY
 } else {
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

116 Chapter 5: Making Content Dynamic
Between the two versions, the IE 4-only version degrades best for display on older
browsers. No extra text elements are included in the BODY portion for an old
browser to render. Running the cross-platform version on an older browser dis-
plays the content of all four SPAN elements in the running text.

It should be clear from the examples in this section that cross-platform modifica-
tion of style attributes works only if the change does not require reflowing of the

 return obj.offsetTop
 }
}
// Set absolute positions of three hidden elements to match visible's relative
// position
function init() {
 // get object reference of visible element
 var obj1 = eval("document." + coll + "hot1")
 // get left/top location relative to document
 var pageLeft = getPageLeft(obj1)
 var pageTop = getPageTop(obj1)
 // set position of three elements (hot2, hot3, and hot4)
 for (var i = 2; i <= 4; i++) {
 var obj = eval("document." + coll + "hot" + i + styleObj)
 obj.left = pageLeft
 obj.top = pageTop
 }
}
// Advance the color by one
function cycleColors() {
 // get reference to element to be hidden
 var objToHide = eval("document." + coll + "hot" + currHot + styleObj)
 // reset coutner to 1 if it reaches 4; otherwise increment by 1
 currHot = (currHot == 4) ? 1 : ++currHot
 // get reference to element to be shown
 var objToShow = eval("document." + coll + "hot" + currHot + styleObj)
 // do the shuffle
 objToHide.visibility = "hidden"
 objToShow.visibility = "visible"
 // invoke this function again until total = 27 so it ends on red
 if (totalCycles++ < 27) {
 intervalID = setTimeout("cycleColors()", 100)
 } else {
 clearTimeout(intervalID)
 }
}
</SCRIPT>
</HEAD>
<BODY onLoad="init(); cycleColors()">
<H1>Welcome to the Hot ZoneHot Zone
Hot ZoneHot Zone Web Site</H1>
<HR>
</BODY>
</HTML>

Example 5-10. Cross-Platform Equivalent of an Inline Text Color Change (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Changing Content 117
content. If your design can be implemented as a series of overlapping layers,
there’s hope for your cross-platform dreams.

Changing Content
For many application authors, the holy grail of Dynamic HTML is the ability to
manipulate already loaded text and tag content in response to user action. Prior to
the Version 4 browsers, the granularity of such changes was no smaller than an
entire frame’s document, as demonstrated earlier in this chapter. The situation
improves markedly in the Version 4 browsers, with Internet Explorer 4 allowing
direct access to any piece of text content displayed in a document. This means
that you have much more flexibility with dynamic content in IE 4 than in Naviga-
tor 4.

Fixed-Size Containers

Navigator 4 and Internet Explorer 4 provide browser-specific tags for defining rect-
angular spaces that hold content. They’re treated quite differently in the two
browsers, so it is rare that you will be able to achieve an identical look and feel
for a document displayed in both browsers, regardless of how much branching
you use to try to pull it off.

What the two browsers have in common is that you can use the tags to load an
external document into a floating block above the main document or embed an
external document as inline content. With the exception of the inline version in
Navigator 4, the content of the block can be changed on the fly after the docu-
ment has loaded. The rectangular block can be treated like a frame or a window;
you can set its src attribute to a different URL, or you can write directly to the
document object with a script.

Navigator 4 <LAYER>

The Navigator 4 <LAYER> tag and associated document object were discussed in
Chapter 4, but not in terms of altering their content. A genuine layer is a free-float-
ing rectangle that always looks to its parent document for its positioning context.
For a single layer in a page, the base document in the browser window or frame
defines the positioning context. If you include a <LAYER> tag in your document,
be prepared to include LEFT and TOP attribute settings if you don’t want the con-
tent to overlap other inline content appearing later in the HTML source code (you
can also hide the LAYER element at any location without penalty).

After the page has loaded, you can set the src property of that layer object to
load another document into the layer:

document.layerName.src = "someDocument.html"
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

118 Chapter 5: Making Content Dynamic
Unfortunately, if you have also set style properties for the LAYER element, when
the new source document loads into the layer, the LAYER element’s original style
may be corrupted or displaced. For example, a border or padding style setting will
disappear. Also, as I advised earlier, you must set the clipping region of a layer if
you expect the background color or image to maintain its size when new content
loads in—otherwise the clipping region hugs the content.

As harsh as these behaviors sound, under controlled circumstances you can suc-
cessfully swap HTML documents in and out of a LAYER element and still display
the effect of style sheet features such as borders and padding. Think of the layer
strictly as an invisible, positionable frame for the replaceable content. As a frame,
its responsibility is determining the location and (optionally) basic dimensions of
the view to your documents. All fancy style sheets should be in the documents
being loaded into the layer, not assigned to the layer itself. In other words, feel
free to set the TOP, LEFT, HEIGHT, WIDTH, and CLIP attributes of the <LAYER> tag
to fix the initial frame for the document. However, if you want the documents to
appear with a three-pixel-wide solid red border around them, make sure that all of
the individual documents to be loaded in the layer are using the same style sheets.

You will experience the smoothest ride if you limit your attribute settings to TOP,
LEFT, and WIDTH when the size of the content being swapped varies in length and
you assign border-related properties. A quirk in the Navigator 4 rendering engine
forces the document’s background color or image to fill its layer’s hard-wired clip-
ping region, but the bottom border cinches up to the bottom of the content, leav-
ing the swath of background dangling below the bottom border. Allow the height
of the content loaded at any given moment to define the visible height of the
layer.

Navigator 4 <ILAYER>

Unfortunately, when it comes to the inline layer element of Navigator 4, the cau-
tion flags come out in the first lap of the race. While this element is an excellent
way to introduce external content into a document as the document loads (and
have other content flow naturally before and after it), the layer object it gener-
ates in the object model does not respond well to having its src property set.
Content appears to ignore the position of the element, and further attempts to load
content may crash the browser. Even if these problems were solved, the browser
does not know to reflow the page when new content is added.

Until these bugs are fixed in the browser, my recommendation is simple: do not
attempt to load new content into an ILAYER element.

Internet Explorer 4 <IFRAME>

The IFRAME element from Microsoft exhibits similar innate behavior as Netscape’s
ILAYER element. Both can be positioned anywhere in a document and occupy
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Changing Content 119
real estate within the base document loaded in the browser. Both can load exter-
nal HTML documents. Their default appearance, however, differs substantially.

If you don’t specify a height or width for an IFRAME element, the browser sup-
plies a default block of space in the document relative to the baseline of the pre-
ceding content—much like an IMG element. Attributes of the <IFRAME> tag
include ALIGN to set the vertical relationship to surrounding content (possible val-
ues include ABSBOTTOM, BASELINE, MIDDLE, and TEXTOP). An IFRAME also gener-
ates a plain border unless you explicitly turn it off. And if the content extends
beyond the rectangle (default or one specified by the HEIGHT and WIDTH
attributes), optional scroll bars appear to assist in navigation. In other words, an
IFRAME element is a fixed-size rectangle within the running content of a docu-
ment.

To load a different document into an IFRAME, assign a URL to the element’s src
property. Remember that this is an element, not a direct object in the object model
like a traditional frame. Therefore, you must reference an IFRAME element via the
all collection:

document.all.iframeName.src = "otherDocument.html"

An IFRAME element does a decent job of holding on to any style sheet rules that
are assigned to it, even when you change content. Therefore, you don’t have to
specify the style sheet rules (for things like borders) in the loaded documents. You
can specify them via style rules for the IFRAME element (although documents can
have their own style sheets too, to override the IFRAME style attributes).

Variable-Length Containers

Because Internet Explorer 4 automatically reflows a page when content changes,
it’s not surprising that the browser offers substantial scripting and object model
support for wholesale modification of text content in a document. The support can
be divided into two categories. The first is a group of element properties—inner-
Text, innerHTML, outerText, and outerHTML—that allow scripts to get and set
interesting portions of a document. The second is the TextRange object, which
offers vast powers to locate and isolate any chunk of running text (including a
simple insertion point) for further manipulation by scripts.

Text and HTML properties

Every element that is reflected in the IE 4 object model—essentially anything that
is defined in a document by a tag—has properties that let a script read and write
both the displayed text associated with the element and the HTML that defines the
entire element. Before you use these properties, it’s important to know the differ-
ence between an “inner” and “outer” component of an element.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

120 Chapter 5: Making Content Dynamic
To help you visualize the difference, let’s start with a nested pair of elements as
they appear in a document’s source code:

<DIV STYLE="font-style:italic">
 <P ID=par1 STYLE="font-style:normal">
 A fairly short paragraph.
 </P>
</DIV>

Focus on the P element, whose properties will be adjusted in a moment.

The inner component of the P element consists of the string of characters between
the start and end tags, but not including those tags. Any changes you make to the
inner content of this element still have everything wrapped inside a P element.

In contrast, the outer component of the P element is the entire element, including
the <P> and </P> tags, any tag attributes, and the content between the start and
end tags. Changes to the outer component replace the entire element and can con-
ceivably turn it into an entirely different type of element.

How an element’s inner or outer component responds to changes depends on
whether you direct the element to treat the new material as raw text or as text that
may have HTML tags inside (e.g., innerText or innerHTML). To demonstrate
how these important nuances affect your work with these properties, the follow-
ing sequence starts with the P element shown earlier, as it is displayed in the
browser window. Then comes a series of statements that operate on the original
element and representations of the element as it appears in the browser window
after each statement:

A fairly short paragraph.

document.all.par1.innerText = "How are you?"

How are you?

document.all.par1.innerHTML = "How are you?"

How are you?

document.all.par1.outerText = "How are you?"

How are you?

document.all.par1.outerHTML = "How are you?"

How are you?

Adjusting the inner material never touches the <P> tag, so the normal font style
prevails. Setting the innerText property tells the browser to render the content
literally, without interpreting the tags, while setting innerHTML tells the
browser to interpret the tags, which is why the word “you” is in bold after the sec-
ond statement.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Changing Content 121
Adjusting the outer material eradicates the <P> tag pair. When this happens, the
next outer element container rules that spot in the document. Thus, outerText is
rendered literally, but because the <P> tags are also replaced, the italic font style
governs the display. And when we set outerHTML, the browser interprets the
tags of the replacement string.

NOTE You can make repeated adjustments to the innerText and
innerHTML properties of an element because the reference to the
element is still good after the change. But if you alter the outer-
Text or outerHTML properties, the element in the reference is
blown away. Subsequent references result in script errors because
the object no longer exists. Reloading the document restores all ele-
ments and their content to their original state.

A handful of elements have only outerText and outerHTML properties—a tag
that has no end tag companion has no inner components.

As we’ve seen, you can replace content by setting these properties. You can also
remove the content or the entire element by setting the appropriate property to
the empty string. By the same token, you can create an empty element that acts as
a placeholder for content that is to be dynamically added to the document later.
The HTML you set to an element’s inner or outer component can be as large and
complex as you like, but the value must be a string. You cannot assign a URL to
one of these properties and expect the content of that URL’s document to load
into the location (see the discussion of the IFRAME element earlier in this chapter
if you want to do that).

Inserting content

In IE 4, every element also has two methods that make it easier to add visible text
and/or HTML to an existing element. The two methods are:

• insertAdjacentHTML(where, text)

• insertAdjacentText(where, text)

These methods assume you have a valid reference to an existing element and wish
to add content to the beginning or end of the element. As with the inner and outer
component items in the previous section, any text inserted with the insertAdja-
centHTML() method is rendered like regular source code (any HTML is inter-
preted as HTML), while insertAdjacentText() treats the content as uninter-
preted text.

The precise insert position for these methods is determined by the value of the
where parameter. There are four choices:
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

122 Chapter 5: Making Content Dynamic
BeforeBegin
In front of the start tag of the element

AfterBegin
After the start tag, but immediately before the text content of the element

BeforeEnd
At the very end of the content of the element, just in front of the end tag

AfterEnd
After the end tag of the element

Notice that the BeforeBegin and AfterEnd locations are outside of the element
referenced in the statement. For example, consider the following nested pair of
tags:

 Start outer text.
 Some inner text.
 End of outer text.

Consider the following statement:

document.all.inner.insertAdjacentHTML("BeforeBegin","Inserted!")

The document changes so that the word “Inserted!” is rendered in a bold, red font.
This is because the HTML was added before the beginning of the inner item, and
is therefore under the rule of the element that contains the inner element: the
outer element.

The TextRange object

While the properties discussed in the previous section let you access entire ele-
ments, the TextRange object lets you dig even more deeply into the content of a
document. A TextRange is like an invisible selection in the source code of a doc-
ument. To begin using TextRange, you create a TextRange object in memory
(referenced as a variable) that encompasses the content of one of the following
element types:

• BODY

• BUTTON

• INPUT (TYPE="text")

• TEXTAREA

Performing real work with a TextRange involves at least two steps: creating the
TextRange object and setting its start and end points (using any of a variety of
functions).
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Changing Content 123
For example, to generate a TextRange object that initially encompasses the entire
body of a document, use a statement like the following:

var range = document.body.createTextRange()

You can then write a script (with the help of many TextRange object methods) to
set the start and end points of the selection range. A range can be as narrow as a
single insertion point (i.e., the start and end points are identical). Once the range
is set, you can read or write just the text that appears in the browser window for
that range, or you can work with the complete HTML source code within the
range.

WARNING For Internet Explorer 4, the TextRange object and related function-
ality is guaranteed to work only on Windows platforms. The Macin-
tosh version of IE 4.0, for example, does not support the Text-
Range at all. Plan your deployment accordingly.

Table 5-1 gives a summary of the TextRange object’s methods grouped by func-
tionality (see Chapter 9 for full details). Given the breadth of methods, this is an
extraordinarily powerful object that is often called on to do heavy-duty work, such
as assisting with search-and-replace operations throughout an entire document.

Table 5-1. Internet Explorer 4 TextRange Object Methods

Method Description
Adjusting Range Location and Size
collapse() Sets the insertion point at the beginning or the end

of current range
expand() Expands the current range to the nearest character,

word, sentence, or entire range
findText() Searches the range for a string
getBookmark() Returns a pseudo-pointer to a location in the range
move() Collapses the range and move the insertion point by

a variety of unit measures
moveEnd() Moves the end of the range by a variety of unit

measures
moveStart() Moves the start of the range by a variety of unit

measures
moveToBookmark() Moves the range to an existing bookmark pseudo-

pointer
moveToElementText() Sets the range to enclose the text of a given element
moveToPoint() Moves the insertion point to a geographical coordi-

nate
setEndPoint() Sets the range end point relative to another range’s

start or end point
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

124 Chapter 5: Making Content Dynamic
The commands referred to in the last section of Table 5-1 consist of a large num-
ber of shortcuts you can use to insert many HTML elements into or around a text
range. They’re not script methods, but often have corresponding methods in Java-
Script. You can find a complete list of these commands in Appendix D.
Example 5-11 shows two of these commands and a few TextRange methods at
work. The script fragment starts with a hypothetical function that prompts the user
to enter a string to search for in the document. If there is a match, the script
expands the text range (which is set to the found word) to the sentence encom-
passing that found string, scrolls the document to bring the sentence into view,
and executes the ForeColor command to give the sentence a special color. The
second function undoes the formatting that had been applied to the range. To
make the TextRange object reference available to both functions, it is stored as a
global variable.

Comparing and Copying Ranges
inRange() Returns whether a subrange is in the current range
isEqual() Returns whether a subrange is equal to the current

range
compareEndPoints() Compares locations of two end points
duplicate() Returns a copy of the current range
Working with the Document
parentElement() Returns the element containing the current range
pasteHTML() Replaces the current range with a string of HTML
scrollIntoView() Scrolls the window to bring the text of the range into

view
select() Selects and highlights the text of the range in the

window
Working with Commands
execCommand() Executes a command
queryCommandEnabled() Returns whether a desired command is available
queryCommandIndeterm() Returns whether a desired command is in the inde-

terminate state
queryCommandState() Returns the current state of a command
queryCommandSupported() Returns whether the command is supported
queryCommandText() Returns the identity of a command
queryCommandValue() Returns the current value of a command

Example 5-11. TextRange Methods and Commands

var range
function findAndHilite() {
 var srch = prompt("Enter a word or phrase to search for:","sample")
 range = document.body.createTextRange()
 if (srch && range.findText(srch)) {

Table 5-1. Internet Explorer 4 TextRange Object Methods (continued)

Method Description
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Changing Content 125
Combining Forces: An IE 4 Custom Newsletter

To round out the discussion of dynamic content, I am going to present an applica-
tion that demonstrates several aspects of Internet Explorer 4 DHTML in action.
Unfortunately the Macintosh version of IE 4.0 is missing some key ingredients to
make this application run on that platform, so this only works on Win32 plat-
forms. The example is a newsletter that adjusts its content based on information
provided by the reader. For ease of demonstration, the newsletter arrives with a
total of five stories (containing some real text and some gibberish to fill space)
condensed into a single document. A controller box in the upper right corner of
the page allows the reader to filter the stories so that only those stories containing
specified keywords appear on the page (see Figure 5-1). Not only does the appli-
cation filter the stories, it also orders them based on the number of matching key-
words in the stories. In a real application of this type, you might store a profile of
subject keywords on the client machine as a cookie and let the document auto-
matically perform the filtering as it loads.

For the amount of real-time modification of the document taking place, there is
remarkably little scripting involved, as shown in Example 5-12. The scripts also
take advantage of the classes and IDs defined in the style sheet and used in the
BODY section of the document.

Each story is inside a DIV element of class wrapper; each story also has a unique
ID that is essentially a serial number identifying the date of the story and its num-
ber among the stories of that day. Nested inside each DIV element are both an H3
element (class of headline) and one or more P elements (class of story). In
Example 5-12, the style sheet definition includes placeholders for assigning style
rules to each of those classes. The only rule assigned so far is the display
attribute of the wrapper classes. At load time, all items of the wrapper class are
hidden, so they are ignored by the rendering engine.

The controller box (ID of filter) with all the checkboxes is defined as an abso-
lute-positioned element at the top right of the page. In real life, this type of con-
troller might be better handled as a document in a separate frame.

 range.expand("sentence")
 range.scrollIntoView()
 range.execCommand("ForeColor","false","cornflowerblue")
 }
}
function undoHilite() {
 range.execCommand("RemoveFormat")
}

Example 5-11. TextRange Methods and Commands (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

126 Chapter 5: Making Content Dynamic
The only other noteworthy element is a DIV element of ID myNews (just above
the first story DIV element). This is an empty placeholder where stories will be
inserted for viewing by the user.

The onLoad event handler of the BODY element triggers the searching and sorting
of stories, as does a click on any of the checkboxes in the controller box. Two
global variables assist in the searching and sorting. The keywords array is estab-
lished at initialization time to store all the keywords from the checkboxes. The
foundStories array is filled each time a new filtering task is requested. Each
entry in the foundStories array is an object with two properties: id, which cor-
responds to the ID of a selected story, and weight, which is a numeric value that
indicates how many times a keyword appears in that story.

Now skip to the filter() function, which is the primary function of this applica-
tion. It is invoked at load time and by each click on a checkbox. This function
uses the TextRange object to perform the search for keyword matches. The first
task is to clear the myNews element by setting its innerHTML property to an empty
string. Then the function searches for each checked keyword, using a fresh Text-
Range object that encompasses the entire BODY element.

Figure 5-1. A newsletter that uses IE 4 DHTML to customize its content
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Changing Content 127
When the findText() method uncovers a match (returning true in the process),
the TextRange adjusts itself to encompass only the matched word. At this point,
the parent element of the current range (the element whose tags surround the
matched text) is passed to the getDIVId() function. This function makes sure the
parent element of the found item has a class associated with it (meaning that it is
of the wrapper, headline, or story class). The goal is to find the wrapper class
of the matched string, so getDIVId() works its way up the chain of parent ele-
ments until it finds a wrapper element. Now it’s time to add the story belonging to
the wrapper class element to the array of found stories. But since the story may
have been found during an earlier match, there is a check to see if it’s already in
the array. If so, the array entry’s weight property is incremented by one. Other-
wise, the new story is added to the foundStories array.

Coming back to the filter() function, the next statement collapses the text
range (which currently encompasses the found word) to a single insertion point at
the end of the range. This lets the next search begin with the character immedi-
ately following the previously found string in the body.

Since it is conceivable that no story could have a matched keyword (or no key-
words are selected), a short routine loads the foundStories array with informa-
tion from every story in the document. Thus, if there are no matches, the stories
appear in the order in which they were entered into the document. Otherwise, the
foundStories array is sorted by the weight property of each array entry.

The finale is at hand. With the foundStories array as a guide, the innerHTML of
each ID’s element is appended to the end of the myNews element, using the
insertAdjacentHTML() method. The browser renders and reflows the newly
inserted HTML (picking up any styles that may be assigned to these elements).
Then the foundStories array is emptied, so it is ready to do it all over again
when the reader clicks on another checkbox.

Example 5-12. A Custom Newsletter Filter That Uses IE 4 DHTML

<HTML>
<HEAD>
<TITLE>Today in Jollywood</TITLE>
<STYLE TYPE="text/css">
 #banner {}
 #date {}
 .wrapper {display:none}
 .headline {}
 .story {}
 #filter {position:absolute; top:10; left:320; width:260;
 border:solid red 3px; padding:2px; background-color:coral}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
// Global variables and object constructor
var keywords = new Array()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

128 Chapter 5: Making Content Dynamic
var foundStories = new Array()
function story(id, weight) {
 this.id = id
 this.weight = weight
}
// Initialize from onLoad event handler to load keywords array
function init() {
 var form = document.filterer
 for (var i = 0; i < form.elements.length; i++) {
 keywords[i] = form.elements[i].name
 }
}
// Find story's "wrapper" class and stuff into foundStories array
// (or increment weight)
function getDIVId(elem) {
 if (!elem.className) {
 return
 }
 while (elem.className != "wrapper") {
 elem = elem.parentElement
 }
 if (elem.className != "wrapper") {
 return
 }
 for (var i = 0; i < foundStories.length; i++) {
 if (foundStories[i].id == elem.id) {
 foundStories[i].weight++
 return
 }
 }
 foundStories[foundStories.length] = new story(elem.id, 1)
 return
}
// Sorting algorithm for array
function compare(a,b) {
 return b.weight - a.weight
}
// Main function finds matches and displays stories
function filter() {
 var txtRange
 // clear any previous selected stories
 document.all.myNews.innerHTML = ""
 // look for keyword matches
 for (var i = 0; i < keywords.length; i++) {
 // reset default textRange for each keyword
 txtRange = document.body.createTextRange()
 if (document.filterer.elements[i].checked) {
 while (txtRange.findText(keywords[i])) {
 // extract wrapper id and log found story
 getDIVId(txtRange.parentElement())

Example 5-12. A Custom Newsletter Filter That Uses IE 4 DHTML (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Changing Content 129
 // move textRange pointer to end of match for next search
 txtRange.collapse(false)
 }
 }
 }
 if (foundStories.length == 0) {
 // no matches, so grab all stories as delivered
 // start by assembling an array of all DIV elements
 var divs = document.all.tags("DIV")
 for (var i = 0; i < divs.length; i++) {
 if (divs[i].className && divs[i].className == "wrapper") {
 foundStories[foundStories.length] = new story(divs[i].id)
 }
 }
 } else {
 // sort selected stories by weight
 foundStories.sort(compare)
 }
 var oneStory = ""
 for (var i = 0; i < foundStories.length; i++) {
 oneStory = eval("document.all." + foundStories[i].id + ".innerHTML")
 document.all.myNews.insertAdjacentHTML("BeforeEnd", oneStory)
 }
 foundStories.length = 0
}
</SCRIPT>
</HEAD>
<BODY BGCOLOR="#ffffff" onLoad="init();filter()">
<H1 ID=banner>Today in Jollywood</H1>
<H2 ID=date>Friday, September 11, 1998</H2>
<HR>
<DIV ID=myNews>
</DIV>
<DIV CLASS=wrapper ID=N091198001>
<H3 CLASS=headline>Kevin Costner Begins New Epic</H3>
<P CLASS=story>Oscar-winning director and actor, Kevin Costner has begun location
shooting on a new film based on an epic story. Sally ("Blurbs") Thorgenson of
KACL radio, who praised "The Postman" as "the best film of 1997," has already
supplied the review excerpt for the next film's advertising campaign: "Perhaps
the best film of the decade!" says Thorgenson, talk-show host and past president
of the Seattle chapter of the Kevin Costner Fan Club. The Innscouldn't it the
trumple from rathe night she signs. Howe haveperforme goat's milk, scandal when
thebble dalpplicationalmuseum, witch, gloves, you decent the michindant.</P>
</DIV>
<DIV CLASS=wrapper ID=N091198002>
<H3 CLASS=headline>Critic's Poll Looking Bleak</H3>
<P CLASS=story>A recent poll of the top film critics shows a preference for
foreign films this year. "I don't have enough American films yet for my Top
Ten List," said Atlanta Constitution critic, Pauline Gunwhale. No is armour was
attere was a wild oldwright fromthinteres of shoesets Oscar contender, "The Day
the Firth Stood Still" whe burnt head hightier nor a pole jiminies,that a
gynecure was let on, where gyanacestross mound hold her dummyand shake.</P>

Example 5-12. A Custom Newsletter Filter That Uses IE 4 DHTML (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

130 Chapter 5: Making Content Dynamic
Some might argue that it is a waste of bandwidth to download content that the
viewer may not need. But unless you have a CGI program running on the server
that can query the user’s preferences and assemble a single document from match-
ing documents, the alternative is to have the client make numerous HTTP requests
for each desired story. When you want to give the user quick access to change-

</DIV>
<DIV CLASS=wrapper ID=N091198003>
<H3 CLASS=headline>Summer Blockbuster Wrap-Up</H3>
<P CLASS=story>Despite a world-wide boycott from some religious groups, the
animated film "The Satanic Mermaid" won the hearts and dollars of movie-goers
this summer. Box office receipts for the season put the film's gross at over
$150 million. Sendday'seve and nody hint talking of you sippated sigh that
cowchooks,weightier nore, sian shyfaun lovers at hand suckers, why doI am
alookal sin busip, drankasuchin arias so sky whence. </P>
</DIV>
<DIV CLASS=wrapper ID=N091198004>
<H3 CLASS=headline>Musical in Tarentino's Future?</H3>
<P CLASS=story>Undaunted by lackluster box-office results from last Christmas'
"Jackie Brown," director Quentin Tarentino has been seen scouting Broadway
musicals for potential future film projects. "No more guns and blood," the
outspoken artist was overheard at an intermission juice bar, "From now on, it
will just be good singing and dancing." He crumblin if so be somegoat's milk
sense. Really? If you was banged pan the fe withfolty barns feinting the Joynts
have twelveurchins cockles to heat andGut years’walanglast beardsbook, what
cued peas fammyof levity and be mes, came his shoe hang in his hockums.</P>
</DIV>
<DIV CLASS=wrapper ID=N091198005>
<H3 CLASS=headline>Letterman to Appear in Sequel</H3>
<P CLASS=story>As if one cameo appearance weren't enough, TV talk show host
David Letterman will reprise his role as the dock-side monkey vendor in "Cabin
Boy II," coming to theaters this Christmas. Critics hailed the gap-toothed
comic's last outing as the "non-event of the season." This the way thing,what
seven wrothscoffing bedouee lipoleums. Kiss this mand shoos arouna peck of
night, in sum ear of old Willingdone. Thejinnies and scampull's syrup.</P>
</DIV>
<HR>
<P ID=copyright>Copyright 1998 Jollywood Blabber, Inc. All Rights Reserved.</P>
<DIV ID=filter>
Filter news by the following keyword(s):

<FORM NAME="filterer">
<INPUT TYPE="checkbox" NAME="director" onClick="filter(this.form)">director
<INPUT TYPE="checkbox" NAME="box" onClick="filter(this.form)">box (office)
<INPUT TYPE="checkbox" NAME="critic" onClick="filter(this.form)">critic
<INPUT TYPE="checkbox" NAME="summer" onClick="filter(this.form)">summer
<INPUT TYPE="checkbox" NAME="Christmas" onClick="filter(this.form)">Christmas
</FORM>
</DIV>
</BODY>
</HTML>

Example 5-12. A Custom Newsletter Filter That Uses IE 4 DHTML (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Changing Content 131
able content, a brief initial delay in downloading the complete content is prefera-
ble to individual delays later in the process.

It should be clear that Internet Explorer 4 is much better suited to truly dynamic
content in an HTML page than Navigator 4. It is very likely that a future version of
Navigator will incorporate these same powers—if not the same techniques—to
extend dynamic content across both browsers.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

132
Dynamic HTML: The Definitive Reference
Copyright © 1999 Danny Goodman. Al
Chapter 6Applying Dynamic HTML

In this chapter:
• Basic Events
• Binding Event

Handlers to Elements
• Event Handler

Return Values
• Event Propagation
• Examining Modifier

Keys
• Examining Mouse

Buttons and Key
Codes

• Dragging Elements
• Event Futures

6.

omputer’s activity for signs of
rial port, and so on. Programs
nts, and run some code based
For example, was the Shift key
Where was the text insertion
6

Scripting Events
A graphical user interface constantly monitors the c
life from devices such as the mouse, keyboard, se
are written to respond to specific actions, called eve
on numerous conditions associated with the event.
held down while the mouse button was clicked?
pointer when a keyboard key was pressed? As you can see, an event is more than
the explicit action initiated by the user or system—an event also has information
associated with it that reveals more details about the state of the world when the
event occurred.

In a Dynamic HTML page, you can use a scripting language such as JavaScript (or
VBScript in Internet Explorer), to instruct a visible element to execute some script
statements when the user does something with that element. The bulk of scripts
you write for documents concern themselves with responding to user and system
actions after the document has loaded. In this chapter, we’ll examine the events
that are available for scripting and discuss how to associate an event with an
object. We’ll also explore how to manage events in the more complex and con-
flicting event models of the Version 4 browsers.

Basic Events
Events have been scriptable since the earliest scriptable browsers. The number and
granularity of events have risen with the added scriptability of each browser gener-
ation. The HTML 4.0 recommendation cites a group of events it calls “intrinsic
events,” which all Version 4 browsers have in common (many of them dating back
, eMatter Edition
l rights reserved.

Applying
Dynam

ic
HTM

L
Basic Events 133
to the time of Navigator 2). These include onClick, onMouseOver, onKeyPress,
and onLoad events, as well as many other common events. But beyond this list,
there are a number of events that are browser specific and support the idiosyncra-
sies of the document object models implemented in Navigator 4 and Internet
Explorer 4. Eventually (no pun intended), standards for events will be maintained
by the formal DOM specification, but the subject is a complex one and appears to
have been tabled until DOM Level 2.

Every event has a name, but the actual nomenclature you use in your scripts is
more complicated. For example, when a user clicks a mouse button, the physical
action fires a “click” event. But, as you will see in various tag attributes and script
statements, the way you direct a clicked object to actually do something in
response to the event is to assign the object an event handler that corresponds to
the event. An event handler adopts the event name and appends the word “on” in
front of it. Thus, the click event becomes the onClick event handler.

NOTE Capitalization of event handler names is another fuzzy subject. When
used as HTML tag attributes, event handler names are case insensi-
tive. A tradition among long-time scripters has been to capitalize the
first letter of the actual event, as in onClick. In other situations, you
might assign an event handler as a property of an object. In this
case, the event handler must be all lowercase to be compatible
across platforms. In this book, generic references to event handlers
and event handlers as tag attributes all have the inside capital letter;
event handlers as object properties are shown in all lowercase.

It is not uncommon to hear someone call an event handler an event. There is a
fine distinction between the two, but you won’t be arrested by the “jargon police”
if you say “the onClick event.” It is more important that you understand the range
of events available for a particular browser version and what action fires the event
in the first place.

Table 6-1 is a summary of all the event handlers defined in the Version 4 brows-
ers. Pay special attention to the columns that show in which version of each
browser the particular event handler was introduced. Bear in mind, however, that
an event handler introduced in one browser version may have been extended to
other objects in a later browser version. In Chapter 15, Document Object Event
Handlers Index, you can find a listing of all event handlers and the objects to
which they may be assigned.

Many of the event handlers in Table 6-1 apply only to Internet Explorer 4’s data
binding facilities, which allow form elements to be bound to server database
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

134 Chapter 6: Scripting Events
sources. Even though Microsoft includes data binding among its list of DHTML
capabilities, the subject is not covered in depth in this book.

Table 6-1. Navigator 4 and Internet Explorer 4 Event Handlers

Event Handler NN IE Description
onAbort 3 4 The user has interrupted the transfer of an image to

the client
onAfterUpdate - 4 Transfer of data from a databound document

element to a data source has completed
onBeforeUnload - 4 The page is about to be unloaded from a window

or frame
onBeforeUpdate - 4 Data from a databound document element is about

to be sent to a data source
onBlur 2 3 An element has lost the input focus because the

user clicked out of the element or pressed the Tab
key

onBounce - 4 The content of a MARQUEE element has reached the
edge of the element area

onChange 2 3 An element has lost focus and the content of the
element has changed since it gained focus

onClick 2 3 The user has pressed and released a mouse button
(or keyboard equivalent) on an element

onDataAvailable - 4 Data has arrived (asynchronously) from a data
source for an applet or other object

onDatasetChanged - 4 Data source content for an applet or other object
has changed or the initial data is ready

onDatasetComplete - 4 Transfer of data from a data source to an applet or
other object has finished

onDblClick 4 4 The user has double-clicked a mouse button
onDragDrop 4 - A desktop icon has been dropped into a window or

frame
onDragStart - 4 The user has begun selecting content with a mouse

drag
onError 3 4 An error has occurred in a script or during the

loading of some external data
onErrorUpdate - 4 An error has occurred in the transfer of data from a

databound element to a data source
onFilterChange - 4 A filter has changed the state of an element or a

transition has completed
onFinish - 4 A MARQUEE object has finished looping
onFocus 2 3 An element has received the input focus
onHelp - 4 The user has pressed the F1 key or chosen Help

from the browser menu
onKeyDown 4 4 The user has begun pressing a keyboard character

key
onKeyPress 4 4 The user has pressed and released a keyboard char-

acter key
onKeyUp 4 4 The user has released a keyboard character key
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Binding Event Handlers to Elements 135
Binding Event Handlers to Elements
The first step in using events in a scriptable browser is determining which object
and which event you need to trigger a scripted operation. With form elements, the
choices are fairly straightforward, especially for mouse and keyboard events. For
example, if you want some action to occur when the user clicks on a button
object, you need to associate an onClick event handler with the button. Some
possibilities are not so obvious, however. For example, if you need to execute a
script after a document loads (say, to adjust some style sheet rules in response to
the size of the user’s browser window), you need to specify an onLoad event han-
dler. For the onLoad event handler to fire, it must be associated with the BODY ele-
ment or the window object (by a quirk of HTML tag structure, all window object
event handlers are associated with the BODY element).

Event Handlers as Tag Attributes

Perhaps the most common way to bind an event handler to an element is to
embed the handler in the HTML tag for the element. All event handlers can be

onLoad 2 3 A document or other external element has
completed downloading all data into the browser

onMouseDown 4 4 The user has begun pressing a mouse button
onMouseMove 4 4 The user has rolled the mouse (irrespective of

mouse button)
onMouseOut 3 4 The user has rolled the mouse out of an element
onMouseOver 2 3 The user has rolled the mouse atop an element
onMouseUp 4 4 The user has released the mouse button
onMove 4 3 The user has moved the browser window
onReadyStateChange - 4 An object has changed its readyState
onReset 3 4 The user has clicked a Reset button
onResize 4 4 The user has resized a window or object
onRowEnter - 4 Data in the current row of a databound object

(acting as a data provider) has changed
onRowExit - 4 Data in the current row of a databound object

(acting as a data provider) is about to be changed
onScroll - 4 The user has adjusted an element’s scrollbar
onSelect 2 3 The user is selecting text in an INPUT or TEXTAREA

element
onSelectStart - 4 The user is beginning to select an element
onStart - 4 A MARQUEE element loop is beginning
onSubmit 2 3 A form is about to be submitted
onUnload 2 3 A document is about to be unloaded from a

window or frame

Table 6-1. Navigator 4 and Internet Explorer 4 Event Handlers (continued)

Event Handler NN IE Description
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

136 Chapter 6: Scripting Events
specified as attributes of HTML tags. Such attribute names are case insensitive. The
value you assign to one of these attributes can be a string that contains inline
script statements:

<INPUT TYPE="button" VALUE="Click Here" onClick="alert('You clicked me!')">

Or it can be a function invocation:

<INPUT TYPE="button" VALUE="Click Here" onClick="handleClick()">

Multiple statements within the value are separated by semicolons:

<INPUT TYPE="button" VALUE="Click Here" onClick="doFirst(); doSecond()">

You can pass parameter values to an event handler function, just as you would
pass them to any function call, but there are also some nonobvious parameters
that may be of value to an event handler function. For example, the this key-
word is a reference to the element as an object. In the following text field tag, the
event handler passes a reference to that very text field object to a function named
verify():

<INPUT TYPE="text" NAME="CITY" onChange="convertToUpper(this)">

The function can then use that parameter as a fully valid reference to the object,
for reading or writing the object’s properties:

function convertToUpper(field) {
 field.value = field.value.toUpperCase()
}

Once a generic function like this one is defined in the document, an onChange
event handler in any text field element can invoke this single function with assur-
ance that the result is placed in the changed field.

The this reference can also be used in the event handler to extract properties
from an object. For example, if an event handler function must deal with multiple
items in the same form, it is useful to send a reference to the form object as the
parameter and let the function dig into the form object for specific elements and
their properties. Since every form element has a form property, you can pass an
element’s form object reference with the parameter of this.form:

<INPUT TYPE="button" VALUE="Convert All" onClick="convertAll(this.form)">

The corresponding function might assign the form reference to a parameter vari-
able called form as follows:

function convertAll(form) {
 for (var i = 0; i < form.elements.length; i++) {
 form.elements[i].value = form.elements[i].value.toUpperCase()
 }
}

An added benefit of this kind of parameter passing is that references inside the
function can be reduced from the generic document.forms[0].ele-
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Binding Event Handlers to Elements 137
ments.length to the simpler form.elements.length. The parameter variable
automatically points to the proper form object if there are multiple forms on the
page.

Navigator 4 has one additional keyword that can be passed as an event handler
parameter: event. As we discuss later in the chapter, this is an event object that
contains more information about the event that fired the event handler.

Event Handlers as Object Properties

As of Navigator 3 and Internet Explorer 4, an event handler can also be assigned
to an object as a property of that object via a script statement. For every event that
an object supports, the object has a property with the event handler name in all
lowercase (although Navigator 4 also recognizes the intercapitalized version, as
well). You use the standard assignment operator (=) to assign a function (or script
statements) to the event handler. Function assignments are references to func-
tions, which means that you omit the parentheses normally associated with the
function name. For example, to have a button’s onClick event handler invoke a
function named handleClick() defined elsewhere in the document, the assign-
ment statement is:

document.forms[0].buttonName.onclick = handleClick

Notice, too, that the reference to the function name is case sensitive, so any capi-
talization in the function name must be preserved in its reference.

Binding event handlers to objects in this manner has both advantages and disad-
vantages. An advantage is that you can use scripted branching to simplify the invo-
cation of event handler functions that require (or must omit) certain browser ver-
sions. For example, if you implement an image-swapping mouse rollover atop a
link surrounding an image, you can weed out old browsers that don’t support
image swapping by not assigning the event handler to those versions:

if (document.images) {
 document.links[1].onmouseover = swapImage1
}

Without an event handler specified in the tag, an older browser is not tripped up
by the invalid object, and the image swapping function doesn’t have to do the ver-
sion checking.

But the preceding example also shows one of the disadvantages of assigning event
handlers to object properties: you cannot pass parameters to functions invoked
this way. Navigator 4 automatically passes an event object along with each of
these calls (as described later in this chapter), but other than that, it is up to the
called function to specifically reference information, such as an element’s form or
other properties.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

138 Chapter 6: Scripting Events
Another potential downside is more of a caution: assignment statements like the
preceding one must be executed after the object has loaded in the document. This
means that the script statement either must be physically below the element’s
HTML tag in the document or it must be run in a function invoked by the onLoad
event handler. If the object is not loaded, the assignment statement causes an error
because the object does not exist.

Event Handlers as <SCRIPT> Tags

The third and final technique for binding event handlers to objects currently works
only in Internet Explorer 4. The technique uses two special attributes (FOR and
EVENT) in the <SCRIPT> tag to specify that the script is to be run in response to
an event for a particular object. The FOR attribute points to an ID attribute value
that is assigned to the element that generates the event handler; the EVENT
attribute names the event handler. Internet Explorer does not attempt to resolve
the FOR attribute reference while the document loads, so it is safe to put the script
before the element in the source code.

The following fragment shows what the entire <SCRIPT> tag looks like for the
function defined earlier that converts all of a form’s element content to uppercase
in response to a button’s onClick event handler:

<SCRIPT FOR=upperAll EVENT=onclick LANGUAGE="JavaScript">
var form = document.forms[0]
 for (var i = 0; i < form.elements.length; i++) {
 form.elements[i].value = form.elements[i].value.toUpperCase()
 }
</SCRIPT>

The HTML for the button does not include an event handler, but does require an
ID (or NAME) attribute.

<INPUT TYPE="button" ID="upperAll" VALUE="Convert All">

NOTE You might see a variation of this technique for defining scripts
directly as event handlers when the scripting language is specified as
VBScript. Instead of specifying the object name and event as tag
attributes, VBScript lets you combine the two in a function name,
separated by an underscore character, as in:

<SCRIPT LANGUAGE="VBScript">
Function upperAll_onclick

script statements
End Function
</SCRIPT>

The tag for the element requires only the ID attribute to make the
association.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Event Handler Return Values 139
In those rare instances in which an event contains parameters (such as the error
event), the parameters can be assigned to parameter variables in the EVENT
attribute (EVENT="onerror(msg, url, lineNum)"). Those parameter variables
can then be used directly in script statements inside the <SCRIPT> tag pair.

Event Handler Return Values
A few event handlers associated with specific objects have extra powers available
to them, based on whether the event handler contains a scripted return state-
ment that returns true or false. For example, an onClick event handler associ-
ated with a link ignores the action of the HREF and TARGET attributes if the event
handler evaluates to return false. Similarly, a form object’s onSubmit event
handler can cancel the submission of a form if the event handler evaluates to
return false.

The easiest way to implement this feature is to include a return statement in the
event handler itself, while the function invoked by the handler returns true or
false based on its calculations. For example, if a form requires validation prior to
submission, you can have the onSubmit event handler invoke the validation rou-
tine (probably passing this, the form itself, as a parameter to the function). If the
routine finds a problem somewhere, it returns false and the submission is can-
celed; otherwise, it returns true and the submission proceeds as usual. Such a
FORM element looks like the following:

<FORM METHOD="POST" ACTION="http://www.megaCo.com/cgi-bin/entry"
onSubmit="return validate(this)">

This technique also allows you to have a link navigate to a hardcoded URL for
nonscriptable browsers, but execute a script when the user has a scriptable
browser:

...

Here, the return statement is set as the final statement of the event handler; it
does not have to trouble the called function for a return value.

Event Propagation
In some DHTML applications, it is not always efficient to have target elements pro-
cess events. For example, if you have a page that allows users to select and drag
elements around the page, it is quite possible that one centralized function can
handle that operation for all elements. Rather than define event handlers for all of
those elements, it is better to have the mouse-related events go directly to an
object or element that has scope over all the draggable elements. In other words,
one event handler can do the job of a dozen. For this kind of treatment to work,
events must be able to propagate through the hierarchy of objects or elements in
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

140 Chapter 6: Scripting Events
the document. Version 4 browsers are the first to incorporate event propagation in
their event models.

The differences in the event models between Navigator 4 and Internet Explorer 4
are most evident in the way that an event passes through the document hierarchy
after it fires. Events literally travel in opposite directions in the two browsers: Navi-
gator 4 events trickle down through the object hierarchy to the intended target
object, while IE 4 events bubble up from the target element through the element
containment hierarchy. In addition, Navigator 4 objects don’t intercept events as
they trickle down unless they are explicitly instructed to do so, while IE 4 events
automatically bubble up unless explicitly stopped by any element along the bub-
ble path.

Navigator 4 Event Propagation

When a user initiates an action that fires an event targeted to a page element in
Navigator 4, the event passes through an object hierarchy: namely the window,
document, and possibly layer objects that eventually lead to the target element.
Without any instructions to do otherwise, these intervening objects do nothing to
the event as it passes through. But if you want to intercept the event at any one of
those levels, you may do so by invoking the captureEvents() method for the
window, document, or layer object.

Capturing events

The captureEvents() method, however, requires special instructions about the
kind of event (or events) to capture. Parameters to the captureEvents() method
are static properties of an Event object (with an uppercase E) that exists in every
window or frame. The properties are essentially constants that represent the types
of events that can pass through the window, document, or layer object. Table 6-2
shows the events you can capture at those levels.

You can select multiple events to be captured by specifying multiple parameters
separated by the bitwise OR operator (|). For example, if you want the document
object to capture all mouse over and mouse out events, the script statement is:

Table 6-2. Event Object Static Properties

Event.ABORT Event.BLUR Event.CHANGE

Event.CLICK Event.DBLCLICK Event.DRAGDROP

Event.ERROR Event.FOCUS Event.KEYDOWN

Event.KEYPRESS Event.KEYUP Event.LOAD

Event.MOUSEDOWN Event.MOUSEMOVE Event.MOUSEOUT

Event.MOUSEOVER Event.MOUSEUP Event.MOVE

Event.RESET Event.RESIZE Event.SCROLL

Event.SELECT Event.SUBMIT Event.UNLOAD
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Event Propagation 141
document.captureEvents(Event.MOUSEOVER | Event.MOUSEOUT)

Capturing events is only part of the job. The window, document, or layer object
must also have an event handler for each event assigned to it. For instance, if the
document object is capturing mouse over and mouse out events, as just shown,
two more statements in the script must follow to assign functions to these event
handler properties. The following two statements assume existing function defini-
tions for turnOnImage() and turnOffImage():

document.onmouseover = turnOnImage
document.onmouseout = turnOffImage

When a function is assigned to an event handler, Navigator 4 automatically passes
an event object (lowercase e) as an argument to the function. This object con-
tains details about the physical event that occurred. If the function intends to
examine that information, it should include a parameter variable for the event, as
in:

function turnOnImage(evt) {
statements

}

You can, of course, also use the function.arguments property to extract this
value without an explicit parameter variable, but having the parameter variable is a
clean way to handle the event object reference.

A function that executes in response to an explicitly captured event like this can
cancel the native action of the intended target of the event by returning false.
For example, consider a document object that is set to capture and process
Event.CLICK events. If a user clicks on a link, the event handler function at the
document level can end with a return false statement to prevent the link from
carrying out its native action (navigating to the HREF URL). If the function ends
with a return true statement (or no return statement at all), however, the link
action takes place as usual.

If you want event capturing to work immediately after the initial loading of the
page, you should put the call to captureEvents() and the event handler assign-
ment statements in an initialization function that gets invoked from the onLoad
event handler of the BODY element. That way you know that all relevant object
and function references are valid before these statement are invoked.

Releasing events

Just as you can capture individual event types, you can turn off that capturing
when necessary. The window, document, and layer objects in Navigator 4 have
releaseEvents() methods that turn off event capture for the event types speci-
fied as parameters. For example, if the mouse over and mouse out events were
initially captured by the document object, but due to user interaction on the page,
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

142 Chapter 6: Scripting Events
you now want all mouse out events to go directly to their targets, invoke the fol-
lowing statement:

document.releaseEvents(Event.ONMOUSEOUT)

You may capture and release events as often as necessary for your page design.

Handing events off to their targets

If a window or document captures an event, the event handler may examine the
details of the event object passed as a parameter (described shortly) and deter-
mine that no special processing is required. In other words, the event should pro-
ceed to its intended target. There is no automatic propagation of events in Naviga-
tor, so you must include a statement that invokes the window, document, or layer
routeEvent() method. Pass along the event object as a parameter to this
method:

function turnOnImage(evt) {
 if (condition that doesn’t require processing here) {
 document.routeEvent(evt)
 } else {

special processing statements
 }
}

You may, of course, use a function like the preceding to perform some prepro-
cessing of the event and still invoke the routeEvent() method to let the target
object continue handling the event.

Redirecting events

The final possible disposition for an event that has been captured is to send it to
an object that is not the intended target. Every Navigator 4 object that has event
handlers available to it also has a handleEvent() method, which allows it to
receive an event object sent to it by a window, document, or layer object that
has captured the event prior to its intended target. While the routeEvent()
method sends an event to its intended target without naming the target, the han-
dleEvent() method must be called from the object that is meant to receive the
event. For example, you could have several related links on a page all funnel their
mouse over and mouse out events to just one of the links. To accomplish this, the
document must be set up to capture both event types. The functions assigned to
the document.onmouseover and document.onmouseout event handlers should
include statements like the following one, which directs all such events to the first
link in the document:

document.links[0].handleEvent(evt)

That first link must have onMouseOver and onMouseOut event handlers assigned
to it for event redirection to work correctly.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Event Propagation 143
Examining a Navigator 4 event

The event (lowercase e) object passed with each physical event contains several
properties that are useful to scripts. Remember that this object is automatically
passed to a function assigned to an event handler property of an object; you may
also explicitly include it as a parameter to an event handler defined as a tag
attribute, as in the following example:

<INPUT TYPE="button" VALUE="Click me" onClick="doClickScript(event)">

The function can then find out things about the event, such as the location of a
click, whether a modifier key was pressed at the time of the event, the intended
target, and the key pressed in a keyboard event. The event object can have the
following properties:

data
The URL of a drag and drop event

layerX, layerY
The horizontal and vertical coordinates of the event, relative to the containing
layer

modifiers
An integer value that represents modifier keys pressed at the time of the event
(a numeric combination of Event object static properties for modifier keys)

pageX, pageY
The horizontal and vertical coordinates of the event, relative to the window or
frame

screenX, screenY
The horizontal and vertical coordinates of the event, relative to the screen

target
An object reference to the intended target

type
The string representation of the event name ("click")

which
For mouse events, an integer that represents the mouse button pressed; for
keyboard events, the ASCII code of key pressed

Note that not all events supply information for every property.

To demonstrate how you might combine event capturing with examination of the
event object, Example 6-1 shows the window-level capture of all key press events
on a page. The function processes all key press events. For events directed at text
input fields, the keyboard characters are examined to make sure that no numbers
are entered into the fields. Notice that after the call to alert(), checkNums()
returns false to make sure that the native action of the text box (the rendering of
the typed character) doesn’t take place. However, at the end of the function, a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

144 Chapter 6: Scripting Events
return true statement allows all other key press events (perhaps directed at a
TEXTAREA) to function normally.

You’ll see more examples of event capturing and processing later in this chapter
when we discuss cross-platform event handling.

Internet Explorer 4 Event Bubbling

In contrast to Navigator 4’s trickle-down event mechanism, events in Internet
Explorer 4 bubble up from the target element through an element hierarchy. Note
that I said element hierarchy, which is different from the object hierarchy used in
Navigator—in IE 4, virtually every HTML element has events associated with it.
Consider the following skeletal structure of an HTML document:

<HTML>
<BODY>
 <FORM>
 <DIV>
 <INPUT TYPE="text">
 </DIV>
 </FORM>
</BODY>
</HTML>

As the user types into the text input field, the key press event starts at the input
field and then works its way up through the DIV, FORM, and BODY elements of the
document, in that order. In this situation, an onKeyPress event handler can be
defined for any and all of these elements. Any such event handler you define will

Example 6-1. Event Capturing and Processing in Navigator 4

document.captureEvents(Event.KEYPRESS)
document.onkeypress = checkNums

function checkNums (evt) {
 // get ASCII code
 var oneChar = evt.which
 // process only targets whose object are of type 'text'
 if (evt.target.type == "text") {
 // check for ASCII range of 0-9
 if (oneChar >= 48 && oneChar <= 57) {
 alert("Numbers are not allowed in text fields.")
 return false
 } else {
 // let all other characters onward to object in case
 // there is an onKeyPress event handler defined there
 routeEvent(evt)
 }
 }
 return true
}

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Event Propagation 145
be triggered by a key press in the text field, unless event bubbling is canceled (as
described in the next section).

This isn’t as anarchic as it sounds. In fact, it’s quite powerful. With IE 4, you can
have event handlers that apply to running text content on a page, with granularity
that lets you specify different responses to each little element you define in the
HTML—character by character, if you like.

Automatic bubbling

Event bubbling is automatic in IE 4. For the most part, you don’t have to worry
about it, since there isn’t likely to be much overlap in non-DHTML pages. An
event handler in a form element works there and does not collide with similarly
named event handlers elsewhere in the element containment hierarchy. But if
there is a chance for events to collide, you can explicitly instruct an event not to
bubble beyond a specific element.

Canceling bubbling involves the IE 4 event (lowercase e) object, which is cov-
ered in more detail in the next section. This object belongs to the window object
and has a property named cancelBubble. The default value for this property is
false, meaning that event bubbling takes place. But if you set this property to
true, the event does not bubble past the current event handler.

If you assign an event handler as a tag attribute, you can cancel bubbling with an
extra statement in the attribute value:

<INPUT TYPE="button" onClick="doBtnClick(); window.event.cancelBubble=true">

Since the event object is bound to the window object, the cancelBubble prop-
erty can be set in any script statement to cancel bubbling for the current event.
Thus, if you assign an event handler as an element property, the bubble cancella-
tion can take place in the function invoked by the event handler with the simple
statement:

window.event.cancelBubble=true

Only one event is bubbling at any given instant, so this statement knows to can-
cel the right one. It also means that you can let an event bubble part of the way
through the element hierarchy, but stop it at any desired element, so as not to
interfere with other elements higher up the chain.

The window.event object

IE 4’s window.event object is somewhat analogous to Navigator 4’s event (low-
ercase e) object. When an event fires, details of the event are automatically stuffed
into the window.event object and stay there until all scripts invoked by event
handlers along the bubble chain have finished. Then the next event stuffs its
details into the window.event object. In other words, there is only one win-
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

146 Chapter 6: Scripting Events
dow.event object alive at a time (within a given window or frame). Even with
events closely spaced in time (the mouse down, mouse up click sequence, for
example), only one event is “alive” at a time.

Like the Navigator version, this event object provides properties that contain
details about the event. Unfortunately, the property sets of the two objects don’t
match or have equivalents, but there are a number of similarities that can be use-
ful in cross-platform deployment, as demonstrated later in this chapter. Table 6-3
provides a list of the IE 4 window.event object properties and, when available,
the Navigator 4 equivalents.

Table 6-3. Properties of the Event Object for IE 4 and Navigator 4 Equivalents

IE 4 Property Type Description Type
NN4
Property

altKey Boolean The Alt key was pressed
during the event

Event
property

modifiers

button Integer The mouse button pressed in
the mouse event

Integer which

cancelBubble Boolean Whether the event should
bubble further

clientX,
clientY

Pixel
values

The horizontal and vertical
coordinates of the event in
the content region of
browser window

Pixel
values

pageX,
pageY

ctrlKey Boolean The Ctrl key was pressed
during the event

Event
property

modifiers

fromElement Object The object or element from
which the pointer moved for
a mouse over or mouse out
event

keyCode Integer The keyboard character code
of a keyboard event

Integer which

offsetX,
offsetY

Pixel
values

The horizontal and vertical
coordinates of the event
within the element space

reason Integer The disposition of a data
transfer event

returnValue Boolean The value returned by the
event

screenX,
screenY

Pixel
values

The horizontal and vertical
coordinates of the event rela-
tive to the screen

Pixel
values

screenX,
screenY

shiftKey Boolean The Shift key was pressed
during event

Event
property

modifiers

srcElement Object The default object or element
intended to receive the event

Object target

srcFilter Object The filter object that trig-
gered a filter change event
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Examining Modifier Keys 147
As you can see, very few event object properties in Table 6-3 have the same
names and data values across browsers (screenX, screenY, and type are the
only properties in common), although important properties for coordinate posi-
tions, modifier keys, mouse button, and keyboard character are available in both
browsers. This means that with a little platform-specific branching, you can make
events work for both browsers in one document. At the same time, as long as you
don’t need the element-level granularity of event handling available in IE 4 but
lacking in Navigator 4, the different event propagation directions are not that diffi-
cult to handle.

Examining Modifier Keys
Example 6-2 demonstrates several aspects of working with the browser-specific
event objects. As a bonus, the page includes some cross-platform element posi-
tioning and dynamic styles. The page is primarily a laboratory for experimenting
with particular event object properties to determine which modifier keys are held
down during mouse down and key press events. A small table is used as the out-
put area of the page (see Figure 6-1). As the user clicks on a link or types into a
text input field, the relevant event properties are checked for the modifier key(s)
being held down at the time. For each possible key, the background color of the
corresponding TD element is changed to red if the key is pressed. The scripting
techniques on this page also reveal some details about particular events that can
catch you off guard in one browser or the other.

The application uses a style rule to define the appearance of the TD elements that
represent the modifier keys. These elements are all positioned relative to the docu-
ment flow, and the clipping rectangle is set to compensate for Navigator 4’s pro-
pensity to cinch up the background around an element’s content.

The script begins with the familiar script statements that set global variables for
browser-specific branching and platform equivalent references. An API-like func-

toElement Object The object or element to
which the pointer moved for
a mouse over or mouse out
event

type String The name of the event
(without “on” prefix)

String type

x, y Pixel
values

The horizontal and vertical
coordinates of the event
within BODY element (for
unpositioned target) or posi-
tioned element

Table 6-3. Properties of the Event Object for IE 4 and Navigator 4 Equivalents (continued)

IE 4 Property Type Description Type
NN4
Property
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

148 Chapter 6: Scripting Events
tion is defined to take care of setting an element’s background color with plat-
form-dependent syntax.

The checkMods() function is the heart of this example. It is called whenever the
user clicks the link or types in the text input area. The function receives a Naviga-
tor 4 event object as a parameter. For IE 4, the function relies upon the win-
dow.event object, so the parameter is ignored in that browser. The first four state-
ments in checkMods() set Boolean variables for the four modifier keys. Note that
the Meta key is the same as the Command key on the Macintosh keyboard and the
Windows key on recent Windows keyboards. IE 4, however, does not recognize
the Meta key as a modifier key, so its value in this script is always false.

Each assignment statement uses the conditional operator (?:) to do the right thing
for each browser. If isNav is true, the statement uses the bitwise AND (&) opera-
tor on the Navigator 4 event object’s modifiers property and the appropriate
constant from the Event object. If, through the operator’s binary arithmetic, the
right operand is determined to be a component of the left operand, the expres-
sion evaluates to true. If isNav is false, however, the statement assigns the spe-
cific modifier key property of the window.event object (a Boolean value) to the
script’s local variable.

After checkMods() sets its variables, it calls the setBGColor() function for each
modifier to set the color of the corresponding TD element.

Figure 6-1. Experimenting with modifier keys
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Examining Modifier Keys 149
In the HTML for the page, shown in Example 6-2, notice that the link has both an
onMouseDown and an onClick event handler bound to it. The onClick event
handler cannot be used by itself because Navigator 4 performs unique actions
when you mouse down on a link with certain modifier keys held down; con-
versely, IE 4 opens a new browser window with the HREF attribute unless the
onClick event handler returns false. To accommodate both behaviors, the
onMouseDown event handler is used for the event sampling, while the onClick
event handler is specified so that it always returns false.

Example 6-2. A Modifier Key Event Laboratory

<HTML>
<HEAD>
<TITLE>Modifier Keys Properties</TITLE>
<STYLE TYPE="text/css">
 .flags {position:relative; clip:rect(0,80,18,0); background-color:white}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
// Global variables for browser versions and platform equivalencies
var isNav, isIE
var coll = ""
var styleObj = ""
if (parseInt(navigator.appVersion) >= 4) {
 if (navigator.appName == "Netscape") {
 isNav = true
 } else {
 isIE = true
 coll = "all."
 styleObj = ".style"
 }
}
// API function for setting a positionable element's background color
function setBGColor(objIn, color) {
 var obj = eval("document." + coll + objIn + styleObj)
 if (isNav) {
 obj.bgColor = color
 } else {
 obj.backgroundColor = color
 }
}
// Invoked with each click of the link or typed key of the field, this function
// checks the modifier key and sets the element background color accordingly
function checkModKeys(evt) {
 var alt = (isNav) ? evt.modifiers & Event.ALT_MASK : window.event.altKey
 var ctrl = (isNav) ? evt.modifiers & Event.CONTROL_MASK :
window.event.ctrlKey
 var shift = (isNav) ? evt.modifiers & Event.SHIFT_MASK :
window.event.shiftKey
 var meta = (isNav) ? evt.modifiers & Event.META_MASK : false
 setBGColor("ctrl1",((alt) ? "red" : "white"))
 setBGColor("ctrl2",((ctrl) ? "red" : "white"))
 setBGColor("ctrl3",((shift) ? "red" : "white"))
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

150 Chapter 6: Scripting Events
There are other quirks that affect keyboard events. Currently, only true alphanu-
meric character keys generate events whose details can be examined. In other
words, function keys and arrow keys cannot be trapped by the script. Also, the
browser does not let you override the normal Ctrl, Meta, and Alt key combina-
tions that may be menu equivalents or system shortcuts. Therefore, while you
might be able to test some key combinations on one operating system platform
(Mac browsers, for example, typically have no internal use for the Ctrl key), you
can reliably intercept only upper- and lowercase letters on all operating systems. If
you have plans for creating your own set of keyboard accelerators to trigger
scripts, you may have to put those ideas on hold until a better event handling
scheme is worked into future browsers

Examining Mouse Buttons
and Key Codes
The next code listing, Example 6-3, further demonstrates how to access event
object properties in both browsers, even when the properties don’t match up well.
In this case, a script displays information about mouse clicks and key presses in
the status bar, to limit the disruption of the user. For mouse clicks over a button,

 setBGColor("ctrl4",((meta) ? "red" : "white"))
 return false
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Events and Modifier Keys</H1>
<HR>
<TABLE BORDER=1>
<TR HEIGHT=20 >
<TH>Modifier Keys:</TH>
<TD WIDTH=80 HEIGHT=20 ALIGN=MIDDLE ID=ctrl1 CLASS=flags>Alt</TD>
<TD WIDTH=80 ALIGN=MIDDLE ID=ctrl2 CLASS=flags>Control</TD>
<TD WIDTH=80 ALIGN=MIDDLE ID=ctrl3 CLASS=flags>Shift</TD>
<TD WIDTH=80 ALIGN=MIDDLE ID=ctrl4 CLASS=flags>Meta</TD>
</TABLE>
<P>Hold one or more modifier keys and click on
<A HREF="javascript:void(0)" onMouseDown="return checkModKeys (event)"
onClick="return false">
this link to see which keys you are holding.</P>
<FORM NAME="output">
<P>Enter some text with uppercase and lowercase letters:
<INPUT TYPE="text" SIZE=40 onKeyPress=" checkModKeys (event)"></P>
</FORM>
</BODY>
</HTML>

Example 6-2. A Modifier Key Event Laboratory (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Examining Mouse Buttons and Key Codes 151
this laboratory application presents the identifying integer for the mouse button
used to do the click. For key presses in a text area, the application displays the
character code value of the key typed by the user.

A single function handles the investigation of both the mouse button and key-
board events. This design is partially influenced by the fact that both values come
from the same event object property in Navigator 4—the which property. With
that browser, a single statement extracts the value from the event object that is

Example 6-3. Looking for Mouse Button and Keyboard Character Codes

<HTML>
<HEAD>
<TITLE>Button Codes / Key Codes</TITLE>
<SCRIPT LANGUAGE="JavaScript">
var isNav, isIE
if (parseInt(navigator.appVersion) >= 4) {
 if (navigator.appName == "Netscape") {
 isNav = true
 } else {
 isIE = true
 }
}
function showBtnOrKey(evt) {
 var theBtnOrKey
 if (isNav) {
 theBtnOrKey = evt.which
 } else {
 if (window.event.srcElement.type == "textarea") {
 theBtnOrKey = window.event.keyCode
 } else if (window.event.srcElement.type == "button") {
 theBtnOrKey = window.event.button
 }
 }
 status = theBtnOrKey
 return false
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Mouse Button and Key Codes from Event Objects</H1>
<HR>
<FORM>
<P>Click on this
<INPUT TYPE="button" VALUE="Button" onClick="showBtnOrKey(event)">
with either mouse button (if you have more than one).</P>
<P>Enter some text with uppercase and lowercase letters:

<TEXTAREA COLS=30 ROWS=4 onKeyPress="showBtnOrKey(event)" WRAP="virtual">
</TEXTAREA></P>
</FORM>
(Results appear in the status bar as you click or type.)
</BODY>
</HTML>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

152 Chapter 6: Scripting Events
passed as a parameter, regardless of the event type. For Internet Explorer 4, how-
ever, the values are maintained in two separate properties. Therefore, the script
examines the source of the event (the window.event.srcElement property),
whose type property is a string that is either “textarea” or “button” in this applica-
tion. For a text area, the window.event.keyCode property contains the character
code, while for a button, the window.event.button property contains the mouse
button code.

There are a couple of things you should know about the mouse button identifiers.
First, the two browsers have different numbering schemes for the buttons. In Navi-
gator 4, the primary mouse button (on a multibutton mouse) has an integer value
of 1; in IE 4, that button has a value of 0. Second, the native behavior of both
browsers prevents mouse events from ever being triggered by the secondary but-
ton. Right-clicking on elements produces a context-sensitive pop-up menu, so no
event object is generated by the click.

As for the keyboard character codes, the two browsers specify different character
bases for their values. Navigator 4 specifies just ASCII values, while IE 4 extends
support to include Unicode characters. For the English language, the “lower 128”
ASCII values are the same as the Unicode values for the same characters.

Dragging Elements
The final example in this chapter, Example 6-4, demonstrates how event captur-
ing and event bubbling can work together to let document-level event handlers
control the dragging of elements on the screen. Because Navigator does not sup-
port events for elements that are not part of the document object hierarchy, it
makes perfect sense to have the document capture all pertinent events and pro-
cess them. While IE 4 could have event handlers assigned to each of the ele-
ments, that would require more effort than is necessary.

All the dragging event handlers are assigned as properties in an init() function
invoked by the onLoad event handler. The only platform-specific process taking
place here involves setting the document.captureEvents() method to grab all
mouse down and mouse move events that come in from Navigator 4.

The draggable elements in this example are two absolute-positioned DIV ele-
ments that contain IMG elements. The user can click on either image and drag that
image around. While it is a simple operation for the user, the application must do
a fair amount of work to figure out which element has been clicked and then track
the location of the element in sync with the mouse. Stacking order also comes into
consideration because you want a selected element to be atop all its peers as the
user drags it around the screen.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Dragging Elements 153
Determining which element has been clicked requires a lot more work in Naviga-
tor than in IE. Assuming that all targeted elements are sibling layers, the script
must look through each layer to see if the click location is within the clipping
region of that layer. Moreover, this must be done in reverse stacking order, so that
the layer closest to the top of the stacking order is found to be the one under the
cursor. If the draggable elements were in different layers (for instance the DIV ele-
ments were nested), you’d need some hairy scripts to crawl through all layers in
search of the clicked element—a mighty, although not impossible, task.

Coordinate systems also play a significant role in scripting the drag process. Ide-
ally, the element should track from the point where the user clicks inside the ele-
ment. This means that the location (top left corner) of the element must be offset
(up and to the left) from the cursor position by the number of pixels of the click
offset within that element. This information is easier to come by in IE (the
event.offsetX and event.offsetY properties) than in Navigator, where you
must calculate the offset by subtracting the location of the layer from the event
coordinate in the page space. In either case, the offset values are stored as global
variables in Example 6-4, so that the dragging action can use them for proper
placement of the element under the cursor.

Making the element track the cursor also requires some calculation, as the loca-
tion of the element after each mouse move event must be set in the page (or cli-
ent) space, after being adjusted by that initial click offset. For Navigator 4, the base
coordinates come from the pageX and pageY properties of the event; for IE 4, the
corresponding values are event.clientX and event.clientY.

Although there is a bit of platform-specific branching going on in Example 6-4, the
example demonstrates nonetheless that all is not lost when attempting to create
sophisticated DHTML implementations for both browser models in one document.
It certainly requires a lot of testing and tweaking, as well as nimble thinking about
the two systems of property names and positionable object relationships, but it is
possible.

Example 6-4. Dragging Elements Around the Window

<HTML>
<HEAD>
<TITLE>It's a Drag</TITLE>
<STYLE TYPE="text/css">
 #imgA {position:absolute; left:50; top:100; width:120; border:solid black 1px;
 z-index:0}
#imgB {position:absolute; left:110; top:145; width:120; border:solid black 1px;

 z-index:0}
</STYLE>
<SCRIPT LANGUAGE="JavaScript">
// Global variables for platform branching
var isNav, isIE
if (parseInt(navigator.appVersion) >= 4) {
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

154 Chapter 6: Scripting Events
 if (navigator.appName == "Netscape") {
 isNav = true
 } else {
 isIE = true
 }
}

// ***Begin Utility Functions***
// Set zIndex property
function setZIndex(obj, zOrder) {
 obj.zIndex = zOrder
}
// Set element background color (only works dynamically in IE)
function setBorderColor(obj, color) {
 obj.borderColor = color
}
// Position an object at a specific pixel coordinate
function shiftTo(obj, x, y) {
 if (isNav) {
 obj.moveTo(x,y)
 } else {
 obj.pixelLeft = x
 obj.pixelTop = y
 }
}
// ***End Utility Functions***

// Global holds reference to selected element
var selectedObj
// Globals hold location of click relative to element
var offsetX, offsetY

// Find out which element has been clicked on
function setSelectedElem(evt) {
 if (isNav) {
 var clickX = evt.pageX
 var clickY = evt.pageY
 var testObj
 for (var i = document.layers.length - 1; i >= 0; i--) {
 testObj = document.layers[i]
 if ((clickX > testObj.left) &&
 (clickX < testObj.left + testObj.clip.width) &&
 (clickY > testObj.top) &&
 (clickY < testObj.top + testObj.clip.height)) {
 selectedObj = testObj
 if (selectedObj) {
 setBorderColor(selectedObj, "red")
 setZIndex(selectedObj, 100)
 return
 }
 }
 }

Example 6-4. Dragging Elements Around the Window (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Dragging Elements 155
 } else {
 var imgObj = window.event.srcElement
 selectedObj = imgObj.parentElement.style
 if (selectedObj) {
 setBorderColor(selectedObj, "red")
 setZIndex(selectedObj,100)
 return
 }
 }
 selectedObj = null
 return
}
// Drag an element
function dragIt(evt) {
 if (selectedObj) {
 if (isNav) {
 shiftTo(selectedObj, (evt.pageX - offsetX), (evt.pageY - offsetY))
 } else {
 shiftTo(selectedObj, (window.event.clientX - offsetX),
 (window.event.clientY - offsetY))
 // prevent further system response to dragging
 return false
 }
 }
}
// Turn selected element on
function engage(evt) {
 setSelectedElem(evt)
 if (selectedObj) {
 if (isNav) {
 offsetX = evt.pageX - selectedObj.left
 offsetY = evt.pageY - selectedObj.top
 } else {
 offsetX = window.event.offsetX
 offsetY = window.event.offsetY
 }
 }
 // prevent further processing of mouseDown event so that
 // the Macintosh doesn't display the contextual menu and
 // lets dragging work normally.
 return false
}
// Turn selected element off
function release(evt) {
 if (selectedObj) {
 setZIndex(selectedObj, 0)
 setBorderColor(selectedObj, "black")
 selectedObj = null
 }
}

Example 6-4. Dragging Elements Around the Window (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

156 Chapter 6: Scripting Events
Event Futures
It is unclear how the W3C and the browser makers will resolve the complex issues
involved with scripting events. There are many forces exerting pressure on how
the job should best be done, including what, if any, relationship there should be
between the JavaScript and Java event models. We’ll have to watch the activity of
the DOM working group to see how the situation settles down. In the meantime,
there is a messy legacy of installed browsers to worry about.

// Set event capture for Navigator
function setNSEventCapture() {
 if (isNav) {
 document.captureEvents(Event.MOUSEDOWN | Event.MOUSEMOVE | Event.MOUSEUP)
 }
}
// Assign event handlers used by both Navigator and IE
function init() {
 if (isNav) {
 setNSEventCapture()
 }
 document.onmousedown = engage
 document.onmousemove = dragIt
 document.onmouseup = release
}
</SCRIPT>
</HEAD>
<BODY onLoad="init()">
<H1>Element Dragging</H1>
<HR>
<DIV ID=imgA></DIV>
<DIV ID=imgB></DIV>
</BODY>
</HTML>

Example 6-4. Dragging Elements Around the Window (continued)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L

Chapter 7Applying Dynamic HTML

In this chapter:
• New Directions

Overview
• New Elements
• Deprecated Elements
• Obsolete Elements
• New Element

Attributes
• Deprecated Attributes

As the installed base of web
more and more fragmented.
upgrade to the latest browser
from upgrading beyond a corp
old. This makes the job of ad
browser makers and page auth
4.0 reveals the depth of the qua
Dynamic H
Copyright
7

7.Looking Ahead to

HTML 4.0
browsers increases over time, that base becomes
It is not uncommon for users to choose not to
version or for organizations to prohibit individuals
orate standard that may be one or two generations
opting new W3C standards difficult, for both web
ors. The breadth of the changes from HTML 3.2 to
ndary facing web developers.

Regardless of the latest bells and whistles or the “preferred” way to apply certain
content formats, there are still many thousands of web pages on the Net that use
techniques long gone from the standards documents. Web browser makers bear
the burden of this “ancient” baggage, as their browsers must continue to be back-
ward compatible with previous versions of HTML, all the way back to HTML 1.0.
Unfortunately, this continued support can lead casual page authors to believe that
the old ways are just fine, so there is no incentive to use the latest tags.

The purpose of this chapter is to acquaint you with the changes that have been
made to the HTML recommendation between Version 3.2 and Version 4.0. A large
number of tags and attributes have been deprecated because their original func-
tions are now covered by Cascading Style Sheets. It is clear that HTML document
creation is moving toward the separation of content from format. This, in fact, is
what SGML and XML are all about. If you are developing web applications for
users who have style-sheet-enabled browsers, you would be wise to start adopt-
ing this methodology.

As often happens in the browser and standard release cycles, the HTML 4.0 recom-
mendation was finalized after both Netscape Navigator 4 and Internet Explorer 4
shipped final release versions. By virtue of being released closer to the HTML 4.0
standard, IE 4 has adopted a fair number of the new tags and attributes of HTML
157
TML: The Definitive Reference, eMatter Edition
 © 1999 Danny Goodman. All rights reserved.

158 Chapter 7: Looking Ahead to HTML 4.0
4.0, but certainly not all of them. Navigator 4 is behind the curve right now, but
Navigator 5 is looming on the horizon, so that shouldn’t be the case for long.

New Directions Overview
With a lot of the basic content issues covered in HTML 3.2, the new items in
HTML 4.0 focus on topics that reflect more mature thinking about the role of the
World Wide Web as a global, universal, content publishing medium. Many con-
cerns that have been addressed by computer operating system and application
software makers for years are being formalized for the Web for the first time in
Version 4.0. This section highlights the new directions in HTML 4.0.

Internationalization

Surprise! Inhabitants of Earth do not all use the English language or the Roman
alphabet. HTML 4.0 adopts various industry efforts to assist with internationaliza-
tion. These are meant to support both the authoring of content in any of the
world’s written languages and the display of that content in any alphabet, includ-
ing non-Roman ones, such as Cyrillic, Arabic, Hebrew, Chinese, Japanese, and the
rest. Of course, the browser and operating system underneath it must do all the
hard work in terms of rendering character sets that are not native to the system.
Acceptance of the Unicode character set (ISO 10646) is a first step in making these
facilities seamless to users.

Accessibility

Not every potential web visitor can read a video display, roll the mouse around on
a desktop, or touch-type on a keyboard. A lot of new items in the HTML 4.0 rec-
ommendation have been included to increase browser accessibility to web surfers
whose physical limitations might otherwise reduce or prohibit their access. Sepa-
rating content from form is in itself an aid, especially if your pages provide choices
for, say, larger fonts or alternate color combinations. Content might also be
directed to other devices, such as Braille writers or text-to-speech synthesizers.
Under HTML 4.0, you can assign keyboard combinations for what are otherwise
mouse actions (e.g., clicking a button). Even the new “requirement” that an IMG
element include an ALT attribute with a short image description demonstrates a
concern for a wider audience.

Tables

Specifications for tables in HTML 4.0 should enhance the display, usability, and
rendering speed of tabular content on a page. Details are based on RFC 1942,
which includes recommendations for allowing up-front sizing of column widths, to
allow a browser to start displaying a large table while the cell content is still arriv-
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
New Directions Overview 159
ing. Browser makers are urged to implement tables so that a user can scroll a
table’s body section while the table’s header and footer remain stationary. The
emphasis on style sheets for accurate placement of content should mean that the
days are numbered for using transparent images to fill blank table cells for format-
ting. Future HTML recommendations are likely to hand off even more formatting
tasks to style sheets.

Forms

While many HTML 4.0 enhancements related to forms are for the sake of improved
accessibility, there are some potentially helpful by-products of those efforts
(depending on how much is implemented in the common browsers of the future).
The ability to disable and write-protect form elements, which has been long
sought after, is part of the new recommendation. Form elements can also be visu-
ally grouped into FIELDSET elements, complete with legends (currently imple-
mented in Internet Explorer 4). Tabbing order can also be controlled by element
attributes, rather than by geography.

Embedded Objects

A new element, OBJECT, becomes the formal way of embedding multimedia and
other types of data into a compound document. The IMG and APPLET elements
are still supported for those specific data types.

Style Sheets

While not favoring any one style sheet authoring language over another, HTML 4.0
does provide for the STYLE element and all the promise that it offers. This ele-
ment is going to have a significant effect on the long-term makeup of the library of
HTML tags and attributes. The push to use style sheets to separate content from
format means that a lot of elements and attributes that you have probably been
using for formatting purposes, like the tag, are no longer recommended.
The list of deprecated items in HTML 4.0 is long, although support for these items
is not likely to disappear in browsers for a very long time to come.

Scripting

The SCRIPT element is not new to the HTML standard, but two aspects of it are
new. First, the intrinsic event handlers of elements are listed in the HTML 4.0 rec-
ommendation as attributes. These event handlers are, of course, independent of
the scripting language in use. Second, the way you specify a particular scripting
language has changed. The LANGUAGE attribute is now deprecated in favor of the
TYPE attribute, which is defined as containing a content-type string (for example,
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

160 Chapter 7: Looking Ahead to HTML 4.0
"text/vbscript"). For backward compatibility, the LANGUAGE attribute is cer-
tain to be supported well into the future.

Embedded Context

The LINK element offers many potential uses, but one that may be exploited
sooner rather than later in upcoming browsers is its ability to hold information
about documents that are linked to the current document. For example, a browser
could conceivably use LINK element values to build a pop-up menu that takes you
to various pages (e.g., previous page, next page, glossary page, index page, con-
tents page) in a related collection of documents. This is another way to separate
content from, in this case, context.

New Elements
Some of the new elements in HTML 4.0 are new only to the HTML specification;
they have been in one or both browsers for some time. Other elements are brand
new and may not yet be part of either browser. Table 7-1 lists all the new ele-
ments defined in HTML 4.0. The table also indicates the version of each browser
that first supported each element.

Table 7-1. New Elements in HTML 4.0

Element NN IE Description
ABBR - - Abbreviation
ACRONYM - 4 Acronym
BDO - - Override default bidirectional rendering algorithms
BUTTON - 4 Push button (alternative version)
COL - 4 Table column default attributes
COLGROUP - 4 Table column group
DEL - 4 Deleted text format
FIELDSET - 4 Form element grouping
FRAME 2 3 Frame within a FRAMESET
FRAMESET 2 3 Specification for a set of frames
IFRAME - 4 Inline frame
INS - 4 Inserted text format
LABEL - 4 Form element label text
LEGEND - 4 Label for a FIELDSET
NOFRAMES 2 3 Content for a no-frame browser
NOSCRIPT 3 4 Content for a browser with JavaScript turned off
OBJECT 4 4 Embedded media
OPTGROUP - - Option group
PARAM 3 4 Named value for an applet or object
Q - 4 Short inline quotation
SPAN 4 4 Generic content container
TBODY - 4 Table body
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Deprecated Elements 161
Deprecated Elements
As I stated earlier, style sheets obviate the need for a number of tags that were
commonly used for basic formatting tasks. Those tags are now deprecated, but
they will continue to be supported in browsers for generations to come. Obvi-
ously, any attributes associated with these elements are also deprecated, but not
necessarily in all other active elements. Table 7-2 shows all the elements that are
deprecated in the HTML 4.0 specification.

Obsolete Elements
Three elements have been deleted in favor of an existing element that has been
doing the job of all four in browser implementations for a long time. The three
obsolete elements are LISTING, PLAINTEXT, and XMP. The popular PRE element
is the one you should use for displaying preformatted text. The HTML 4.0 recom-
mendation leaves implementation details, such as the treatment of whitespace, the
default font setting, and word wrapping, up to browsers. Typically, PRE elements
are rendered in Courier and they honor carriage returns inserted in the text.

New Element Attributes
Practically every existing element has one or more new attributes in HTML 4.0.
Many of these new attributes are applied to every element due to HTML 4.0’s
focus on internationalization, accessibility, style sheets, and scripting. Table 7-3
lists the common attributes that have been added to most elements that can act as

TFOOT - 4 Table footer
THEAD - 4 Table header

Table 7-2. Deprecated Elements in HTML 4.0

Element Supplanted By
APPLET The OBJECT element
BASEFONT Style sheet font attributes
CENTER <DIV ALIGN=center>
DIR The UL element
FONT Style sheet font attributes
ISINDEX <INPUT TYPE="text">
MENU The UL element
S The style sheet {text-decoration:line-through}
STRIKE The style sheet {text-decoration:line-through}
U The style sheet {text-decoration:underline}

Table 7-1. New Elements in HTML 4.0 (continued)

Element NN IE Description
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

162 Chapter 7: Looking Ahead to HTML 4.0
content containers (that is, they have start and end tags). Element-specific addi-
tions are not shown here, but are covered in full in Chapter 8, HTML Reference.

Deprecated Attributes
A large number of attributes are deprecated in HTML 4.0, primarily due to the
preference given to style sheets over direct content formatting. Browsers will con-
tinue to honor these deprecated attributes for a long time to come, but if you
eventually design content exclusively for browsers that are HTML 4.0 compatible,
you should use that project as a starting point for weaning yourself from these
deprecated attributes. Table 7-4 lists all the deprecated attributes in HTML 4.0, plus
the affected elements and suggested replacement syntax. In some instances, you
will see a deprecated attribute associated with a new element (like the deprecated
ALIGN attribute of the new IFRAME element). This is not a trick. You can still use
the “old” attribute with a new element for the sake of authoring-style compatibility.

Table 7-3. New HTML 4.0 Attributes Shared by Most Elements

Attribute Description
CLASS Group identifier (selector) for applying a style rule
DIR Text direction of the element’s content
ID Unique identifier (selector) for applying a style rule
LANG Human language used in the element’s content
STYLE Inline style sheet rule
TITLE Short description of the element
onClick Event handler for click events
onDblClick Event handler for double-click events
onKeyDown Event handler for keyboard key down events
onKeyPress Event handler for keyboard key press (down and up) events
onKeyUp Event handler for keyboard key up events
onMouseDown Event handler for mouse down events
onMouseMove Event handler for mouse movement inside the element
onMouseOut Event handler for mouse movement out of the element
onMouseOver Event handler for mouse movement into the element
onMouseUp Event handler for mouse up events

Table 7-4. Deprecated Attributes in HTML 4.0

Attribute Elements Supplanted By
ALIGN CAPTION, APPLET,

IFRAME, IMG, INPUT,
OBJECT, LEGEND, TABLE,
HR, DIV, H1-H6, P

text-align and vertical-align
style attributes

ALINK BODY A:active {color:}
ALT APPLET OBJECT element TITLE attribute
ARCHIVE APPLET OBJECT element ARCHIVE attribute
BACKGROUND BODY background style attribute
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Applying
Dynam

ic
HTM

L
Deprecated Attributes 163
The HTML reference in Chapter 8 includes all the elements and attributes speci-
fied in the HTML 4.0 recommendation. Items are clearly marked with regard to
browser version support. As you’ll see, there are plenty of items marked as HTML
4.0 only, with no support yet in either Navigator or Internet Explorer. As future
browser generations become reality, however, you can be sure more items will be
supported in the browsers.

BGCOLOR BODY, TABLE, TD, TH, TR background-color style attribute
BORDER IMG, OBJECT border-width style attributes
CLEAR BR clear style attribute
CODE APPLET OBJECT element CLASSID attribute
CODEBASE APPLET OBJECT element CODEBASE attribute
COLOR BASEFONT, FONT color style attribute
COMPACT DIR, DL, MENU, OL, UL {display:compact}
FACE BASEFONT, FONT font-face style attribute
HEIGHT APPLET OBJECT element HEIGHT attribute
HEIGHT TD, TH height positioning style attribute
HSPACE IMG, OBJECT left positioning style attribute
LINK BODY A:link {color:}
NAME APPLET OBJECT element NAME attribute
NOSHADE HR
NOWRAP TD, TH white-space style attribute
OBJECT APPLET OBJECT element CLASSID attribute
PROMPT ISINDEX LABEL element
SIZE HR width positioning style attribute
SIZE FONT, BASEFONT font-size style attribute
START OL To be determined in CSS2
TEXT BODY color style attribute
TYPE LI, OL, UL list-style-type style attribute
VALUE LI To be determined in CSS2
VERSION HTML Built into the DTD for HTML 4.0
VLINK BODY A:visited {color:}
VSPACE IMG, OBJECT top positioning style attribute
WIDTH HR width positioning style attribute
WIDTH APPLET OBJECT element WIDTH attribute
WIDTH TD, TH COLGROUP element WIDTH attribute

Table 7-4. Deprecated Attributes in HTML 4.0 (continued)

Attribute Elements Supplanted By
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

II
II.Dynamic HTML Reference

This part of the book, Chapters 8 through 11, is a complete reference to all the
tags, attributes, objects, properties, methods, and event handlers for HTML, CSS,
DOM, and core JavaScript.
• Chapter 8, HTML Reference

• Chapter 9, Document Object Reference

• Chapter 10, Style Sheet Attribute Reference

• Chapter 11, JavaScript Core Language Reference
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

HTM
L Reference
Chapter 8HTML Refer-
ence

Since the earliest days of the W
(HTML) standard has been pul
derstood, and even partially ig
release of the recommendatio
World Wide Web Consortium
browsers that were shipping at
ahead of the implementation c
sion for web application autho
Dynamic H
Copyright
8

8.HTML Reference
orld Wide Web, the Hypertext Markup Language
led, pushed, twisted, extended, contracted, misun-
nored by web browser vendors. With the formal

n for HTML Version 4.0 at the end of 1997, the
(W3C) outpaced the implementations of HTML in
the time. For once, the W3C recommendation was
urve. This, of course, can lead to plenty of confu-
rs who study the details of the W3C documents in

search of handy new features: it can be discouraging to see the tag or attribute of
your dreams, only to discover that no browser on the planet supports it.

The purpose of this chapter is to provide a complete list of HTML tags and
attributes—the ones implemented in Navigator and Internet Explorer, as well as
the ones specified in the W3C recommendation. So that you can see whether a
particular entry applies to the browser(s) you must support, version information
accompanies each tag and attribute listed in the following pages. At a glance, you
can see the version number of Navigator, Internet Explorer, and the W3C HTML
specification in which the item was first introduced. Because this book deals with
Dynamic HTML, the history timeline goes back only to HTML 3.2, Navigator 2, and
Internet Explorer 3. If an item existed prior to one of these versions, it is simply
marked “all.” Where no implementation exists, I’ve used “n/a” to indicate that. In
rare instances, an item has been removed from the HTML specification for Version
4.0. Such items are marked as less than 4 (“<4”).

This chapter is organized alphabetically by HTML element (or tag, if you prefer);
within each element’s description, attributes are listed alphabetically. The refer-
ence entries are designed so that it is easy to see which elements require end tags
and whether attributes are optional or required. Scripted object references are
167
TML: The Definitive Reference, eMatter Edition
 © 1999 Danny Goodman. All rights reserved.

168 Attribute Value Types
displayed in JavaScript standard syntax style but are segregated by browser (“NN”
for Netscape Navigator; “IE” for Internet Explorer), because the object models are
not necessarily the same. When there is no object model listing for a particular
browser, it means that the element or attribute is not part of that browser’s script-
able object model. The description for an item details any significant differences
between the various implementations of the item.

Attribute Value Types
Many element attributes share similar data requirements. For the sake of brevity in
the reference listings, this section describes a few common attribute value types in
more detail than is possible within each listing. Whenever you see one of these
attribute value types associated with an attribute, consult this section for a descrip-
tion of the type.

Length

A length value defines a linear measure of document real estate. The unit of mea-
surement can be any applicable unit that helps identify a position or space on the
screen. HTML attribute length units are uniformly pixels, but in other content, such
as that specified in Cascading Style Sheets (see Chapter 9, Document Object Refer-
ence), measurements can be in inches, picas, ems, or other relevant units. A sin-
gle numeric value may represent a length when it defines the offset from an edge
of an element. For example, a coordinate point (10,20) consists of two length val-
ues, denoting pixel measurements from the left and top edges of an element,
respectively.

Identifier

An identifier is a name that adheres to some strict syntactical rules. Most impor-
tant is that an identifier is one word with no whitespace allowed. If you need to
use multiple words to describe an item, you can use the inter-capitalized format
(in which internal letters are capitalized) or an underscore character between the
words. Most punctuation symbols are not permitted, but all numerals and alpha-
betical characters are. To avoid potential conflicts with scripting languages that
refer to items by their identifiers, it is good practice to avoid using a numeral for
the first character of an identifier.

URI and URL

The term Universal Resource Identifier (URI) is a broad term for an address of con-
tent on the Web. A Universal Resource Locator (URL) is a type of URI. For most
web authoring, you can think of them as being one in the same because most web
browsers restrict their focus to URLs. A URL may be complete (including the proto-
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Attribute Value Types 169

HTM
L Reference
col, host, domain, and the rest) or may be relative to the URL of the current docu-
ment. In the latter case, this means the URL may consist of an anchor, file, or path-
name. In scriptable browsers, attributes that expect URI values can also accept the
javascript: pseudo-URL, which makes a script statement or function the desti-
nation of the link.

Language Code

There is an extensive list of standard codes that identify the spoken and written
languages of the world. A language code always contains a primary language
code, such as “en” for English or “zh” for Chinese. Common two-letter primary
codes are cataloged in ISO-639. An optional subcode (separated from the primary
code by a hyphen) may be used to identify a specific implementation of the pri-
mary language, usually according to usage within a specific country. Therefore,
although “en” means all of English, “en-US” means a U.S.-specific version of
English. The browser must support a particular language code for its meaning to
be of any value to an element attribute.

Alignment Constants

Several HTML elements load external data into rectangular spaces on the page.
Images and Java applets are perhaps the most common elements of this type. Any
such element has an ALIGN attribute that lets you determine how the element
relates geographically to the surrounding content (usually text). Values for this
attribute are constant values that have very specific meanings.

Browser makers have gone beyond the minimum possibilities for alignment speci-
fied in the HTML 4.0 recommendation. Fortunately, Navigator and Internet
Explorer agree on the extensions (at least in the most recent versions).

Here is a synopsis of the various case-insensitive ALIGN attribute settings and how
they affect the display of the element and surrounding text content:

absbottom
Text is aligned such that the bottom of any possible text rendering (including
character descenders) is on the same horizontal line as the very bottom of the
element.

absmiddle
The middle of the text height (from descender to ascender) is aligned with the
middle of the element height.

baseline
The baseline of the text is on the same horizontal line as the very bottom of
the element (note that character descenders extend below the baseline).
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

170 Attribute Value Types
bottom
Identical to baseline.

left
If there is text starting on the same line as the element, the element is low-
ered to the next line and displayed flush left within the next outermost con-
tainer context. Text that follows the element cinches up to the end of the text
preceding the element, causing the text to wrap around the object or image
(called “floating”).

middle
The baseline of the text is aligned with the middle of the element height.

right
If there is text starting on the same line as the element, the element is low-
ered to the next line and displayed flush right within the next outermost con-
tainer context. Text that follows the element starts on the line immediately
below the starting text, causing the text to wrap around the object or image
(called “floating”).

texttop
The very top of the element is on the same horizontal line as the ascenders of
the preceding text.

top
The top of the element is on the same horizontal line as the top of the tallest
element (text or other kind of element) rendered in the line.

Colors

A color value can be assigned either via a hexadecimal triplet or with a plain-lan-
guage equivalent. A hexadecimal triplet consists of three pairs of hexadecimal
(base 16) numbers that range between the values 00 and FF, corresponding to the
red, green, and blue components of the color. The three pairs of numbers are
bunched together and preceded by a pound sign (#). Therefore, the reddest of
reds has all red (FF) and none (00) of the other two colors: #FF0000; pure blue is
#0000FF. The letters A through F can also be lowercase.

This numbering scheme obviously leads to a potentially huge number of combina-
tions (over 16 million), but not all video monitors are set to distinguish among mil-
lions of colors. Therefore, you may wish to limit yourself to a more modest pal-
ette of colors known as the web palette. A fine reference of colors that work well
on all browsers at popular bit-depth settings can be found at http://
www.lynda.com/hexh.html.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Common HTML Attributes 171

HTM
L Reference
The HTML recommendation also specifies a basic library of 16 colors that can be
assigned by plain-language names. Note that the color names are case insensitive.
The names and their equivalent hexadecimal triplets are as follows:

In other words, the attribute settings BGCOLOR="Aqua" and BGCOLOR="#00FFFF"
yield the same results.

Netscape has developed a much longer list of plain-language color equivalents.
These are detailed in Appendix A, Color Names and RGB Values, and are recog-
nized by recent versions of both Navigator and Internet Explorer.

Common HTML Attributes
In the HTML specifications for Navigator, Internet Explorer, and HTML 4.0, several
attributes are shared across a vast majority of HTML elements. Rather than repeat
the descriptions of these attributes ad nauseam in the reference listings, I am list-
ing their details here only once. Throughout the rest of the chapter, the attribute
list for each element points to these common attributes when the attribute name is
in italic. When you see an attribute listed in italic, it means that you should
look to this section for specific details about the attribute. If you recognize a term
from the list of attributes-in-common, but it is not shown in italic, that means that
there is some element-specific information about the attribute, so the description is
provided with the element. Here is a list of the common attributes:

Attributes

CLASS NN 4 IE 3 HTML 4

CLASS="className1[...classNameN]" Optional

An identifier generally used to associate an element with a style sheet rule defined for a
class selector. See Chapter 3, Adding Style Sheets to Documents. Be aware that even though
the CLASS attribute is specified for most elements of this chapter, Navigator 4 does not
implement a CLASS attribute for every one of those elements. In Navigator 4, implementa-
tion tends to be limited to visible elements.

Example Chapter 3

Value

Case-sensitive identifier. Multiple classes can be assigned by separating the class names with
spaces within the quoted attribute value.

Black #000000 Maroon #800000 Green #008000 Navy #000080
Silver #C0C0C0 Red #FF0000 Lime #00FF00 Blue #0000FF
Gray #808080 Purple #800080 Olive #808000 Teal #008080
White #FFFFFF Fuchsia #FF00FF Yellow #FFFF00 Aqua #00FFFF

CLASS ID LANGUAGE STYLE TITLE
DIR LANG
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

172 Common HTML Attributes
Default None.

Object Model Reference
IE [window.]document.elementCollection[i].className

[window.]document.all.elementID.className

DIR NN n/a IE n/a HTML 4

DIR="direction" Optional

The direction of character rendering for the element’s text when the characters are not
governed by inherent directionality according to the Unicode standard. Character rendering
is either left-to-right or right-to-left. This attribute is usually set in concert with the LANG
attribute; it must be used to specify a character rendering direction that overrides the
current direction.

Example
Some Unicode Arabic text characters here

Value ltr | rtl (case insensitive)

Default ltr

ID NN 4 IE 4 HTML 4

ID="elementIdentifier" Optional

A unique identifier that distinguishes this element from all the rest in the document. Can be
used to associate a single element with a style rule naming this attribute value as an ID
selector. An element can have an ID assigned for uniqueness as well as a class for inclu-
sion within a group. See Chapter 3. Be aware that even though the ID attribute is specified
for most elements of this chapter, Navigator 4 does not implement an ID attribute for every
one of those elements. In Navigator 4, implementation tends to be limited to visible
elements.

Example <H2 ID="sect3Head">Section Three</H2>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.all.elementID.id

LANG NN 3 IE 4 HTML 4

LANG="languageCode" Optional

The language being used for the element’s attribute values and content. A browser can use
this information to assist in proper rendering of content with respect to details such as treat-
ment of ligatures (when supported by a particular font or required by a written language),
quotation marks, and hyphenation. Other applications and search engines might use this
information to aid selection of spell-checking dictionaries and creating indices.

Example <B LANG="de">Deutsche Bundesbahn
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Common HTML Attributes 173

HTM
L Reference
Value Case-insensitive language code.

Default Browser default.

Object Model Reference
IE [window.]document.all.elementID.lang

LANGUAGE NN n/a IE 4 HTML n/a

LANGUAGE="scriptingLanguage" Optional

Sets the scripting language (and switches on the desired scripting engine) for script state-
ments defined in the element (such as event handler script statements in the tag). This
attribute is distinct from the LANGUAGE attribute currently in common use with the SCRIPT
element. Internet Explorer uses the LANGUAGE attribute in any element to engage a different
script language interpreter for subsequent script statements. If you use JScript exclusively
within a document, you don’t have to use this attribute.

Example
How <SPAN CLASS="bolds" LANGUAGE="VBSCRIPT"
onClick="MsgBox 'Hi, there!'">bold it is!

Value JAVASCRIPT | JSCRIPT | VBS | VBSCRIPT

Default

Although the default scripting language of IE 4 is JScript, no value is automatically assigned
to this attribute if the attribute is not included in the tag.

Object Model Reference
IE [window.]document.all.elementID.language

STYLE NN 4 IE 4 HTML 4

STYLE="styleSheetProperties" Optional

This attribute lets you set one or more style sheet rule property assignments for the current
element. You may use the CSS or JavaScript syntax for assigning style attributes. However if
you are designing the page for cross-browser deployment, use only the CSS syntax, which
both Navigator and Internet Explorer support. Be aware that even though the STYLE
attribute is specified for most elements of this chapter, Navigator 4 does not implement a
STYLE attribute for every one of those elements. In Navigator 4, implementation tends to be
limited to visible elements.

Example <B STYLE="color:green; font-size:18px">Big, green, and bold

Value

An entire CSS-syntax style sheet rule is enclosed in quotes. Multiple style attribute settings
are separated by semicolons. Style sheet attributes are detailed in Chapter 10, Style Sheet
Attribute Reference.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

174 <A>
Object Model Reference
IE [window.]document.all.elementID.style

TITLE NN n/a IE 3 HTML 3.2

TITLE="advisoryText" Optional

An advisory description of the element. For HTML elements that produce visible content on
the page, Internet Explorer 4 renders the content of the TITLE attribute as a tooltip when
the cursor rests on the element for a moment. For example, the table-related COL element
does not display content, so its TITLE attribute is merely advisory. To generate tooltips in
tables, assign TITLE attributes to elements such as TABLE, TR, TH, or TD.

The appearance of the tooltip is governed by the operating system version of the browser.
In Windows, the tooltip is the standard small, light-yellow rectangle; on the Mac, the tooltip
displays as a cartoon bubble in the manner of the MacOS bubble help system. If no
attribute is specified, the tooltip does not display. Although IE 3 implements this attribute,
no tooltip appears.

You can assign any descriptive text you like to this attribute. Not everyone will see it,
however, so do not put mission-critical information here. Future or special-purpose
browsers might use this attribute’s information to read information about the link to vision-
impaired web surfers.

Although the compatibility listing for this attribute dates the attribute back to Internet
Explorer 3 and HTML 3.2, it is newly ascribed to many elements starting with IE 4 and
HTML 4.0.

Example <B TITLE="United States of America">U.S.A.

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

Object Model Reference
IE [window.]document.all.elementID.title

Alphabetical Tag Reference

<A> NN all IE all HTML all

<A>... End Tag: Required

The A element is the rare element that can be an anchor and/or a link, depending on the
presence of the NAME and/or HREF attributes. As an anchor, the element defines a named
location in a document to which any URL can reference by appending a hashmark and the
anchor name to the document’s URI (http://www.megacorp.com/contents#a-c). Names are
identifiers assigned to the NAME attribute (or in newer browsers, the ID attribute). Content
defined solely as an anchor is not (by default) visually differentiated from surrounding BODY
content.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<A> 175

HTM
L Reference
By assigning a URI to the HREF attribute, the element becomes the source of a hypertext
link. Activating the link generally navigates to the URI assigned to the HREF attribute (or it
may load other media into a plugin without changing the page). Links typically have a
distinctive appearance in the browser, such as an underline beneath text (or border around
an object) and a color other than the current content color. Separate colors can be assigned
to links for three states: an unvisited link, a link being activated by the user, and a previ-
ously visited link (the linked document is currently in the browser cache). An A element can
be both an anchor and a link if, in the least, both the NAME (or ID) and HREF attributes have
values assigned to them.

Example
Just an anchor named "anchor3."
A link to navigate to "anchor3" in the same
 document.

Go from here (anchor 3) to home page.

Object Model Reference
NN [window.]document.links[i]

[window.]document.anchors[i]

IE [window.]document.links[i]
[window.]document.anchors[i]
[window.]document.all.elementID

Attributes

Event Handler Attributes

Anchor-only A elements have no event handlers in Navigator through Version 4.

ACCESSKEY DATASRC LANG REV TARGET
CHARSET DIR LANGUAGE SHAPE TITLE
CLASS HREF METHODS STYLE TYPE
COORDS HREFLANG NAME TABINDEX URN
DATAFLD ID REL

Handler NN IE HTML
onBlur n/a 4 4
onClick 2 3 4
onDblClick 4 4 4
onFocus n/a 4 4
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown 4 4 4
onMouseMove n/a 4 4
onMouseOut 3 4 4
onMouseOver 2 3 4
onMouseUp 4 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

176 <A>
ACCESSKEY NN n/a IE 4 HTML 4

ACCESSKEY="character" Optional

A single character key that follows the link. The browser and operating system determine if
the user must press a modifier key (e.g., Ctrl, Alt, or Command) with the access key to acti-
vate the link. In IE 4/Windows, the Alt key is required and the key is not case sensitive.
This attribute does not work in IE 4/Mac.

Example
Table of
Contents

Value Single character of the document set.

Default None.

Object Model Reference
IE [window.]document.links[i].accessKey

[window.]document.anchors[i].accessKey
[window.]document.all.elementID.accessKey

CHARSET NN n/a IE n/a HTML 4

CHARSET="characterSet" Optional

Character encoding of the content at the other end of the link.

Example
Visit Moscow

Value

Case-insensitive alias from the character set registry (ftp://ftp.isi.edu/in-notes/iana/assign-
ments/character-sets).

Default Determined by browser.

COORDS NN n/a IE n/a HTML 4

COORDS="coord1, ... coordN" Optional

When a link surrounds an image, this attribute defines the coordinate points (relative to the
top-left corner of the element) associated with an area map.

Example

Value

Each coordinate is a length value, but the number of coordinates and their order depend on
the shape specified by the SHAPE attribute, which may optionally be associated with the
element. For SHAPE="rect", there are four coordinates (left, top, right, bottom); for
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<A> 177

HTM
L Reference
SHAPE="circle", there are three coordinates (center-x, center-y, radius); for
SHAPE="poly", there are two coordinate values for each point that defines the shape of the
polygon (x1, y1, x2, y2, x3, y3,...xN, yN).

Default None.

DATAFLD NN n/a IE 4 HTML n/a

DATAFLD="columnName" Optional

Used with IE 4 data binding to associate a remote data source column name in lieu of an
HREF attribute for a link. The data source column must contain a valid URI (relative or abso-
lute). A DATASRC attribute must also be set for the element.

Example Late-Breaking News

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.links[i].dataFld

[window.]document.all.elementID.dataFld

DATASRC NN n/a IE 4 HTML n/a

DATASRC="dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example Late-Breaking News

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.links[i].dataSrc

[window.]document.all.elementID.dataSrc

HREF NN all IE all HTML all

HREF="URI" Required for links

The URI of the destination of a link. In browsers, when the URI is an HTML document, the
document is loaded into the current (default) or other window target (as defined by the
TARGET attribute). For some other file types, the browser may load the destination content
into a plugin or save the destination file on the client machine. In the absence of the HREF
attribute, the element does not distinguish itself in a browser as a clickable link and may
instead be only an anchor (if the NAME or ID attribute is set).

Example Chapter 3
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

178 <A>
Value

Any valid URI, including complete and relative URLs, anchors on the same page (anchor
names prefaced with the # symbol), and the javascript: pseudo-URL in scriptable
browsers to trigger a script statement rather than navigate to a destination.

Default None.

Object Model Reference
IE [window.]document.links[i].href

[window.]document.all.elementID.href

NN [window.]document.links[i].href

In both browsers, other link object properties allow for the extraction of components of the
URL, such as protocol and hostname. See the Link object in Chapter 9.

HREFLANG NN n/a IE n/a HTML 4

HREFLANG="languageCode" Optional

The language code of the content at the destination of a link. Requires that the HREF
attribute also be set. This attribute is primarily an advisory attribute to help a browser
prepare itself for a new language set if the browser is so enabled.

Example Chapter 3 (in Hindi)

Value Case-insensitive language code.

Default Browser default.

ID NN 3 IE 3 HTML 4

ID="elementIdentifier" Optional

A unique identifier that distinguishes this element from all the rest in the document. Can be
used to associate a single element with a style rule naming this attribute value as an ID
selector. Browsers typically allow the ID attribute to be used as a substitute for the NAME
attribute to make the element an anchor. In this case, one ID attribute can serve double
duty as a style sheet rule selector and anchor name. An A element can have an ID assigned
for uniqueness as well as a class for inclusion within a group.

Example Section 3

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.links[i].id

[window.]document.anchors[i].id
[window.]document.all.elementID.id

NN [window.]document.anchors[i].name
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<A> 179

HTM
L Reference
METHODS NN n/a IE 4 HTML n/a

METHODS="http-method" Optional

An advisory attribute about the functionality of the destination of a link. A browser could
use this information to display special colors or images for the element content based on
what the destination will do for the user.

Example

Chapter 3

Value Comma-delimited list of one or more HTTP methods.

Default None.

Object Model Reference
IE [window.]document.links[i].Methods

[window.]document.all.elementID.Methods

NAME NN all IE all HTML all

NAME="elementIdentifier" Required for anchors

The traditional way to signify an anchor position within a document. Other link elements
can refer to the anchor by setting their HREF attributes to a URL ending in a pound sign (#)
followed by the identifier. Omitting the NAME (and ID) attribute for the A element prevents
the element from being used as an anchor position. This attribute is interchangeable with
the ID attribute in recent browsers. If the NAME and HREF attribute are set in the element,
the element is considered both an anchor and a link.

Example Section III

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.links[i].name

[window.]document.anchors[i].name
[window.]document.all.elementID.name

NN [window.]document.links[i].name
[window.]document.anchors[i].name

REL NN n/a IE 3 HTML 4

REL="linkTypes" Optional

Defines the relationship between the current element and the destination of the link. Also
known as a forward link, not to be confused in any way with the destination document
whose address is defined by the HREF attribute. The HTML 4.0 recommendation defines
several link types; it is up to the browser to determine how to employ the value. This
attribute has meaning in IE 4 primarily for the LINK element, although there is significant
room for future application for tasks such as assigning an A element (acting as a link) to a
button in a static navigation bar pointing to the next or previous document in a series. The
element must include an HREF attribute for the REL attribute to be applied.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

180 <A>
Example Chapter 3

Value

Case-insensitive, space-delimited list of HTML 4.0 standard link types applicable to the
element. Sanctioned link types are:

In addition, IE 3 defined a fixed set of four values: same | next | parent | previous.

Default None.

Object Model Reference
IE [window.]document.links[i].rel

[window.]document.all.elementID.rel

REV NN n/a IE 3 HTML 4

REV="linkTypes" Optional

A reverse link relationship. Like the REL attribute, the REV attribute’s capabilities are defined
by the browser, particularly with regard to how the browser interprets and renders the
various link types available in the HTML 4.0 specification. Given two documents (A and B)
containing links that point to each other, the REV value of B is designed to express the
same relationship between the two documents as denoted by the REL attribute in A. There
is not yet much application of either the REL or REV attributes of the A element in IE 4.

Example Chapter 2

Value

Case-insensitive, space-delimited list of HTML 4.0 standard link types applicable to the
element. See the REL attribute for sanctioned link types.

Default None.

Object Model Reference
IE [window.]document.links[i].rev

[window.]document.all.elementID.rev

SHAPE NN n/a IE n/a HTML 4

SHAPE="shape" Optional

Defines the shape of a server-side image map area whose coordinates are specified with the
COORDS attribute.

Example

alternate contents index start
appendix copyright next stylesheet
bookmark glossary prev subsection
chapter help section
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<A> 181

HTM
L Reference
Value Case-insensitive shape constant: default | rect | circle | poly.

Default None.

TABINDEX NN n/a IE 4 HTML 4

TABINDEX=integer Optional

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their TABINDEX attributes are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest TABINDEX value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same TABINDEX values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the TABINDEX attribute or have the value set to zero. These elements receive focus in the
order in which they appear in the document. Because an A element cannot be disabled, it
always receives focus in turn, except for special handling in IE 4. Typically, an A element
wired as a link can be triggered with a press of the spacebar once the element has focus.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text input fields. Links and anchors cannot be tabbed to with the Mac version of IE 4.

Example Chapter 3

Value

Any integer from 0 through 32767. In IE 4, setting the TABINDEX to -1 causes the element
to be skipped in tabbing order altogether.

Default None.

Object Model Reference
IE [window.]document.links[i].tabIndex

TARGET NN all IE all HTML all

TARGET="windowOrFrameName" Optional

If the destination document is to be loaded into a window or frame other than the current
window or frame, you can specify where the destination document should load by
assigning a window or frame name to the TARGET attribute. Target frame names must be
assigned to frames and windows as identifiers. Assign names to frames via the NAME
attribute of the FRAME element; assign names to new windows via the second parameter of
the window.open() scripting method. If you omit this attribute, the destination document
replaces the document containing the link. An identifier other than one belonging to an
existing frame or window opens a new window for the destination document. This attribute
is applicable only when a value is assigned to the HREF attribute of the element.

A link element can have only one destination document and one target. If you want a link
to change the content of multiple frames, you can use an A element’s onClick event
handler or a javascript: pseudo-URL to fire a script that loads multiple documents. Set
the location.href property of each frame to a desired URL.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

182 <A>
Example
Section 3.2
Start Over

Value

Case-sensitive identifier when the frame or window name has been assigned via the target
element’s NAME attribute. Four reserved target names act as constants:

_blank Browser creates a new window for the destination document.

_parent Destination document replaces the current frame’s framesetting document (if
one exists; otherwise, it is treated as _self).

_self Destination document replaces the current document in its window or frame.

_top Destination document is to occupy the entire browser window, replacing any
and all framesets that may be loaded (also treated as _self if there are no
framesets defined in the window).

Default _self

Object Model Reference
IE [window.]document.links[i].target

NN [window.]document.links[i].target

TYPE NN n/a IE n/a HTML 4

TYPE="MIMEType" Optional

An advisory about the content type of the destination document or resource. A browser
might use this information to assist in preparing support for a resource requiring a multi-
media player or plugin.

Example
View Devil's Ghost slope

Value

Case-insensitive MIME type. A catalog of registered MIME types is available from ftp://
ftp.isi.edu/in-notes/iana/assignments/media-types/.

Default None.

URN NN n/a IE 4 HTML n/a

URN="URN" Optional

A Uniform Resource Name version of the destination document specified in the HREF
attribute. This attribute is intended to offer support in the future for the URN format of URI,
an evolving recommendation under discussion at the IETF (see RFC 2141). Although
supported in IE 4, this attribute does not take the place of the HREF attribute.

Example Chapter 3

Value

A valid URN in the form of "urn:NamespaceID:NamespaceSpecificString".
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<ABBR> 183

HTM
L Reference
Default None.

Object Model Reference
IE [window.]document.links[i].urn

<ABBR> NN n/a IE n/a HTML 4

<ABBR>...</ABBR> End Tag: Required

The ABBR element provides an encapsulation and enumeration mechanism for abbrevia-
tions that appear in the body text. For example, consider a web page that includes your
company’s address. At one point in the document, the abbreviation IA is used for Iowa. A
spelling checker, language translation program, or speech synthesizer might choke on this
abbreviation; a search engine would not include the word “Iowa” in its relevancy rating
calculation. But by turning the IA text into an ABBR element (and assigning a TITLE
attribute to it), you can provide a full-text equivalent that a search engine (if so equipped)
can count; a text-to-speech program would read aloud the full state name instead of some
guttural gibberish. Like many elements new in HTML 4.0, this one is intended to assist
browser technologies that may not yet be implemented but could find their way into prod-
ucts of the future.

A related element, ACRONYM, offers the same services for words that are acronyms. Both
elements are part of a larger group of what the HTML 4.0 recommendation calls phrase
elements.

Example
Ottumwa, <ABBR TITLE="Iowa">IA</ABBR> 55334

<ABBR LANG="de" TITLE="und so weiter">usw.</ABBR>

Attributes

Event Handler Attributes

CLASS ID LANG STYLE TITLE
DIR

Handler NN IE HTML
onClick n/a n/a 4
onDblClick n/a n/a 4
onKeyDown n/a n/a 4
onKeyPress n/a n/a 4
onKeyUp n/a n/a 4
onMouseDown n/a n/a 4
onMouseMove n/a n/a 4
onMouseOut n/a n/a 4
onMouseOver n/a n/a 4
onMouseUp n/a n/a 4
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

184 <ACRONYM>
TITLE NN n/a IE n/a HTML 4

TITLE="advisoryText" Optional

An advisory description of the element. For the ABBR element, it plays a vital role in
providing a hidden full-text description of the abbreviation rendered in the document.

Example <ABBR TITLE="Iowa">IA</ABBR>

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

<ACRONYM> NN n/a IE 4 HTML 4

<ACRONYM>...</ACRONYM> End Tag: Required

The ACRONYM element provides an encapsulation and enumeration mechanism for acro-
nyms that appear in the body text. For example, consider a web page that includes a
discussion of international trade issues. At one point in the document, the acronym GATT is
used for General Agreement on Tariffs and Trade. A spelling checker, language translation
program, or speech synthesizer might choke on this acronym; a search engine would not
include the word “tariffs” in its relevancy rating calculation. But by turning the GATT text
into an ACRONYM element (and assigning a TITLE attribute to it), you can provide a full-text
equivalent that a search engine (if so equipped) can count; a text-to-speech program would
read aloud the full meaning of the acronym. Like many elements new in HTML 4.0, this one
is intended to assist browser technologies that may not yet be implemented but could find
their way to products of the future.

A related element, ABBR, offers the same services for words that are abbreviations. Both
elements are part of a larger group of what the HTML 4.0 recommendation calls phrase
elements.

Example
<ACRONYM TITLE="General Agreement on Tariffs and Trade">GATT</ACRONYM>
<ACRONYM LANG="it" TITLE="Stati Uniti">S.U.</ACRONYM>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<ADDRESS> 185

HTM
L Reference
TITLE NN n/a IE 4 HTML 4

TITLE="advisoryText" Optional

An advisory description of the element. For the ACRONYM element, it plays a vital role in
providing a hidden full-text description of the acronym rendered in the document.

Example <ACRONYM TITLE="United States of America">U.S.A.</ACRONYM>

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

Object Model Reference
IE [window.]document.all.elementID.title

<ADDRESS> NN all IE all HTML all

<ADDRESS>...</ADDRESS> End Tag: Required

Prior to HTML 4, the ADDRESS element was often regarded as a display formatting tag
appropriate for displaying a page author’s contact information on the page. Navigator and
Internet Explorer display ADDRESS elements in an italic font. But the increased focus on
separating content from form in HTML 4.0 adds some extra meaning to this element. Search
engines and future HTML (or XML) parsers may apply special significance to the content of
this element, perhaps in cataloging author information separate from the hidden informa-
tion located in META elements. If you want to use this structural meaning of the element
while keeping the rendering in line with the rest of your body text, you need to assign style
sheet rules to override the browser’s default formatting tendencies for this element. Any
standard BODY elements, such as links, can be contained inside an ADDRESS element.

Example
<ADDRESS>
<P>Send comments to:jb@megacorp.com
</P>
</ADDRESS>

Object Model Reference
IE [window.]document.all.elementID

onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a

Handler NN IE HTML
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

186 <APPLET>
Attributes

Event Handler Attributes

<APPLET> NN 2 IE 3 HTML 3.2

<APPLET>...</APPLET> End Tag: Required

You can embed an executable chunk of Java code in an HTML document in the form of an
applet. An applet occupies a rectangular area of the page, even if it is only one-pixel
square. An applet may require that some initial values be set from the HTML document.
One or more PARAM elements can be used to pass parameters to the applet before the
applet starts running (provided the applet is written to accept these parameters). PARAM
elements go between the start and end tags of an APPLET element.

Applets are compiled by their authors into class files (filename suffix .class). An applet class
file must be in the same directory as, or a subdirectory of, the HTML document that loads
the applet. Key attributes of the APPLET element direct the browser to load a particular
class file from the necessary subdirectory.

All user interface design for the applet is programmed into the applet in the Java language.
One of the roles of attributes in the APPLET element is to define the size and other
geographical properties of the applet for its rendering on the page. Recent browsers allow
JavaScript scripts to communicate with the applet, as well as allowing applets to access
document elements.

Note that HTML 4.0 deprecates the APPLET element in favor of the more generic OBJECT
element. Browser support for the APPLET element will continue for some time to come,
however.

Example
<APPLET CODE="simpleClock.class" NAME="myClock" WIDTH=400 HEIGHT=50>
<PARAM NAME=bgColor VALUE="black">
<PARAM NAME=fgColor VALUE="yellow">
</APPLET>

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<APPLET> 187

HTM
L Reference
Object Model Reference
NN [window.]document.applets[i]

[window.]document.appletName

IE [window.]document.applets[i]
[window.]document.appletName

Attributes

Event Handler Attributes

ALIGN NN 2 IE 3 HTML 3.2

ALIGN="alignmentConstant" Optional

The ALIGN attribute determines how the rectangle of the applet aligns within the context of
surrounding content. See the section “Alignment Constants” earlier in this chapter for
description of the possibilities defined in both Navigator and Internet Explorer for this
attribute. Only a subset of the allowed constant values is specified in the HTML recommen-

ALIGN CODE HEIGHT NAME TITLE
ALT CODEBASE HSPACE SRC VSPACE
ARCHIVE DATAFLD ID STYLE WIDTH
CLASS DATASRC MAYSCRIPT

Handler NN IE HTML
onAfterUpdate n/a 4 n/a
onBeforeUpdate n/a 4 n/a
onBlur n/a 4 n/a
onClick n/a 4 n/a
onDataAvailable n/a 4 n/a
onDatasetChanged n/a 4 n/a
onDatasetComplete n/a 4 n/a
onDblClick n/a 4 n/a
onDragStart n/a 4 n/a
onErrorUpdate n/a 4 n/a
onFocus n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 n/a
onKeyPress n/a 4 n/a
onKeyUp n/a 4 n/a
onMouseDown n/a 4 n/a
onMouseMove n/a 4 n/a
onMouseOut n/a 4 n/a
onMouseOver n/a 4 n/a
onMouseUp n/a 4 n/a
onReadyStateChange n/a 4 n/a
onResize n/a 4 n/a
onRowEnter n/a 4 n/a
onRowExit n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

188 <APPLET>
dation. Although Navigator included this attribute in Version 2, only BOTTOM, LEFT, RIGHT,
and TOP were implemented in that version.

Both browsers follow the same rules on laying out content surrounding an applet whose
ALIGN attribute is set, but the actual results are sometimes difficult to predict when the
surrounding content is complex. A thorough testing of rendering possibilities with browser
windows set to various sizes prevents surprises later.

Example
<APPLET CODE="simpleClock.class" NAME="myClock" ALIGN=ABSMIDDLE
WIDTH=400 HEIGHT=50></APPLET>

Value Case-insensitive constant value.

Default bottom

Object Model Reference
IE [window.]document.applets[i].align

[window.]document.appletName.align

ALT NN 3 IE 3 HTML 3.2

ALT="textMessage" Optional

If a browser does not have the facilities to load and run Java applets or if the browser has
Java support turned off in its preferences, the text assigned to the ALT attribute is supposed
to display in the document where the APPLET element’s tag appears. Typically, this text
provides advice on what the page visitor is missing by not being able to load the Java
applet. Unlike the NOSCRIPT or NOFRAMES elements, there is no corresponding element for
an absent Java applet capability. In practice, browsers don’t necessarily display this message
for applets that fail to load for a variety of reasons.

In the event that this feature should work better in the future, use the ALT attribute with
care. If the applet is not a critical part of your page’s content, you may just want the rest of
the page to load without calling attention to the missing applet in less-capable browsers.
The alternate message may be more disturbing to the user than a missing applet.

Example
<APPLET CODE="simpleClock.class" NAME="myClock" ALIGN=ABSMIDDLE
ALT="A Java clock applet." WIDTH=400 HEIGHT=50></APPLET>

Value Any quoted string of characters.

Default None.

ARCHIVE NN 3 IE n/a HTML 4

ARCHIVE="archiveFileURL" Optional

The precise meaning of the ARCHIVE attribute varies between the HTML 4.0 recommenda-
tion and Netscape’s implementation. The basic idea behind Netscape’s ARCHIVE attribute is
that an author can package together multiple class files into a single uncompressed .zip
archive file and let the browser load the entire set of classes at one time. This can offer a
performance improvement over loading just the main class file (specified by the CODE
attribute) and then letting the class loader fetch each additional class file as needed.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<APPLET> 189

HTM
L Reference
In addition to specifying the ARCHIVE attribute, be sure to include a CODE attribute that
names the main class to load. Navigator first looks for the presence of that class file in the
archive. If the file is missing from the archive, Navigator loads the CODE class file sepa-
rately. (That class may then load additional supporting class files individually.) Navigator
requires that the archive file have a .zip filename extension. The URL must also be relative
to the CODEBASE location.

The HTML specification allows multiple URLs to be specified (in a space-delimited list) for
additional class or other resource files. This design is in anticipation of the same attribute
being used with the OBJECT element, which the W3C has deemed to be the successor to
the APPLET element.

Example
<APPLET CODE="ScriptableClock.class" ARCHIVE="myClock.zip" WIDTH=400
HEIGHT=50>
</APPLET>

Value Case-sensitive URI.

Default None.

CODE NN 2 IE 3 HTML 3.2

CODE="fileName.class" Required

The name of the main class file that starts and runs the applet. If the CODEBASE attribute is
not specified, the CODE attribute must include a path from the directory that stores the
HTML document loading the applet. You might get away with omitting the .class filename
extension, but don’t take any chances: be complete with the class name. Most servers are
case sensitive, so also match case of the actual class filename.

Example
<APPLET CODE="applets/ScriptableClock.class" WIDTH=400 HEIGHT=50>
</APPLET>

Value

Case-sensitive .class filename or complete path relative to the HTML document.

Default None.

Object Model Reference
IE [window.]document.applets[i].code

[window.]document.appletName.code

CODEBASE NN 2 IE 3 HTML 3.2

CODEBASE="path" Optional

Path to the directory holding the class file designated in either the CODE or ARCHIVE
attribute. The CODEBASE attribute does not name the class file, just the path. You can make
this attribute a complete URL to the directory, but don’t try to access a codebase outside of
the domain of the current document: security restrictions may prevent the class from
loading. A full path and filename can be set together in the CODE or OBJECT attribute, elimi-
nating the need for the CODEBASE attribute setting.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

190 <APPLET>
Example
<APPLET CODE="ScriptableClock.class" CODEBASE="applets/" WIDTH=400
HEIGHT=50>
</APPLET>

Value

Case-sensitive pathname, usually relative to the directory storing the current HTML
document.

Default None.

Object Model Reference
IE [window.]document.applets[i].codeBase

[window.]document.appletName.codeBase

DATAFLD, DATASRC
See the PARAM element for data binding to Java applets.

HEIGHT, WIDTH NN 2 IE 3 HTML 3.2

WIDTH="pixels" Required

HEIGHT="pixels"

The size that a Java applet occupies in a document is governed by the HEIGHT and WIDTH
attribute settings. Some browser versions might allow you to get away without assigning
these attributes, letting the applet’s own user interface design determine the height and
width of its visible rectangle. As with images, however, it is more efficient for the browser’s
rendering engine when you explicitly specify the object’s dimensions. Make a habit of
supplying these values for all applets, as you should for all images or other visible external
objects.

Example
<APPLET CODE="ScriptableClock.class" WIDTH=400 HEIGHT=50>
</APPLET>

Value

Positive integer pixel values (optionally quoted). You cannot entirely hide an applet by
setting values to zero, but you can reduce its height and width to one pixel in each dimen-
sion. If you want to hide an applet, do so with DHTML by setting its positioning display
attribute to none.

Default None.

Object Model Reference
IE [window.]document.applets[i].height

[window.]document.appletName.height
[window.]document.applets[i].width
[window.]document.appletName.width
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<APPLET> 191

HTM
L Reference
HSPACE, VSPACE NN 2 IE 3 HTML 3.2

HSPACE="pixels" Optional

VSPACE="pixels"

You can put some empty space (“air”) between an applet and any surrounding content by
assigning pixel values to the HSPACE and VSPACE attributes. The VSPACE attribute governs
space above and below the applet; the HSPACE attribute governs space to the left and right
of the applet. For browsers that are style sheet savvy, you are perhaps better served by
using the padding and/or margin style attributes to gain control down to individual sides, if
you so desire.

Example
<APPLET CODE="ScriptableClock.class" WIDTH=400 HEIGHT=50 HSPACE=3 VSPACE=4>
</APPLET>

Value Positive integer pixel values (optionally quoted).

Default 0

Object Model Reference
IE [window.]document.applets[i].hspace

[window.]document.appletName.hspace
[window.]document.applets[i].vspace
[window.]document.appletName.vspace

ID NN n/a IE 4 HTML 4

ID="elementIdentifier" Optional

A unique identifier that distinguishes this element from all the rest in the document. Can be
used to associate a single element with a style rule naming this attribute value as an ID
selector. An element can have an ID assigned for uniqueness as well as a class for inclu-
sion within a group. See Chapter 3.

If you assign an ID attribute and not a NAME attribute, the value of the ID attribute can be
used as the applet’s name in script reference forms that use the element name
(document.appletName).

Example
<APPLET ID="clocker" CODE="ScriptableClock.class" WIDTH=400 HEIGHT=50>
</APPLET>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.applets[i].id

[window.]document.appletName.id
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

192 <APPLET>
MAYSCRIPT NN 3 IE 4 HTML n/a

MAYSCRIPT Optional

Navigator 3 introduced a technology called LiveConnect, which allowed scripts to commu-
nicate with Java applets and vice versa. For security reasons, an applet’s communications
facilities with scripts must be explicitly switched on by the page author. By adding the
MAYSCRIPT attribute to the applet’s tag, an applet that is written to take advantage of the
document objects and scripts can address those items. In other words, the HTML is granting
the applet the ability to reach scripts in the document. This attribute is a simple switch:
when the attribute name is present, it is turned on.

One more step is required for an applet to communicate with JavaScript. The applet code
must import a special Netscape class called JSObject.class. This class file (and its companion
exception class) are built into the Java support in the Windows version of Internet Explorer
4. Although the execution is not perfect in IE 4, applets can perform basic communication
with scripts.

Example
<APPLET CODE="ScriptableClock.class" WIDTH=400 HEIGHT=50 MAYSCRIPT>
</APPLET>

Value

No value assigned to the attribute. The presence of the attribute name sets turns on applet-
to-script communication.

Default Off.

NAME NN 2 IE 3 HTML 3.2

NAME="elementIdentifier" Optional

If you are scripting an applet, it is usually more convenient to create a reference to the
applet by using a unique name you assign to the applet. Then, if you edit the page and
move or delete multiple applets on the page, you do not have to worry about adjusting
index values to array-style references. In IE 4, you have the option of omitting the NAME
attribute and using the ID attribute value in script references to the applet object.

Example
<APPLET NAME="clock2" CODE="ScriptableClock.class" WIDTH=400 HEIGHT=50>
</APPLET>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.applets[i].name

[window.]document.appletName.name
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<AREA> 193

HTM
L Reference
SRC NN n/a IE 4 HTML n/a

SRC="URL" Optional

Internet Explorer 4 defines this attribute as the URL for an “associated file.” This may be the
same as the ARCHIVE attribute defined in HTML and Navigator specifications. The SRC
attribute is not a substitute for the CODE and/or CODEBASE attributes.

Value A complete or relative URL.

Default None.

Object Model Reference
IE [window.]document.applets[i].src

[window.]document.appletName.src

VSPACE
See HSPACE.

WIDTH
See HEIGHT.

<AREA> NN all IE all HTML 3.2

<AREA> End Tag: Forbidden

A MAP element defines a client-side image map that is ultimately associated with an image
or other object that occupies space on the page. The only job of the MAP element is to
assign a name and a tag context for one or more AREA element definitions. Each AREA
element defines how the page should respond to user interaction with a specific geograph-
ical region of the image or other object.

A client-side image map area can act like an A element link in that an area can link to a
destination or javascript: pseudo-URL and assign another frame or window as the target
for loading a new document. In fact, in the scripting document object model, an AREA
element is referenced as a link. It is not uncommon to use client-side area maps in a navi-
gation bar occupying a slender frame of a frameset. This allows an artist to be creative with
a menu design, while giving the page author the power to turn any segment of a larger
image into a special-purpose link.

Example
<MAP NAME="nav">
<AREA COORDS="20,30,120,70" HREF="contents.html" TARGET="display">
</MAP>

Object Model Reference
NN [window.]document.links[i]

IE [window.]document.links[i]
[window.]document.all.elementID
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

194 <AREA>
Attributes

Event Handler Attributes

ACCESSKEY NN n/a IE n/a HTML 4

ACCESSKEY="character" Optional

A single character key that follows the link associated with the image hotspot. The browser
and operating system determine if the user must press a modifier key (e.g., Ctrl, Alt, or
Command) with the access key to activate the link.

Example
<AREA COORDS="20,30,120,70" HREF="contents.html" TARGET="display"
ACCESSKEY="t">

Value Single character of the document set.

Default None.

ALT NN n/a IE 3 HTML 3.2

ALT="textMessage" Required

Nongraphical browsers can use the ALT attribute setting to display a brief description of the
meaning of the (invisible) image’s hotspots. At one time, it was thought that the ALT
message might by default be displayed in the browser’s status bar when the area had focus
or the cursor rolled over the area. That function is now typically performed by onMouse-
Over event handlers and scripts. Keep in mind that recent handheld computers usually
have nongraphical browsers (or allow graphics to be turned off for improved perfor-
mance). Don’t ignore the graphically impaired.

ACCESSKEY DIR LANG NOHREF TABINDEX
ALT HREF LANGUAGE SHAPE TARGET
CLASS ID NAME STYLE TITLE
COORDS

Handler NN IE HTML
onBlur n/a 4 4
onClick 4 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onFocus n/a 4 4
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut 3 4 4
onMouseOver 3 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<AREA> 195

HTM
L Reference
Example
<AREA COORDS="20,30,120,70" HREF="contents.html" TARGET="display"
ALT="Table of Contents">

Value Any quoted string of characters.

Default None.

Object Model Reference
IE [window.]document.all.elementID.alt

COORDS NN all IE all HTML 3.2

COORDS="coord1, ... coordN" Optional

Although the formal W3C definition for the COORDS attribute of an AREA element states that
the attribute is optional, that doesn’t mean that you can omit this attribute and expect an
AREA to behave as it should. The COORDS attribute lets you define the outline of the area to
be associated with a particular link or scripted action. Some third-party authoring tools can
assist in determining the coordinate points for a hot area. You can also load the image into
a graphics program that displays the cursor position in real time and then transfer those
values to the COORDS attribute values.

Coordinate values are entered as a comma-delimited list. If two areas overlap, the area that
is defined earlier in the HTML code takes precedence.

Example
<AREA COORDS="20,30,120,70" HREF="contents.html" TARGET="display">

Value

Each coordinate is a length value, but the number of coordinates and their order depend on
the shape specified by the SHAPE attribute, which may optionally be associated with the
element. For SHAPE="rect", there are four coordinates (left, top, right, bottom); for
SHAPE="circle", there are three coordinates (center-x, center-y, radius); for
SHAPE="poly", there are two coordinate values for each point that defines the shape of the
polygon (x1, y1, x2, y2, x3, y3,...xN, yN).

Default None.

Object Model Reference
IE [window.]document.all.elementID.coords

HREF NN all IE all HTML 3.2

HREF="URI" Required

The URI of the destination of a link associated with the area. In a browser, when the URI is
an HTML document, the document is loaded into the current (default) or other window
target (as defined by the TARGET attribute). For some other file types, the browser may load
the destination content into a plugin or save the destination file on the client machine.
Because Navigator (through Version 4) treats AREA elements as A elements, the HREF
attribute must be defined in the AREA element for Navigator scripts to access various prop-
erties about the URL and for event handlers (such as onMouseOver) to work.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

196 <AREA>
Example
<AREA COORDS="20,30,120,70" HREF="contents.html" TARGET="display">

Value

Any valid URI, including complete and relative URLs, anchors on the same page (anchor
names prefaced with the # symbol), and the javascript: pseudo-URL in scriptable
browsers to trigger a script statement rather than navigate to a destination.

Default None.

Object Model Reference
IE [window.]document.links[i].href

[window.]document.all.elementID.href

NN [window.]document.links[i].href

In both browsers, other link object properties allow for the extraction of components of the
URL, such as protocol and hostname. See the Link object in Chapter 9.

NAME NN n/a IE n/a HTML 4

NAME="elementIdentifier" Optional

This attribute is included in the HTML 4.0 specification for consistency with other elements.
Although NAME attributes are used for identifying form elements upon submission and for
scripting references, the browsers through Version 4 do not support this attribute. (IE 4 uses
the ID attribute to assign a name to an AREA element for scripted references.) This attribute
may become active in future browsers.

Value Case-sensitive identifier.

Default None.

NOHREF NN all IE all HTML 3.2

NOHREF Optional

Tells the browser that the area defined by the coordinates has no link associated with it (as
does just not including any HREF attribute). When you include this attribute, scriptable
browsers no longer treat the element as a link. As implemented in both Navigator and
Internet Explorer, when an AREA element lacks an HREF attribute, the element no longer
responds to user events. In IE 4, you can turn this attribute on and off from a script by
setting the property to true or false.

Example <AREA "COORDS="20,30,120,70" NOHREF>

Value The presence of this attribute sets its value to true.

Default false

Object Model Reference
IE [window.]document.all.elementID.noHref
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<AREA> 197

HTM
L Reference
SHAPE NN all IE all HTML 3.2

SHAPE="shape" Optional

Defines the shape of the client-side area map whose coordinates are specified with the
COORDS attribute. The SHAPE attribute tells the browser how many coordinates to expect.

Example
<AREA SHAPE="poly" "COORDS="20,20,20,70,65,45" HREF="contents.html"
TARGET="display">

Value

Case-insensitive shape constant. Each implementation defines its own set of shape names
and equivalents, but there are common denominators across browsers (circle, rect,
poly, and polygon).

Default rect

Object Model Reference
IE [window.]document.all.elementID.shape

TABINDEX NN n/a IE 4 HTML 4

TABINDEX=integer Optional

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their TABINDEX attributes are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest TABINDEX value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same TABINDEX values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the TABINDEX attribute or have the value set to zero. These elements receive focus in the
order in which they appear in the document. Because an AREA element cannot be disabled,
it always receives focus in turn, except for special handling in IE 4. Typically, an AREA
element wired as a link can be triggered with a press of the spacebar once the element has
focus.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text input fields. Image map areas cannot be tabbed to on the Mac version of IE 4.

Example
<AREA COORDS="20,30,120,70" HREF="contents.html" TARGET="display"
TABINDEX=3>

Shape Name NN IE HTML
circ - • -
circle • • •
poly • • •
polygon • • -
rect • • •
rectangle - • -
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

198 <AREA>
Value

Any integer from 0 through 32767. In IE 4, setting the TABINDEX to -1 causes the element
to be skipped in tabbing order altogether.

Default None.

Object Model Reference
IE [window.]document.all.elementID.tabIndex

TARGET NN all IE all HTML 3.2

TARGET="windowOrFrameName" Optional

If the destination document is to be loaded into a window or frame other than the current
window or frame, you can specify where the destination document should load by
assigning a window or frame name to the TARGET attribute. Target frame names must be
assigned to frames and windows as identifiers. Assign names to frames via the NAME
attribute of the FRAME element; assign names to new windows via the second parameter of
the window.open() scripting method. If you omit this attribute, the destination document
replaces the document containing the link. This attribute is applicable only when a value is
assigned to the HREF attribute of the element.

An AREA element can have only one destination document and one target. If you want a
link to change the content of multiple frames, you can use an AREA element’s onClick
event handler (check Chapter 9 for supported browser versions) or a javascript:
pseudo-URL to fire a script that loads multiple documents. Set the location.href prop-
erty of each frame to the desired URL.

Example
<AREA COORDS="20,30,120,70" HREF="contents.html" TARGET="display">
<AREA COORDS="140,30,180,70" HREF="index.html" TARGET="_top">

Value

Case-sensitive identifier when the frame or window name has been assigned via the target
element’s NAME attribute. Four reserved target names act as constants:

_blank Browser creates a new window for the destination document.

_parent Destination document replaces the current frame’s framesetting document (if
one exists; otherwise, it is treated as _self).

_self Destination document replaces the current document in its window or frame.

_top Destination document is to occupy the entire browser window, replacing any
and all framesets that may be loaded (also treated as _self if there are no
framesets defined in the window).

Default _self

Object Model Reference
IE [window.]document.links[i].target

[window.]document.all.elementID.target

NN [window.]document.links[i].target
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 199

HTM
L Reference
 NN all IE all HTML all

... End Tag: Required

The B element—one of several font style elements in HTML 4—renders its content in a
boldface version of the font face governing the next outermost HTML container. You can
nest multiple font style elements to create combined styles, such as bold italic (<I>
bold-italic text</I>).

It is up to the browser to fatten boldface display by calculating the character weight or by
perhaps loading a bold version of the currently specified font. If you are striving for font
perfection, it is best to use style sheets (and perhaps downloadable fonts) to specify a true
bold font face, rather than risk the browser’s extrapolation of a boldface from a system font.
The font-weight style attribute provides quite granular control over the degree of bold
applied to text if the font face supports such fine-tuning.

You can take advantage of the containerness of this element by assigning style sheet rules
to some or all B elements in a page. For example, you may wish all B elements to be in a
red color. By assigning the style rule B {color:red}, you can do it to all elements with
only a tiny bit of code.

Although this element is not deprecated in HTML 4, it would not be surprising to see it lose
favor to style sheets in the future.

Example <P>This product is new and improved!</P>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

200 <BASE>
<BASE> NN all IE all HTML all

<BASE> End Tag: Forbidden

A BASE element is defined inside a document’s HEAD element to instruct the browser about
the URL path to the current document. This path is then used as the basis for all relative
URLs used to specify various SRC and HREF attributes in the document. The BASE element’s
URL should be a complete URL, including the document name. The browser calculates the
base URL path to the directory holding that document. For example, if you specify <BASE
HREF="http://www.megacorp.com/products/index.html">, the HREF attribute of a
link on that page to widgets/framitz801.html resolves to the full URL of http://www.mega-
corp.com/products/widgets/framitz801.html. Similarly, a relative URL can walk up the
hierarchy with the dot syntax. For example, from the BASE element defined earlier, an IMG
element in the index.html page might be set for SRC="../images/logo.jpg". That refer-
ence resolves to http://www.megacorp.com/images/logo.jpg.

By and large, today’s browsers automatically calculate the base URL of the currently loaded
document, thus allowing use of relative URLs without specifying a BASE element. This is
especially helpful when you are developing pages locally and don’t want to change the
BASE element settings when you deploy the pages. The HTML 4.0 specification states that a
document lacking a BASE element should by default use the current document’s URL as the
BASE URL. Of course, this is only for true web pages, rather than HTML-enhanced docu-
ments such as email messages, which have no default BASE URL.

You can also use the BASE element to define a default target for any link-type element in
the document. Therefore, if all links are supposed to load documents into another frame,
you can specify this target frame once in the BASE tag and not worry about TARGET
attributes elsewhere in the document. If you wish to override the default for a single link,
you may do so by specifying the TARGET attribute for that element.

Example
<HEAD>
<BASE HREF="http://www.megacorp.com/index.html" TARGET="_top">
</HEAD>

Object Model Reference
IE [window.]document.all.elementID

Attributes

HREF NN all IE all HTML all

HREF="URL" Optional

The HREF attribute is a URL of a document whose server path is to be used as the base URL
for all relative references in the document. This is typically the URL of the current docu-
ment, but it can be set to another path if it makes sense to your document organization and
directory structure.

Example <BASE HREF="http://www.megacorp.com/products/index.html">

Value This should be a full and absolute URL to a document.

Default Current document pathname.

HREF TARGET
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<BASEFONT> 201

HTM
L Reference
Object Model Reference
IE [window.]document.all.tags("base")[0].href

TARGET NN all IE all HTML 4

TARGET="windowOrFrameName" Optional

If all or most links and area maps on a page load documents into a separate window or
frame, you can set the TARGET attribute of the BASE element to take care of targeting for all
of those elements. You can set the TARGET attribute without setting the HREF attribute if
you want to set only the base target reference.

Example <BASE TARGET="rightFrame">

Value

Case-sensitive identifier when the frame or window name has been assigned via the target
element’s NAME attribute. Four reserved target names act as constants:

_blank Browser creates a new window for the destination document.

_parent Destination document replaces the current frame’s framesetting document (if
one exists; otherwise, it is treated as _self).

_self Destination document replaces the current document in its window or frame.

_top Destination document is to occupy the entire browser window, replacing any
and all framesets that may be loaded (also treated as _self if there are no
framesets defined in the window).

Default _self

Object Model Reference
IE [window.]document.all.tags("base")[0].target

<BASEFONT> NN all IE all HTML 3.2

<BASEFONT> End Tag: Forbidden

A BASEFONT element advises the browser of some font information to be used as the basis
for text rendering of the current page below the BASEFONT element. You can apply this
element in either the HEAD or BODY portion of the document (although Microsoft recom-
mends in the BODY only for IE 4), and you can insert BASEFONT elements as often as is
needed to set the base font for a portion of the document. Be aware that settings of the
BASEFONT element do not necessarily apply to content in tables. If you want table content
to resemble a custom BASEFONT setting, you likely have to set the font styles to table
elements separately.

The BASEFONT element overrides the default font settings in the browser’s user preferences
settings. Like most font-related elements, the BASEFONT element is deprecated in HTML 4.0
in favor of style sheets. The latter provide much greater control over fonts (see Chapter 10).

Example <BASEFONT FACE="Times, serif" SIZE=4>

Attributes
CLASS DIR ID NAME STYLE
COLOR FACE LANG SIZE TITLE
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

202 <BASEFONT>
COLOR NN n/a IE 3 HTML 4

COLOR="colorTripletOrName" Optional

Sets the font color of all text below the BASEFONT element. Even though the attribute made
its HTML recommendation debut in Version 4.0, the attribute is nonetheless deprecated.

Example <BASEFONT COLOR="Olive">

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default Browser default.

Object Model Reference
IE [window.] document.all.tags("basefont")[i].color

FACE NN n/a IE 4 HTML 4

FACE="fontFaceName1[, ... fontFaceNameN]" Optional

You can assign a hierarchy of font faces to use for the default font of a section headed by a
BASEFONT element. The browser looks for the first font face in the comma-delimited list of
font face names until it either finds a match in the client system or runs out of choices, at
which point the browser default font face is used. Font face names must match the system
font face names exactly. If you use this attribute (instead of the preferred style sheet
attribute), you can always suggest a generic font face (serif, sans-serif) as the final
choice.

In IE 3, this attribute was called the NAME attribute.

Example <BASEFONT FACE="Bookman, Times Roman, serif">

Value

One or more font face names, including the recognized generic faces: serif | sans-serif
| cursive | fantasy | monospace.

Default Browser default.

Object Model Reference
IE [window.] document.all.tags("basefont")[i].face

NAME NN n/a IE 3 HTML n/a

NAME="fontFaceName" Optional

This was IE 3’s version of what is today the FACE attribute. It accepts a single font face as a
value. The NAME attribute is no longer used.

Value A single font face name.

Default Browser default.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<BGSOUND> 203

HTM
L Reference
SIZE NN all IE all HTML 3.2

SIZE="integerOrRelativeSize" Optional

Font sizes referenced by the SIZE attribute are on a relative size scale that is not tied to any
one point size across operating system platforms. The default browser font size is 3. The
range of acceptable values for the SIZE attribute are integers from 1 to 7 inclusive. The
exact point size varies with the operating system and browser design.

Users can often adjust the default font size in preferences settings. The SIZE attribute over-
rides that setting. Moreover, SIZE values can be relative to whatever font size is set in the
preferences. By preceding an attribute value with a + or - sign, the browser’s default size
can be adjusted upward or downward, but always within the range of 1 through 7.

Example
<BASEFONT SIZE=4>
<BASEFONT SIZE="+3">

Value

Either an integer (quoted or not quoted) or a quoted relative value, consisting of a + or -
symbol and an integer value.

Default 3

Object Model Reference
IE [window.] document.all.tags("basefont")[i].size

<BDO> NN n/a IE n/a HTML 4

<BDO>...</BDO> End Tag: Required

The name of the BDO element stands for bidirectional override. The LANG and DIR attributes
of most elements are designed to take care of most situations involving the mixture of
writing systems that compose text in opposite directions. The BDO element is designed to
assist in instances when due to various conversions during text processing, the normal bidi-
rectional algorithms must be explicitly overridden. Because this element is not yet
implemented in browsers, it is detailed here for informational purposes only.

Example <BDO dir="ltr">someMixedScriptTextHere</BDO>

Attributes

<BGSOUND> NN n/a IE 3 HTML n/a

<BGSOUND> End Tag: Optional

This Internet Explorer-only attribute lets you define a sound file that is to play in the back-
ground while the user visits the page. The element is allowed only inside the HEAD element.
Several attributes were added for Version 4. With scripting, you can control the volume and
how many times the sound track plays even after the sound file loads. Although an end tag

CLASS ID LANG STYLE TITLE
DIR
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

204 <BGSOUND>
is optional, there is no need for it because all specifications for the sound are maintained by
attributes in the start tag.

If you are going to use this tag, I strongly recommend making the playing of a background
sound a user-selectable choice that is turned off by default. In office environments, it can be
startling (if not embarrassing) to have background music or sounds unexpectedly emanate
from a computer. Also be aware that there is likely to be some delay in the start of the
music due to download time.

Example <BGSOUND SRC="tunes/mazeppa.mid">

Object Model Reference
IE [window.]document.all.elementID

Attributes

BALANCE NN n/a IE 4 HTML n/a

BALANCE="signedInteger" Optional

A value that directs how the audio is divided between the left and right speakers. Once this
attribute value is set in the element, its value cannot be changed by script control.

Example <BGSOUND SRC="tunes/mazeppa.mid" BALANCE="+2500">

Value

A signed integer between -10,000 and +10,000. A value of 0 is equally balanced on both
sides. A negative value gives a relative boost to the left side; a positive value boosts the
right side.

Default 0

Object Model Reference
IE [window.] document.all.tags("bgsound")[0].balance

LOOP NN n/a IE 3 HTML n/a

LOOP=integer Optional

Defines the number of times the sound plays. If the attribute is absent or is present with
any value other than -1, the sound plays at least once. Assigning a value of -1 means that
the sound plays until the page is unloaded. Contrary to Microsoft’s Internet Explorer SDK
information, there does not appear to be a way to precache the sound without having it
start playing.

Example <BGSOUND SRC="tunes/mazeppa.mid" LOOP=3>

Value

No value assignment necessary for a single play. A value of 0 still causes a single play.
Values above zero play the sound the specified number of times. Assign -1 to have the
sound play indefinitely.

BALANCE ID LOOP TITLE VOLUME
CLASS LANG SRC
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<BIG> 205

HTM
L Reference
Default -1

Object Model Reference
IE [window.] document.all.tags("bgsound")[0].loop

SRC NN n/a IE 3 HTML n/a

SRC="URL" Optional

A URL that points to the sound file to be played. The type of sound file that can be played
is limited only by the audio facilities of the browser. Common audio formats, including
MIDI, are supported in Internet Explorer without further plugin installation.

Example <BGSOUND SRC="tunes/beethoven.mid">

Value

Any valid URL, including complete and relative URLs. The file must be in a MIME type
supported by Internet Explorer or a plugin.

Default None.

Object Model Reference
IE [window.] document.all.tags("bgsound")[0].src

VOLUME NN n/a IE 4 HTML n/a

VOLUME="signedInteger" Optional

An integer that defines how loud the background sound plays relative to the maximum
sound output level as adjusted by user preferences in the client computer. Maximum
volume—a setting of zero—is only as loud as the user has set in the Sound control panel.
Attribute adjustments are negative values as low as -10,000 (although most users lose the
sound at a value much higher than -10,000).

Example <BGSOUND SRC="tunes/beethoven.mid" VOLUME="-500">

Value A signed integer value between -10,000 and 0.

Default 0

Object Model Reference
IE [window.] document.all.tags("bgsound")[0].volume

<BIG> NN all IE all HTML 3.2

<BIG>...</BIG> End Tag: Required

The BIG element—one of several font style elements in HTML 4—renders its content in the
next font size (in HTML’s 1 through 7 scale) larger than the previous body font size. If you
nest BIG elements, the effects on the more nested elements are cumulative, with each
nested level rendered one size larger than the next outer element. Default font size is
dependent upon the browser, operating system, and user preferences settings. For more
precise font size rendering, use style sheet rules.

Example <P>This product is <BIG>new</BIG> and <BIG>improved</BIG>!</P>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

206 <BLOCKQUOTE>
Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

<BLINK> NN all IE n/a HTML n/a

<BLINK>...</BLINK> End Tag: Required

The BLINK element is Marc Andreessen’s contribution to horrifying web pages. All content
of the element flashes on and off uncontrollably in a distracting manner. The more content
you place inside the element, the more difficult it is to read between the flashes. Please
don’t use this tag. I beg you. This element does not have any attributes or event handlers.

Example <BLINK>I dare you to read this...and not look at it.</BLINK>

<BLOCKQUOTE> NN all IE all HTML all

<BLOCKQUOTE>...</BLOCKQUOTE> End Tag: Required

The BLOCKQUOTE element is intended to set off a long quote inside a document. Tradition-
ally, the BLOCKQUOTE element has been rendered as an indented block, with wider left and
right margins (about 40 pixels each), plus some extra whitespace above and below the
block. Browsers will likely continue this type of rendering, although you are encouraged to
use style sheets to create such displays (with or without the BLOCKQUOTE element). For
inline quotations, see the Q element.

Example
<BLOCKQUOTE>Four score and seven years ago...
shall not perish from the earth</BLOCKQUOTE>

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<BODY> 207

HTM
L Reference
Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

CITE NN n/a IE n/a HTML 4

CITE="URL" Optional

A URL pointing to an online source document from which the quotation is taken. This is
not in any way a mechanism for copying or extracting content from another document.
Presumably, this HTML 4.0 recommendation is to encourage future browsers and search
engines to utilize a reference to online source material for the benefit of readers and surfers.

Value

Any valid URL to a document on the World Wide Web, including absolute or relative URLs.

Default None.

<BODY> NN all IE all HTML all

<BODY>...</BODY> End Tag: Optional

After all of the prefatory material in the HEAD portion of an HTML file, the BODY element
contains the genuine content of the page that the user sees in the browser window (or may
hear when browsers know how to speak to users). Before style sheets, the BODY element
was the place where page authors could specify document-wide color and background
schemes. A great many favorite attributes covering these properties are deprecated in HTML
4, in favor of style sheet rules that may be applied to the BODY element. Support for all
these attributes, however, will remain in Navigator and Internet Explorer for years to come.

The BODY element is also where window object event handlers are placed. For example, a
window object as defined in most document object models has an onLoad event handler

CITE DIR LANG STYLE TITLE
CLASS ID LANGUAGE

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

208 <BODY>
that fires when a document has finished loading into the current window or frame.
Assigning that event handler as an element attribute is done in the BODY element.

Although it may appear from a variety of implications that the BODY element is the docu-
ment object, this is not entirely true. The document object has additional properties (such
as the document.title) that are defined outside of the BODY element in an HTML docu-
ment. Also, most browsers don’t quibble when you omit either or both the start and end
tags. But if you are debugging a page, it’s helpful to see the end tags for the BODY and HTML
elements when viewing the source to verify that the page has fully loaded into the browser.

Example
<BODY BACKGROUND="watermark.jpg" onLoad="init()">
...
</BODY>

Object Model Reference
NN [window.]document

IE [window.]document.body

Attributes

Event Handler Attributes

ALINK BOTTOMMARGIN LANG RIGHTMARGIN TITLE
BACKGROUND CLASS LANGUAGE SCROLL TOPMARGIN
BGCOLOR DIR LEFTMARGIN STYLE VLINK
BGPROPERTIES ID LINK TEXT

Handler NN IE HTML
onAfterUpdate n/a 4 n/a
onBeforeUnload n/a 4 n/a
onBeforeUpdate n/a 4 n/a
onBlur 3 4 n/a
onClick n/a 4 4
onDblClick n/a 4 4
onDragDrop 4 n/a n/a
onFocus 3 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onLoad 2 3 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 3 4
onMouseUp n/a 4 4
onMove 4 n/a n/a
onResize 4 n/a n/a
onRowEnter n/a 4 n/a
onRowExit n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<BODY> 209

HTM
L Reference
ALINK NN all IE all HTML 3.2

ALINK="colorTripletOrName" Optional

Establishes the color of a hypertext link when it is activated (being clicked on) by the user.
This is one of three states for a link: unvisited, active, and visited. The color is applied to
the link text or border around an image or object embedded within an A element. This
attribute is deprecated in favor of the BODY:active {color:} style sheet rule (and the
future :active pseudo-class, as described in Chapter 10).

Example <BODY ALINK="#FF0000">...</BODY>

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default #FF0000 (in Navigator 4); #000000 (in IE 4).

Object Model Reference
NN [window.]document.alinkColor

IE [window.]document.alinkColor
[window.]document.body.aLink

BACKGROUND NN all IE all HTML 3.2

BACKGROUND="URL" Optional

Specifies an image file that is used as a backdrop to the text and other content of the page.
Unlike normal images that get loaded into browser content, a background image loads in its
original size (without scaling) and tiles to fill the available document space in the browser
window or frame. Smaller images usually download faster but are obviously repeated more
often in the background. Animated GIFs are also allowable but very distracting to the
reader. When selecting a background image, be sure it is very muted in comparison to the
main content so that the content stands out clearly. Background images, if used at all,
should be extremely subtle.

This attribute is deprecated in HTML 4.0 in favor of the background style attribute.

Example <BODY BACKGROUND="watermark.jpg">...</BODY>

Value Any valid URL to an image file, including complete and relative URLs.

Default None.

Object Model Reference
IE [window.]document.body.background

onScroll n/a 4 n/a
onSelect n/a 4 n/a
onSelectStart n/a 4 n/a
onUnload 2 3 4

Handler NN IE HTML
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

210 <BODY>
BGCOLOR NN all IE all HTML 3.2

BGCOLOR="colorTripletOrName" Optional

Establishes a fill color (behind the text and other content) for the entire document. If you
combine a BGCOLOR and BACKGROUND, any transparent areas of the background image let
the background color show through. This attribute is deprecated in HTML 4.0 in favor of
the background-color style attribute.

Example <BODY BGCOLOR="tan">...</BODY>

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with browser, browser version, and operating system.

Object Model Reference
NN [window.]document.bgColor

IE [window.]document.bgColor
[window.]document.body.bgColor

BGPROPERTIES NN n/a IE 3 HTML n/a

BGPROPERTIES="property" Optional

An Internet Explorer attribute that lets you define whether the background image (set with
the BACKGROUND attribute or style sheet) remains in a fixed position or scrolls as a user
scrolls the page. This can provide both intriguing and odd effects for the user. When the
background image is set to remain in a fixed position, scrolled content flows past the back-
ground image very much like film credits roll past a background image on the screen.

Example <BODY BACKGROUND="watermark.jpg" BGPROPERTIES="fixed">...</BODY>

Value

If set to "fixed", the image does not scroll. Omit the attribute or set it to an empty string
("") to let the image scroll with the content.

Default None.

Object Model Reference
IE [window.]document.body.bgProperties

BOTTOMMARGIN NN n/a IE 4 HTML n/a

BOTTOMMARGIN="integer" Optional

Establishes the amount of blank space between the very end of the content and the bottom
of a scrollable page. The setting has no visual effect if the length of the content or size of
the window does not cause the window to scroll. The default value is for the end of the
content to be flush with the end of the document, but in the Macintosh version of Internet
Explorer 4, there is about a 10-pixel margin visible even when the attribute is set to zero.
Larger sizes are reflected properly. This attribute offers somewhat of a shortcut to setting the
margin-bottom style sheet attribute for the BODY element.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<BODY> 211

HTM
L Reference
Example <BODY BOTTOMMARGIN="20">...</BODY>

Value

A string value of the number of pixels of clear space at the bottom of the document. A
value of an empty string is the same as zero.

Default 0

Object Model Reference
IE [window.]document.body.bottomMargin

LEFTMARGIN NN n/a IE 3 HTML n/a

LEFTMARGIN="integer" Optional

Establishes the amount of blank space between the left edge of the content area of a
window and the left edge of the content. This attribute offers somewhat of a shortcut to
setting the margin-left style sheet attribute for the BODY element. As the outermost parent
container in the element hierarchy, this attribute setting fixes the left margin context for all
nested elements in the document.

Example <BODY LEFTMARGIN="25">...</BODY>

Value

A string value of the number of pixels of clear space at the left margin of the document. A
value of an empty string is the same as zero.

Default 10 (Windows); 8 (Macintosh).

Object Model Reference
IE [window.]document.body.leftMargin

LINK NN all IE all HTML 3.2

LINK="colorTripletOrName" Optional

Establishes the color of a hypertext link that has not been visited (i.e., the URL of the link is
not in the browser’s cache). This is one of three states for a link: unvisited, activate, and
visited. The color is applied to the link text or border around an image or object embedded
within an A element. This attribute is deprecated in favor of the BODY:link {color:} style
sheet rule (and the future :link pseudo-class, as described in Chapter 10).

Example <BODY LINK="#00FF00">...</BODY>

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default #0000FF

Object Model Reference
NN [window.]document.linkColor
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

212 <BODY>
IE [window.]document.linkColor
[window.]document.body.link

RIGHTMARGIN NN n/a IE 4 HTML n/a

RIGHTMARGIN="integer" Optional

Establishes the amount of blank space between the right edge of the content area of a
window and the right edge of the content. This attribute offers somewhat of a shortcut to
setting the margin-right style sheet attribute for the BODY element. As the outermost
parent container in the element hierarchy, this attribute setting fixes the right margin context
for all nested elements in the document. Be aware that IE on the Mac does not let content
come as close to the right edge of the window as the Windows version.

Example <BODY RIGHTMARGIN="25">... </BODY>

Value

A string value of the number of pixels of clear space at the right margin of the document. A
value of an empty string is the same as zero.

Default 10 (Windows); 0 (Macintosh).

Object Model Reference
IE [window.]document.body.rightMargin

SCROLL NN n/a IE 4 HTML

SCROLL=yes | no Optional

Controls the presence of scrollbars when the content space exceeds the size of the current
window. Without scrollbars, if you want your users to move around the page, you have to
provide some scripted method of adjusting the scroll of the window. Be aware that Internet
Explorer 4 for the Mac always shows scrollbars when the document is too large for the
window, even when the SCROLL attribute is set to no.

Example <BODY SCROLL=NO>...</BODY>

Value Constant values yes or no (case insensitive).

Default yes

Object Model Reference
IE [window.]document.body.scroll

TEXT NN all IE all HTML 3.2

TEXT="colorTripletOrName" Optional

Establishes the color of body content in the document. Colors of individual elements within
the document can override the document-wide setting. Because the default background
color of browsers varies widely with browser brand, version, and operating system, it is
advisable to set the BGCOLOR attribute (or equivalent style sheet rule) in concert with the
document’s text color. This attribute is deprecated in favor of the{color:} style sheet rule.

Example <BODY BGCOLOR="#FFFFFF" TEXT="#c0c0c0">...</BODY>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<BODY> 213

HTM
L Reference
Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default #000000 (black).

Object Model Reference
NN [window.]document.fgColor

IE [window.]document.fgColor
[window.]document.body.text

TOPMARGIN NN n/a IE 3 HTML n/a

TOPMARGIN="integer" Optional

Establishes the amount of blank space between the top edge of the content area of a
window and the top edge of the content. This attribute offers somewhat of a shortcut to
setting the margin-top style sheet attribute for the BODY element. As the outermost parent
container in the element hierarchy, this attribute setting fixes the top margin context for all
nested elements in the document. On both Windows and Macintosh versions, setting the
TOPMARGIN attribute to zero or an empty string ("") pushes the content to the very top of
the document content region.

Example <BODY TOPMARGIN="0">... </BODY>

Value

A string value of the number of pixels of clear space at the top of the document. A value of
an empty string is the same as zero.

Default 15 (Windows); 8 (Macintosh).

Object Model Reference
IE [window.]document.body.topMargin

VLINK NN all IE all HTML 3.2

VLINK="colorTripletOrName" Optional

Establishes the color of a hypertext link after it has been visited by a user (and the destina-
tion page is still in the browser’s cache). This is one of three states for a link: unvisited,
active, and visited. The color is applied to the link text or border around an image or object
embedded within an A element. This attribute is deprecated in favor of the BODY:visited
{color:} style sheet rule (and the future :visited pseudo-class, as described in
Chapter 10).

Example <BODY VLINK="#teal">...</BODY>

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

214

Default

#551a8b (Navigator 4); #800080 (Internet Explorer 4 Windows); #006010 (Internet
Explorer 4 Macintosh).

Object Model Reference
NN [window.]document.vlinkColor

IE [window.]document.vlinkColor
[window.]document.body.vLink

 NN all IE all HTML all

 End Tag: Forbidden

The BR element forces a visible line break (carriage return and line feed) wherever its tag
appears in the document. Browsers tend to honor the BR element as a genuine line break,
whereas paragraphs defined by the P element are given more vertical space between
elements on the page. If the text containing the BR element is wrapped around a floating
image or other object, you can direct the next line (via the CLEAR attribute or style sheet
equivalent) to start below the object, rather than on the next line of the wrapped text.

Example <P>I think that I shall never see
A poem lovely as a tree.</P>

Object Model Reference
IE [window.]document.all.elementID

Attributes

CLEAR NN all IE all HTML 3.2

CLEAR="constant" Optional

The CLEAR attribute tells the browser how to treat the next line of text following a BR
element if the current text is wrapping around a floating image or other object. The value
you use depends on the side of the page to which one or more inline images are pegged
and how you want the next line of text to be placed in relation to those images.

This attribute is deprecated in HTML 4.0 in favor of the BR {clear:setting} style sheet
rule in CSS2.

Example <BR CLEAR="left">

Value

Navigator and Internet Explorer accept three constants: all | left | right. HTML 4.0
includes what should be the default value: none. This value is listed in IE 3 documentation,
but not for IE 4. You can set the property to none and it either responds to the value or
ignores it (yielding the same results).

Default None.

CLASS ID LANGUAGE STYLE TITLE
CLEAR
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<BUTTON> 215

HTM
L Reference
Object Model Reference
IE [window.]document.all.elementID.clear

<BUTTON> NN n/a IE 4 HTML 4

<BUTTON>...</BUTTON> End Tag: Required

The BUTTON element is patterned after the INPUT element (of types button, submit, and
reset) but carries some extra powers, particularly when used as a submit-type button.
Content for the button’s label goes between the element’s start and end tags, rather than
being assigned as an attribute. Other elements can be used to generate the label content,
including an IMG element if so desired (although client-side image maps of such images are
strongly discouraged by the W3C). Although you can assign a style sheet to a BUTTON
element, you can also wrap the label content inside an element (such as a SPAN) and assign
or override style rules just for that content. Both style sheet mechanisms permit the button
label to use custom fonts and styles.

When a BUTTON element is assigned a TYPE of submit, the browser submits the button’s
NAME and VALUE attributes to the server as a name/value pair, like other form elements. No
special form handling is conveyed by a BUTTON when other types are specified.

In theory, a BUTTON element should be embedded within a FORM element. In practice, IE 4
has no problem rendering a free-standing BUTTON element. This might be acceptable when
no related form elements (such as text boxes) need to be referenced by scripts associated
with the button. Some scripting shortcuts (passing form object references as parameters)
simplify the scripted interactivity between form elements.

The W3C implemented this INPUT element variant to offer browser makers a chance to
create a different, richer-looking button. In practice, in IE 4, both button types have very
similar appearance. You can detect a slight difference, however, between the INPUT and
BUTTON rendering on the Mac version of IE 4: with a BUTTON element, the browser draws
more whitespace around the label text for a more pleasing appearance.

Example
<BUTTON TYPE="button" onClick="doSomething()">Click Here</BUTTON>
<BUTTON TYPE="submit" NAME="Type" VALUE="infoOnly">Request Info</BUTTON>
<BUTTON TYPE="reset"></BUTTON>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

ACCESSKEY DATAFORMATAS ID NAME TITLE
CLASS DATASRC LANG STYLE TYPE
DATAFLD DISABLED LANGUAGE TABINDEX VALUE

Handler NN IE HTML
onAfterUpdate n/a 4 n/a
onBeforeUpdate n/a 4 n/a
onBlur n/a 4 4
onClick n/a 4 4
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

216 <BUTTON>
ACCESSKEY NN n/a IE 4 HTML 4

ACCESSKEY="character" Optional

A single character key that specifies the keyboard shortcut to effect a click of the button.
The browser and operating system determine if the user must press a modifier key (e.g.,
Ctrl, Alt, or Command) with the access key to “click” the button. In IE 4/Windows, the Alt
key is required, and the key is not case sensitive. This attribute does not work in IE 4/Mac.

Example
<BUTTON TYPE="button" ACCESSKEY=t onClick="goToContents()">
Table of Contents
</BUTTON>

Value Single character of the document set.

Default None.

Object Model Reference
IE [window.]document.all.elementID.accessKey

DATAFLD NN n/a IE 4 HTML n/a

DATAFLD="columnName" Optional

Used with IE 4 data binding to associate a remote data source column name with the label
of a button. The data source column must be either plain text or HTML (see
DATAFORMATAS). A DATASRC attribute must also be set for the BUTTON element.

Example
<BUTTON TYPE="button" DATASRC="#DBSRC3" DATAFLD="label"
onClick="getTopStory()">
</BUTTON>

onDblClick n/a 4 4
onDragStart n/a 4 n/a
onFocus n/a 4 4
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onResize n/a 4 n/a
onRowEnter n/a 4 n/a
onRowExit n/a 4 n/a
onSelectStart n/a 4 n/a

Handler NN IE HTML
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<BUTTON> 217

HTM
L Reference
Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.all.elementID.dataFld

DATAFORMATAS NN n/a IE 4 HTML n/a

DATAFORMATAS="dataType" Optional

Used with IE 4 data binding, this attribute advises the browser whether the source material
arriving from the data source is to be treated as plain text or as tagged HTML. This attribute
setting depends entirely on how the data source is constructed.

Example
<BUTTON TYPE="button" DATASRC="#DBSRC3"DATAFORMATAS="HTML" DATAFLD="label"
onClick="getTopStory()">
</BUTTON>

Value IE 4 recognizes two possible settings: text | HTML.

Default text

Object Model Reference
IE [window.]document.all.elementID.dataFormatAs

DATASRC NN n/a IE 4 HTML n/a

DATASRC="dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example
<BUTTON TYPE="button" DATASRC="#DBSRC3" DATAFLD="label"
onClick="getTopStory()">
</BUTTON>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.all.elementID.dataSrc

DISABLED NN n/a IE 4 HTML 4

DISABLED Optional

A disabled BUTTON element appears grayed out on the screen and cannot be activated by
the user. In Windows, a disabled BUTTON cannot receive focus and does not become active
within the tabbing order rotation. HTML 4.0 also specifies that a disabled BUTTON whose
TYPE is submit should not send its name/value pair when the form is submitted.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

218 <BUTTON>
The DISABLED attribute is a Boolean type, which means that its presence in the attribute
sets its value to true. Its value can also be adjusted after the fact by scripting (see the
button object in Chapter 9).

Example <BUTTON TYPE="submit" DISABLED>Ready to Submit</BUTTON>

Value The presence of the attribute sets its value to true.

Default false

Object Model Reference
IE [window.]document.all.elementID.disabled

NAME NN n/a IE 4 HTML 4

NAME="elementIdentifier" Optional

For a BUTTON element, the NAME attribute can play two roles, depending on the TYPE
attribute setting. For all TYPE attribute settings, the NAME attribute lets you assign an identi-
fier that can be used in scripted references to the element (the ID attribute is an alternate
way to reference the element). For a button type of submit, the NAME attribute is sent as
part of the name/value pair to the server at submit time.

Example
<BUTTON TYPE="submit" NAME="Type" VALUE="infoOnly">Request Info</BUTTON>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.all.elementID.name

TABINDEX NN n/a IE 4 HTML 4

TABINDEX=integer Optional

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their TABINDEX attributes are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest TABINDEX value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same TABINDEX values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the TABINDEX attribute or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A BUTTON element set to be disabled does not
become part of the tabbing rotation.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text input fields. Buttons cannot be tabbed to on the Mac version of IE 4.

Example
<BUTTON TYPE="button" TABINDEX=3 onClick="doSomething()">Click Here
</BUTTON>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<CAPTION> 219

HTM
L Reference
Value

Any integer from 0 through 32767. In IE 4, setting the TABINDEX to -1 causes the element
to be skipped in tabbing order altogether.

Default None.

Object Model Reference
IE [window.]document.elementID.tabIndex

TYPE NN n/a IE 4 HTML 4

TYPE="buttonType" Optional

Defines the internal style of button for the browser. A button style is intended to be used to
initiate scripted action via an event handler. A “reset” style behaves the same way as an
INPUT element whose TYPE attribute is set to reset, returning all elements to their default
values. A “submit” style behaves the same way as an INPUT element whose TYPE attribute
is set to submit. A BUTTON element whose TYPE attribute is set to either reset or submit
must be associated with a form for its implied action to be of any value to the page.

Example
<BUTTON TYPE="reset"></BUTTON>

Value

Case-insensitive constant value from the following list of three: button | reset | submit.

Default button

Object Model Reference
IE [window.]document.all.elementID.type

VALUE NN n/a IE 4 HTML 4

VALUE="text" Optional/Required

Preassigns a value to a BUTTON element that is submitted to the server as part of the name/
value pair when the element is a member of a form.

Example <BUTTON NAME="connections" VALUE="ISDN">ISDN</BUTTON>

Value Any text string.

Default None.

Object Model Reference
IE [window.]document.all.elementID.value

<CAPTION> NN all IE all HTML 3.2

<CAPTION>...</CAPTION> End Tag: Required

A CAPTION element may be placed only inside a TABLE element (and immediately after the
<TABLE> start tag) to denote the text to be used as a caption for the table. A caption applies
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

220 <CAPTION>
to the entire table, whereas a table heading (TH element) applies to a single column or row
of the table. Only one CAPTION element is recognized within a TABLE element.

A table caption is usually a brief description of the table. A longer description may be
written for the SUMMARY attribute of a TABLE element for browsers that use text-to-speech
technology for users who cannot see browsers. The primary distinguishing attribute of the
CAPTION element is ALIGN, which lets you define where the caption appears in relation to
the actual table.

Example
<TABLE ...>
<CAPTION CLASS="tableCaptions">
 Table 3-2. Sample Inverse Framistan Values
</CAPTION>
...
</TABLE>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

ALIGN DIR LANG STYLE VALIGN
CLASS ID LANGUAGE TITLE

Handler NN IE HTML
onAfterUpdate n/a 4 n/a
onBeforeUpdate n/a 4 n/a
onBlur n/a 4 n/a
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onFocus n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onResize n/a 4 n/a
onRowEnter n/a 4 n/a
onRowExit n/a 4 n/a
onSelect n/a 4 n/a
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<CAPTION> 221

HTM
L Reference
ALIGN NN all IE all HTML 3.2

ALIGN="where" Optional

Determines how the caption is rendered in physical relation to the table. Not all versions of
all browsers support the full range of possibilities for this attribute. Only top and bottom
are universal among all supporting browsers.

Browsers typically render a caption above or below a table in the running body font (unless
modified by tag or style sheet) and centered horizontally on the table. If the caption is
wider than the table, text is wrapped to the next line, maintaining center justification.

The ALIGN attribute is deprecated in HTML 4.0 in favor of the text-align: and
vertical-align: style sheet attribute.

Example <CAPTION ALIGN="top">Table II. Stock List</CAPTION>

Value

Each browser and the HTML 4.0 specification define different sets of values for this
attribute. Select the one(s) from the following table that work for your deployment:

Moreover, IE 4 and HTML 4.0 disagree on the intention of the left and right values. In IE
4, the captions are always at the top or bottom of the table (see the VALIGN attribute), but
the text is right-, center-, or left-aligned in those positions. HTML 4.0 speaks of left and
right as meaning positioning the entire caption to the left or right of the table. If Internet
Explorer were to adopt the HTML 4.0 specification in a future version, it could break the
layout of existing table captions.

Default top (in IE 4, center if VALIGN attribute is also set).

Object Model Reference
IE [window.]document.all.elementID.align

VALIGN NN n/a IE 3 HTML n/a

VALIGN="where" Optional

The VALIGN attribute was Internet Explorer’s early attribute for placing a table caption
above or below the table. Although this attribute is now a part of the ALIGN attribute, IE’s
special way of handling left, center, and right values of the ALIGN attribute give
VALIGN something to do. For example, you can use VALIGN to set the caption below the
table, and use ALIGN="right" to right-align the caption at the bottom. This combination is
not possible with the HTML 4.0 attribute. The VALIGN attribute is in IE 4 for backward
compatibility, if for no other reason.

Example
<CAPTION ALIGN="right" VALIGN="bottom">Table 3-2. Fiber Content.</CAPTION>

Value NN 4 IE 4 HTML 4.0
bottom • • •
center - • -
left - • •
right - • •
top • • •
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

222 <CENTER>
Value Two possible case-insensitive values: bottom | top.

Default top

Object Model Reference
IE [window.]document.all.elementID.valign

<CENTER> NN all IE all HTML 3.2

<CENTER>...</CENTER> End Tag: Required

The CENTER element was introduced by Netscape and became widely used before the
W3C-sanctioned DIV element came into being. It is clear, even from the HTML 3.2 docu-
mentation, that the HTML working group was never fond of this element. Momentum,
however, carried the day, and this element found its way into the HTML 3.2 specification.
The element is deprecated in HTML 4.0 in favor of the DIV element with a style sheet rule
of text-align:center. In lieu of style sheets (but still deprecated in HTML 4), you can
use a DIV element with ALIGN="center".

Content of a CENTER element is aligned along an axis that runs down the middle of the
next outermost containing element—usually the BODY.

Example <CENTER>Don't do this.</CENTER>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

CLASS LANG LANGUAGE STYLE TITLE
ID

Handler NN IE HTML
onClick n/a 4 n/a
onDblClick n/a 4 n/a
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 n/a
onKeyPress n/a 4 n/a
onKeyUp n/a 4 n/a
onMouseDown n/a 4 n/a
onMouseMove n/a 4 n/a
onMouseOut n/a 4 n/a
onMouseOver n/a 4 n/a
onMouseUp n/a 4 n/a
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<CODE> 223

HTM
L Reference
<CITE> NN all IE all HTML all

<CITE>...</CITE> End Tag: Required

The CITE element is one of a large group of elements that the HTML 4.0 recommendation
calls phrase elements. Such elements assign structural meaning to a designated portion of
the document. A CITE element is one that contains a citation or reference to some other
source material. This is not an active link but simply notation indicating what the element
content is. Search engines and other HTML document parsers may use this information for
other purposes (assembling a bibliography of a document, for example).

Browsers have free rein to determine how (or whether) to distinguish CITE element content
from the rest of the BODY element. Both Navigator and Internet Explorer elect to italicize the
text. This can be overridden with a style sheet as you see fit.

Example
<P>Trouthe is the hyest thing that many may kepe.

(Chaucer, <CITE>The Franklin's Tale</CITE>)</P>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

<CODE> NN all IE all HTML all

<CODE>...</CODE> End Tag: Required

The CODE element is one of a large group of elements that the HTML 4.0 recommendation
calls phrase elements. Such elements assign structural meaning to a designated portion of
the document. A CODE element is one that is used predominantly to display one or more
inline characters representing computer code (program statements, variable names,
keywords, and the like).

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

224 <COL>
Browsers have free rein to determine how (or whether) to distinguish CODE element content
from the rest of the BODY element. Both Navigator and Internet Explorer elect to render
CODE element content in a monospace font, usually in a slightly smaller font size than the
default body font (although it is not reduced in IE 4 for the Macintosh). This rendering can
be overridden with a style sheet as you see fit.

White space (including carriage returns) are treated the same way in CODE element content
as it is in the browser’s BODY element content. Line breaks must be manually inserted with
BR elements. See also the PRE element for displaying preformatted text that observes all
whitespace entered in the source code.

Example

Initialize a variable in JavaScript with the <CODE>var</CODE> keyword.

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

<COL> NN n/a IE 3 HTML 4

<COL> End Tag: Forbidden

The COL element provides shortcuts to assigning widths and other characteristics (styles) to
one or more subsets of columns within a table or within a table’s column group. With this
information appearing early in the TABLE element, a browser equipped to do so starts
rendering the table before all source code for the table has loaded (at which time it would
otherwise perform all of its geographical calculations).

You can use the COL element in combination with the COLGROUP element or by itself. The
structure depends on how you need to assign widths and styles to individual columns or
contiguous columns. A COL element can apply to a single column by omitting the REPEAT

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<COL> 225

HTM
L Reference
(or SPAN in IE 4) attribute. By assigning an integer value to the REPEAT attribute, you direct
the browser to ply the COL element’s width or style settings to said number of contiguous
columns. The REPEAT element is similar to the COLGROUP element’s COLSPAN attribute. In
concert with the COLGROUP element, the COL element allows you to create a kind of subset
of related columns within a COLGROUP set.

No matter how you address the column structure of your table, the total number of columns
defined in all COL and COLGROUP elements should equal the physical number of columns
you intend for the table. If there should be more cells in a row than columns defined in
COL and COLGROUP, the browser probably has to reflow the table and discard whatever
incremental rendering it had accomplished. The following three skeletal examples specify
HTML 4.0 tables with six columns:

<TABLE>
<COL REPEAT=6>
...
</TABLE>

<TABLE>
<COL>
<COL REPEAT=4>
<COL>
...
</TABLE>

<TABLE>
<COLGROUP>
<COL REPEAT=2></COLGROUP>
<COLGROUP SPAN=4>
...
</TABLE>

HTML 4.0 specifications for the COL element exceed the implementation in Internet Explorer
4 in some respects. For example, HTML 4.0 provides for alignment within a column to be
around any character, such as the decimal point of a money amount. This kind of feature
adds to the rationale behind the COL element. For example, you can have a table whose
first three columns are formatted one way and a fourth column assigned a special style and
its own alignment characteristics:

<HTML>
<HEAD>
<STYLE TYPE="text/css">
 .colHdrs {color:black}
 .normColumn {color:green}
 .priceColumn {color:red}
</STYLE>
</HEAD>
<BODY>
<TABLE>
<COLGROUP CLASS="normColumn" SPAN=3></COLGROUP>
<COL CLASS="priceColumn" ALIGN="char" CHAR=".">
<THEAD CLASS="colHdrs">
<TR><TH>Stock No.<TH>In Stock<TH>Description<TH>Price</TR>
<TBODY>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

226 <COL>
<TR><TD>8832<TD>Yes<TD>Brass Frobnitz<TD>$255.98</TR>
<TR><TD>8835<TD>No<TD>Frobnitz (black)<TD>$98</TR>
...
</TABLE>
</BODY>
</HTML>

Because attributes of the COL and COLGROUP elements apply to the entire column, in the
preceding example the style sheet rule for the THEAD overrides the color settings for the
two column styles for the rows enclosed by the THEAD element. The preceding example
works in IE 4 for Windows, except for the alignment of the final column, which is ignored;
IE 4 for the Mac assigns styles and other attributes to the wrong columns.

Example <COL CLASS="dateCols" WIDTH="15" ALIGN="right">

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

ALIGN NN n/a IE 3 HTML 4

ALIGN="alignConstant" Optional

Establishes the horizontal alignment characteristics of content within column(s) covered by
the COL element. The HTML 4.0 specification defines settings for the ALIGN attribute that
are not yet reflected in the CSS specification. Therefore, this ALIGN attribute is not fully
deprecated. As a rule, alignment should be specified by style sheet wherever possible.

Example <COL CLASS="dateCols" WIDTH="15" ALIGN="right">

Value HTML 4.0 and IE 4 have two sets of attribute values:

ALIGN CLASS LANG STYLE VALIGN
CHAR DIR REPEAT TITLE WIDTH
CHAROFF ID SPAN

Handler NN IE HTML
onClick n/a n/a 4
onDblClick n/a n/a 4
onKeyDown n/a n/a 4
onKeyPress n/a n/a 4
onKeyUp n/a n/a 4
onMouseDown n/a n/a 4
onMouseMove n/a n/a 4
onMouseOut n/a n/a 4
onMouseOver n/a n/a 4
onMouseUp n/a n/a 4

Value IE 4 HTML 4.0
center • •
char - •
justify - •
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<COL> 227

HTM
L Reference
The values center, left, and right are self-explanatory. The value justify is intended
to space content so that text is justified down both left and right edges. For the value char,
the CHAR attribute must also be set to specify the character on which alignment revolves. In
the HTML 4.0 specification example, content that does not contain the character appears to
be right-aligned to the location of the character in other rows of the same column.

It is important to bear in mind that the ALIGN attribute applies to every row of a column,
including any TH element you specify for the table. If you want a different alignment for the
column header, override the setting with a separate ALIGN attribute or text-align style
sheet attribute for the THEAD or individual TH elements.

Default left

Object Model Reference
IE [window.]document.all.elementID.align

CHAR NN n/a IE n/a HTML 4

CHAR="character" Optional

The CHAR attribute defines the text character used as an alignment point for text within a
column. This attribute is of value only for the ALIGN attribute set to "char".

Example <COL CLASS="priceColumn" ALIGN="char" CHAR=".">

Value Any single text character.

Default None.

CHAROFF NN n/a IE n/a HTML 4

CHAROFF="length" Optional

The CHAROFF attribute lets you set a specific offset point at which the character specified by
the CHAR attribute is to appear within a cell. This attribute is provided in case the browser
default positioning does not meet with the design goals of the table.

Example <COL CLASS="priceColumn" ALIGN="char" CHAR="." CHAROFF="80%">

Value Any length value in pixels or percentage of cell space.

Default None.

REPEAT NN n/a IE n/a HTML 4

REPEAT="columnCount" Optional

Defines the number of adjacent columns for which the COL element’s attribute and style
settings apply. If this attribute is missing, the COL element governs a single column. You can
combine multiple COL elements of different REPEAT sizes as needed for your column
subgrouping.

This HTML 4.0 attribute is represented in IE 4 by the SPAN attribute.

left • •
right • •

Value IE 4 HTML 4.0
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

228 <COL>
Example <COL REPEAT=3>

Value Integer value greater than zero.

Default 1

SPAN NN n/a IE 3 HTML n/a

SPAN=columnCount Optional

Defines the number of adjacent columns for which the COL element’s attribute and style
settings apply. If this attribute is missing, the COL element governs a single column. You can
combine multiple COL elements of different SPAN sizes as needed for your column
subgrouping.

This IE 4 attribute is represented in HTML 4.0 by the REPEAT attribute.

Example <COL SPAN=3>

Value Integer value greater than zero.

Default 1

Object Model Reference
IE [window.]document.all.elementID.span

VALIGN NN n/a IE 4 HTML 4

VALIGN="alignmentConstant" Optional

Determines the vertical alignment of content within cells of the column(s) covered by the
COL element. You can override the vertical alignment for a particular cell anywhere in the
column.

Example <COL VALIGN="middle">

Value

Four constant values are recognized by both IE 4 and HTML 4.0: top | middle | bottom |
baseline. With top and bottom, the content is rendered flush (or very close to it) to the
top and bottom of the table cell. Set to middle (the default), the content floats perfectly
centered vertically in the cell. When one cell’s contents might wrap to multiple lines at
common window widths (assuming a variable table width), it is advisable to set the VALIGN
attributes of all cells in the same row (or all COL elements) to baseline. This assures that
the character baseline of the first (or only) line of a cell’s text aligns with the other cells in
the row—usually the most aesthetically pleasing arrangement.

Default middle

Object Model Reference
IE [window.]document.all.elementID.vAlign
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<COLGROUP> 229

HTM
L Reference
WIDTH NN n/a IE 4 HTML 4

WIDTH="multiLength" Optional

Defines the maximum width for the column(s) covered by the COL element. In practice (in
IE 4 Windows, anyway), the browser won’t render a column narrower than the widest
contiguous stretch of characters not containing whitespace (e.g., the longest word). The
precise measure of such a column width, of course, depends on the font characteristics of
the content, as well. Internet Explorer 4 for the Mac mixes up column width assignments
when the COL element is deployed.

Example <COL WIDTH=100>

Value

Internet Explorer 4 accepts length values for the WIDTH in the form of pixel measures
(without the “px” unit) or percentage of available horizontal space allocated to the entire
table (WIDTH="25%").

The HTML 4.0 specification introduces an additional length measurement scheme to supple-
ment the regular length measure. Called a proportional length (also MultiLength), this
format features a special notation and geometry. It is best suited for situations in which a
COL element is to be sized based on the available width of the table space after all fixed
length and percentage lengths are calculated. Using the proportional length notation (a
number followed by an asterisk), you can direct the browser to divide any remaining space
according to proportion. For example, if there is enough horizontal space on the page for
100 pixels after all other column width calculations are performed, three COL elements
might specify WIDTH attributes of 1*, 3*, and 1*. This adds up to a total of five propor-
tional segments. The 100 available pixels are handed out to the proportional columns based
on their proportion to the whole of the remaining space: 20, 60, and 20 pixels, respectively.

Default Determined by browser calculation.

<COLGROUP> NN n/a IE 3 HTML 4

<COLGROUP>...</COLGROUP> End Tag: Optional

The COLGROUP element provides shortcuts to assigning widths and other characteristics
(styles) to one or more subsets of columns within a table. With this information appearing
early in the TABLE element source code, a browser equipped to do so starts rendering the
table before all source code for the table has loaded (at which time it would otherwise
perform all of its geographical calculations).

You can use the COLGROUP element in combination with the COL element or by itself. You
may also define a COLGROUP that has COL elements nested within to assist in defining
subsets of columns that share some attribute or style settings. The need for the element’s
end tag is determined by the presence of standalone COL elements following the COLGROUP
element. For example, if you specify column groupings entirely with COLGROUP elements,
end tags are not necessary:

<TABLE>
<COLGROUP SPAN=2 WIDTH=30>
<COLGROUP SPAN=3 WIDTH=40>
<THEAD>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

230 <COLGROUP>
If you have a freestanding COL element following the COLGROUP element, you must clearly
end the COLGROUP element before the standalone COL element:

<TABLE>
<COLGROUP CLASS="leftCols">
<COL WIDTH=30>
<COL WIDTH=20>
</COLGROUP>
<COL CLASS="priceCol" WIDTH=25>
<THEAD>
...

The structure depends on how you need to assign widths and styles to individual columns
or contiguous columns. To create a column grouping that consists of multiple adjacent
columns, use the SPAN attribute. This is entirely different from the COLSPAN attribute of a TD
element, which has the visual impact of joining adjacent cells together as one. The SPAN
attribute helps define the number of columns to be treated structurally as a group (for
assigning attribute and style sheet settings across multiple columns, regardless of the
column content).

No matter how you address the column structure of your table, the total number of columns
defined in all COL and COLGROUP elements should equal the physical number of columns
you intend for the table. If there should be more cells in a row than columns defined in
COL and COLGROUP, the browser probably has to reflow the table and discard whatever
incremental rendering it had accomplished. The following three skeletal examples specify
HTML 4.0 tables with six columns:

<TABLE>
<COLGROUP SPAN=6>
...
</TABLE>

<TABLE>
<COL>
<COLGROUP SPAN=4>
<COL>
...
</TABLE>

<TABLE>
<COLGROUP>
 <COL REPEAT=2>
</COLGROUP>
<COLGROUP SPAN=4>
...
</TABLE>

HTML 4.0 specifications for the COLGROUP element exceed the implementation in Internet
Explorer 4 in some respects. For example, HTML 4.0 provides for alignment within a
column to be around any character, such as the decimal point of a money amount. This
kind of feature adds to the rationale behind the COL element (see the COL element for an
example).

Syntactically, there is little difference between a COLGROUP and COL element (a minor differ-
ence in the IE 4 implementation only). A COLGROUP element, however, lends a structural
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<COLGROUP> 231

HTM
L Reference
integrity to a group of columns that is rendered differently when the containing TABLE
element specifies RULES="groups"; the browser draws rule lines (standard table borders in
IE 4) only between COLGROUP elements and not COL elements.

Example <COLGROUP CLASS="dateCols" WIDTH="15" ALIGN="right">

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

ALIGN NN n/a IE 3 HTML 4

ALIGN="alignConstant" Optional

Establishes the horizontal alignment characteristics of content within column(s) covered by
the COLGROUP element. The HTML 4.0 specification defines settings for the ALIGN attribute
that are not yet reflected in the CSS specification. Therefore, this ALIGN attribute is not fully
deprecated. As a rule, alignment should be specified by style sheet wherever possible.

Internet Explorer 3 documents label this attribute HALIGN. In practice, IE 3 for Windows
appears to ignore both the ALIGN and HALIGN attribute for the COLGROUP element.

Example <COLGROUP CLASS="dateCols" WIDTH="15" ALIGN="right" SPAN=3>

Value HTML 4.0 and IE 4 have two sets of attribute values:

The values center, left, and right are self-explanatory. The value justify is intended
to space content so that text is justified down both left and right edges. For the value char,

ALIGN CLASS LANG STYLE VALIGN
CHAR DIR SPAN TITLE WIDTH
CHAROFF ID

Handler NN IE HTML
onClick n/a n/a 4
onDblClick n/a n/a 4
onKeyDown n/a n/a 4
onKeyPress n/a n/a 4
onKeyUp n/a n/a 4
onMouseDown n/a n/a 4
onMouseMove n/a n/a 4
onMouseOut n/a n/a 4
onMouseOver n/a n/a 4
onMouseUp n/a n/a 4

Value IE 4 HTML 4.0
center • •
char - •
justify - •
left • •
right • •
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

232 <COLGROUP>
the CHAR attribute must also be set to specify the character on which alignment revolves. In
the HTML 4.0 specification example, content that does not contain the character appears to
be right-aligned to the location of the character in other rows of the same column.

It is important to bear in mind that the ALIGN attribute applies to every row of a column,
including any TH element you specify for the table. If you want a different alignment for the
column header, override the setting with a separate ALIGN attribute or text-align style
sheet attribute for the THEAD or individual TH elements.

Default left

Object Model Reference
IE [window.]document.all.elementID.align

CHAR NN n/a IE n/a HTML 4

CHAR="character" Optional

The CHAR attribute defines the text character used as an alignment point for text within a
column. This attribute is of value only for the ALIGN attribute set to "char".

Example <COLGROUP CLASS="priceCols" ALIGN="char" CHAR="." SPAN=2>

Value Any single text character.

Default None.

CHAROFF NN n/a IE n/a HTML 4

CHAROFF="length" Optional

The CHAROFF attribute lets you set a specific offset point at which the character specified by
the CHAR attribute is to appear within a cell. This attribute is provided in case the browser
default positioning does not meet with the design goals of the table.

Example
<COLGROUP CLASS="priceColumn" ALIGN="char" CHAR="." CHAROFF="80%" SPAN=2>

Value Any length value in pixels or percentage of cell space.

Default None.

SPAN NN n/a IE 3 HTML 4

SPAN=columnCount Optional

Defines the number of adjacent columns for which the COLGROUP element’s attribute and
style settings apply. If this attribute is missing, the COLGROUP element governs a single
column. You can combine multiple COLGROUP elements of different SPAN sizes as needed
for your column subgrouping.

This corresponding attribute for the COL element is represented in IE 4 by the SPAN
attribute and in HTML 4.0 by the REPEAT attribute.

Example <COLGROUP SPAN=3>

Value Integer value greater than zero.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<COLGROUP> 233

HTM
L Reference
Default 1

Object Model Reference
IE [window.]document.all.elementID.span

VALIGN NN n/a IE 3 HTML 4

VALIGN="alignmentConstant" Optional

Determines the vertical alignment of content within cells of the column(s) covered by the
COLGROUP element. You can override the vertical alignment for a particular cell anywhere in
the column.

Example <COLGROUP VALIGN="middle">

Value

Four constant values are recognized by both IE 4 and HTML 4: top | middle | bottom |
baseline. With top and bottom, the content is rendered flush (or very close to it) to the
top and bottom of the table cell. Set to middle (the default), the content floats perfectly
centered vertically in the cell. When one cell’s contents might wrap to multiple lines at
common window widths (assuming a variable table width), it is advisable to set the VALIGN
attributes of all cells in the same row (or all COLGROUP elements) to baseline. This assures
that the character baseline of the first (or only) line of a cell’s text aligns with the other cells
in the row—usually the most aesthetically pleasing arrangement.

Default middle

Object Model Reference
IE [window.]document.all.elementID.vAlign

WIDTH NN n/a IE 3 HTML 4

WIDTH="multiLength" Optional

Defines the maximum width for the column(s) covered by the COLGROUP element. In prac-
tice (in IE 4 Windows, anyway), the browser won’t render a column narrower than the
widest contiguous stretch of characters not containing whitespace (e.g., the longest word).
The precise measure of such a column width, of course, depends on the font characteris-
tics of the content, as well. Internet Explorer 4 for the Mac mixes up column width
assignments when the COLGROUP element is deployed.

Example <COLGROUP WIDTH=100>

Value

Internet Explorer 4 accepts length values for the WIDTH in the form of pixel measures
(without the “px” unit) or percentage of available horizontal space allocated to the entire
table (WIDTH="25%").

An alternate variation of the proportional length value is described in the HTML 4.0 specifi-
cation. For a COLGROUP element, you can specify WIDTH="*0" to instruct the browser to
render all columns according to the minimum width necessary to display the content of the
cells in the column. For a browser to make this calculation, it must load all table contents,
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

234 <DD>
thus eliminating the possibility of incremental rendering of a long table. For more informa-
tion about proportional lengths, see the WIDTH attribute of the COL element.

Default Determined by browser calculation.

<COMMENT> NN n/a IE all HTML n/a

<COMMENT>...</COMMENT> End Tag: Required

The COMMENT element is an artifact of early Internet Explorer browsers and is now obso-
lete. It was intended as a plain-language tag alternate to the <!--comment--> comment
element. The browser did not render content inside the COMMENT element. Internet Explorer
4 supports this element only for backward compatibility, although it also implements some
modern attributes (ID, LANG, and TITLE). Do not use this element. Further details are
omitted here to reduce the incentive to use the element.

<DD> NN all IE all HTML all

<DD>...</DD> End Tag: Optional

The DD element is a part of the DL, DT, DD triumvirate of elements used to create a defini-
tion list in a document. The entire list is bracketed by the DL element’s tags. Each definition
term is denoted by a leading DT element tag, and the definition for the term is denoted by a
leading DD element tag. A schematic of a definition list sequence for three items looks as
follows:

<DL>
 <DT>Term 1
 <DD>Definition 1
 <DT>Term 2
 <DD>Definition 2
 <DT>Term 3
 <DD>Definition 3
</DL>

A DT element is an inline element, whereas a DD element can contain block-level content,
including bordered text, images, and other objects. End tags are optional for both DT and
DD elements because the next start tag automatically signals the end of the preceding
element. The entire list, however, must close with an end tag for the encapsulating DL
element.

Although the HTML specification forces no particular way of rendering a definition list,
Navigator and Internet Explorer are in agreement in left-aligning a DT element and
indenting any DD element that follows it. No special font formatting or visual elements are
added by the browser, but you are free (if not encouraged) to assign styles as you like. If
you want to stack multiple terms and/or definitions, you can place multiple DT and/or DD
elements right after each other in the source code.

Because HTML is being geared toward context-sensitive tagging, avoid using definition lists
strictly as a formatting trick (to get some indented text). Use style sheets and adjustable
margin settings to accomplish formatting tasks.

In Navigator 4, any styles assigned to DT and DD elements by way of the CLASS, ID, or
STYLE attribute do not work. If you wish to assign the same style attributes to both the DT
and DD elements, assign the style to the DL element; otherwise, wrap each DT and DD
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 235

HTM
L Reference
element with a SPAN element whose styles the nested DT and DD elements inherit. This
workaround is observed in IE 4, although it is not necessary for IE 4-only documents.

Example
<DL>
 <DT>Z-scale
 <DD>A railroad modeling scale of 1:220. The smallest mass-produced
 commercial model scale.
</DL>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

 NN n/a IE 4 HTML 4

... End Tag: Required

The DEL element and its companion, INS, define a format that shows which segments of a
document’s content have been marked up for deletion (or insertion) during the authoring
process. This is far from a workflow management scheme, but in the hands of a supporting
WYSIWYG HTML authoring tool, these elements can assist in controlling generational
changes of a document in process.

Among the Version 4 browsers, only Internet Explorer supports the DEL element. Text
contained by this element is rendered as a strikethrough style (whereas INS elements are
underlined). The HTML 4.0 specification includes two potentially useful attributes (not in
IE 4) for preserving hidden information about the date and time of the alteration and some
descriptive text about the change.

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

236
Example
<P>Four score and
<DEL CITE="Fixed the math">eight<INS>seven</INS> years ago...</P>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

CITE NN n/a IE n/a HTML 4

CITE="String" Optional

A description of the reason for the change or other notation to be associated with the
element, but normally hidden from view. This information is meant to be used by authoring
tools, rather than by visual browsers.

Example <DEL CITE="Fixed the math --A.L.">eight

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

DATETIME NN n/a IE n/a HTML 4

DATETIME="datetimeString" Optional

The date and time the deletion was made. This information is most likely to be inserted into
a document with an HTML authoring tool designed to track content insertions and dele-
tions. Data from this attribute can be recalled later as an audit trail to changes of the

CITE DATETIME ID LANGUAGE TITLE
CLASS DIR LANG STYLE

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 237

HTM
L Reference
document. There can be only one DATETIME attribute value associated with a given DEL
element.

Example
<DEL DATETIME="1998-09-11T20:03:32-08:00">SomeDeleteTextHere

Value

The DATETIME attribute requires a value in a special date-time format that conveys informa-
tion about the date and time in such a way that the exact moment can be deduced from
any time zone around the world. Syntax for the format is as follows:

yyyy-MM-ddThh:mm:ssTZD

yyyy Four-digit year

MM Two-digit month (01 through 12)

dd Two-digit date (01 through 31)

T Uppercase “T” to separate date from time

hh Two-digit hour in 24-hour time (00 through 23)

mm Two-digit minute (00 through 59)

ss Two-digit second (00 through 59)

TZD Time Zone Designator

There are two formats for the Time Zone Designator. The first is simply the uppercase letter
“Z”, which stands for UTC (Coordinated Universal Time—also called “Zulu”). The other
format indicates the offset from UTC that the time shown in hh:mm:ss represents. This time
offset consists of a plus or minus symbol and another pair of hh:mm values. For time zones
west of Greenwich Mean Time (which, for all practical purposes is the same as UTC), the
operator is a negative sign because the main hh:mm:ss time is earlier than UTC; for time
zones east of GMT, the offset is a positive value. For example, Pacific Standard Time is
eight hours earlier than UTC: when it is 6:00 P.M. in the PST zone, it is 2:00 A.M. the next
morning at UTC. Thus, the following examples all represent the exact same moment in time
(Time Zone Designator shown in boldface for clarification only):

For more details about this way of representing time, see the ISO-8601 standard.

Default None.

TITLE NN n/a IE 4 HTML 4

TITLE="advisoryText" Optional

An advisory description of the element. Rendered as a tooltip in IE 4. The TITLE attribute
can also be used to store information intended for the CITE attribute. But when assigned to
the TITLE attribute, the text (in IE 4 at least) is viewable to the user as a tooltip.

Example <DEL TITLE="Deleted by JB">SomeDeletedTextHere

1998-09-12T02:00:00Z UTC
1998-09-11T21:00:00-05:00 Eastern Standard Time
1998-09-11T18:00:00-08:00 Pacific Standard Time
1998-09-12T13:00:00+11:00 Sydney, Australia
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

238 <DFN>
Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

Object Model Reference
IE [window.]document.all.elementID.title

<DFN> NN n/a IE 3 HTML 3.2

<DFN>...</DFN> End Tag: Required

The DFN element is one of a large group of elements that the HTML 4.0 recommendation
calls phrase elements. Such elements assign structural meaning to a designated portion of
the document. A DFN element signifies the first usage of a term in a document (its defining
instance). A common technique in documents is to italicize an important vocabulary term
the first time it is used in a document. This is generally the place in the document where
the term is defined so that it may be used in subsequent sentences with its meaning under-
stood. By default, Internet Explorer italicizes all text within a DFN element. You can, of
course, easily define your own style for DFN elements with a style sheet rule.

Example
<P>Concerto composers usually provide a space for soloists to show off
technical skills while reminding the audience of various themes used
throughout the movement. This part of the concerto is called the <DFN>
cadenza</DFN>. </P>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<DIR> 239

HTM
L Reference
<DIR> NN all IE all HTML all

<DIR>...</DIR> End Tag: Required

The original idea of the DIR element was to allow browsers to generate multicolumn lists of
items. Virtually every browser, however, treats the DIR element the same as a UL element,
to present an unordered single column list of items (usually preceded by a bullet). The DIR
element is deprecated in HTML 4. You should be using the UL element, in any case,
because you are assured backward compatibility and forward compatibility should this
element ever disappear from the browser landscape. Everything said here also applies to
the deprecated MENU element.

Example
Common DB Connector Types:
<DIR>
 DB-9
 DB-12
 DB-25
</DIR>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

COMPACT NN n/a IE 3 HTML 3.2

COMPACT Optional

A Boolean attribute originally designed to let browsers render the list in a more compact
style than normal (smaller line spacing between items). Internet Explorer ignores this
attribute (despite the fact that support for this attribute is indicated in IE 3 documentation).

Example <DIR COMPACT>...</DIR>

CLASS DIR LANG STYLE TITLE
COMPACT ID LANGUAGE

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

240 <DIV>
Value The presence of this attribute makes its value true.

Default false

<DIV> NN all IE all HTML 3.2

<DIV>...</DIV> End Tag: Required

The DIV element gives structure and context to any block-level content in a document.
Unlike some other structural elements that have very specific connotations attached to them
(the P element, for instance), the author is free to give meaning to each particular DIV
element by virtue of the element’s attribute settings and nested content. Each DIV element
becomes a generic block-level container for all content within the required start and end
tags.

As a basic example, the DIV element is now recommended as the element to use to center
text on a page, in place of the deprecated CENTER element. The DIV element that does the
work includes style information that takes care of the centering of the content. It is also
convenient to use the DIV element as a wrapper for multielement content that is to be
governed by a single style sheet rule. For example, if a block of content includes three
paragraphs, rather than assign a special font style to each of the P elements, you can wrap
all three P elements with a single DIV element whose style sheet defines the requested font
style. Such a style sheet could be defined as an inline STYLE attribute of the DIV element or
assigned via the CLASS or ID attribute, depending on the structure of the rest of the
document.

DIV elements are block-level elements. If you need an arbitrary container for inline content,
use the SPAN element, instead.

HTML 4.0 defines many more attributes for the DIV element than are implemented in
Version 4 browsers. The breadth of HTML attributes indicates the potential power of this
generic element to include links to related resources and many advisory attributes about
those links. The same set of attributes applies to the SPAN element in the HTML 4.0
specification.

Example <DIV CLASS="sections" ID="section3">...</DIV>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

ALIGN DATAFORMATAS HREFLANG MEDIA TARGET
CHARSET DATASRC ID REL TITLE
CLASS DIR LANG REV TYPE
DATAFLD HREF LANGUAGE STYLE

Handler NN IE HTML
onAfterUpdate n/a 4 n/a
onBeforeUpdate n/a 4 n/a
onBlur n/a 4 4
onClick n/a 3 4
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<DIV> 241

HTM
L Reference
ALIGN NN 2 IE 3 HTML 3.2

ALIGN="alignmentConstant" Optional

The ALIGN attribute determines how content wrapped by the DIV element is aligned within
the context of the DIV element. This attribute is deprecated in favor of the text-align
style sheet attribute. Even so, you can use this attribute for backward compatibility with
non-CSS-compliant browsers. This is the element and attribute you can use to substitute for
the deprecated CENTER element.

Example <DIV ALIGN="center">Part IV</DIV>

Value

Case-insensitive constant value. Navigator 4 and Internet Explorer 4 (Windows) recognize
all four constants specified in HTML 4: center | left | right | justify. IE 4 for the
Macintosh does not recognize the justify setting.

Default left or right, depending on direction of current language.

Object Model Reference
IE [window.]document.all.elementID.align

CHARSET NN n/a IE n/a HTML 4

CHARSET="characterSet" Optional

Character encoding of the content at the other end of the HREF link.

Example <DIV CHARSET="csISO5427Cyrillic ">CyrillicTextHere</DIV>

onDblClick n/a 4 4
onDragStart n/a 4 n/a
onFocus n/a 4 4
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 3 4
onMouseUp n/a 4 4
onResize n/a 4 n/a
onRowEnter n/a 4 n/a
onRowExit n/a 4 n/a
onScroll n/a 4 n/a
onSelectStart n/a 4 n/a

Handler NN IE HTML
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

242 <DIV>
Value

Case-insensitive alias from the character set registry (ftp://ftp.isi.edu/in-notes/iana/
assignments/character-sets).

Default Determined by browser.

DATAFLD NN n/a IE 4 HTML n/a

DATAFLD="columnName" Optional

Used with IE 4 data binding to associate a remote data source column name with the HTML
content of a DIV element. The data source column must be HTML (see DATAFORMATAS).
DATASRC and DATAFORMATAS attributes must also be set for the DIV element.

Example
<DIV DATASRC="#DBSRC3" DATAFLD="sec3" DATAFORMATAS="HTML"> </DIV>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.all.elementID.dataFld

DATAFORMATAS NN n/a IE 4 HTML n/a

DATAFORMATAS="dataType" Optional

Used with IE 4 data binding, this attribute advises the browser whether the source material
arriving from the data source is to be treated as plain text or as tagged HTML. A DIV
element should receive data only in HTML format.

Example
<DIV DATASRC="#DBSRC3" DATAFLD="sec3" DATAFORMATAS="HTML"> </DIV>

Value IE 4 recognizes two possible settings: text | HTML

Default text

Object Model Reference
IE [window.]document.all.elementID.dataFormatAs

DATASRC NN n/a IE 4 HTML n/a

DATASRC="dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example
<DIV DATASRC="#DBSRC3" DATAFLD="sec3" DATAFORMATAS="HTML"> </DIV>

Value Case-sensitive identifier.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<DIV> 243

HTM
L Reference
Default None.

Object Model Reference
IE [window.]document.all.elementID.dataSrc

HREF NN n/a IE n/a HTML 4

HREF="URI" Optional

According to the HTML 4.0 specification, the HREF attribute is meant to offer a URL to a
resource that can supply “more information” about the DIV element’s content. No recom-
mendation is provided as to whether this URL should be rendered in any way (like the
HREF attribute of an A element). Perhaps a future browser could use this URL to generate a
margin note or footnote in the form of a link. Several other attributes clearly intend for the
HREF attribute’s URL to be accessible in some way by the user.

Example <DIV HREF="bibliogs/chap3.html">ChapterThreeContentHere</DIV>

Value

Any valid URL, including complete and relative URLs, anchors on the same page (anchor
names prefaced with the # symbol) and the javascript: pseudo-URL in scriptable
browsers to trigger a script statement rather than navigate to a destination.

Default None.

HREFLANG NN n/a IE n/a HTML 4

HREFLANG="languageCode" Optional

The language code of the content at the destination of a link. Requires that the HREF
attribute also be set. This attribute is primarily an advisory attribute to help a browser
prepare itself for a new language set if the browser is so enabled.

Example
<DIV HREFLANG="HI" HREF="bibliogs/hindi/chap3.html">
ChapterThreeContentinHindiHere
</DIV>

Value Case-insensitive language code.

Default Browser default.

MEDIA NN n/a IE n/a HTML 4

MEDIA="descriptorList" Optional

Sets the intended output device for the content of the DIV element. The MEDIA attribute
looks forward to the day when browsers are able to tailor content to specific kinds of
devices such as pocket computers, text-to-speech digitizers, or fuzzy television sets. The
HTML 4.0 specification defines a number of constant values for anticipated devices, but the
list is open-ended, allowing future browsers to tailor output to yet other kinds of media and
devices.

Example <DIV MEDIA="screen, tv, handheld">...</DIV>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

244 <DIV>
Value

Case-sensitive constant values. Multiple values can be grouped together in a comma-
delimited list within a quoted string. Values defined in HTML 4.0 are screen | tty | tv |
projection | handheld | print | braille | aural | all.

Default screen

REL NN n/a IE n/a HTML 4

REL="linkTypes" Optional

Defines the relationship between the current element and the destination of the link. Also
known as a forward link, not to be confused in any way with the destination document
whose address is defined by the HREF attribute. The HTML 4.0 recommendation defines
several link types; it is up to the browser to determine how to employ the value. The
element must include an HREF attribute for the REL attribute to be applied.

Example <DIV REL="next chapter" HREF="chapter3.html">...</DIV>

Value

Case-insensitive, space-delimited list of HTML 4.0 standard link types applicable to the
element. Sanctioned link types are:

Default None.

REV NN n/a IE n/a HTML 4

REV="linkTypes" Optional

A reverse link relationship. Like the REL attribute, the REV attribute’s capabilities are defined
by the browser, particularly with regard to how the browser interprets and renders the
various link types available in the HTML 4.0 specification. Given two documents (A and B)
containing links that point to each other, the REV value of B is designed to express the
same relationship between the two documents as denoted by the REL attribute in A.

Example <DIV REV="previous chapter" HREF="chapter2.html">...</DIV>

Value

Case-insensitive, space-delimited list of HTML 4.0 standard link types applicable to the
element. See the REL attribute for sanctioned link types.

Default None.

TARGET NN n/a IE n/a HTML 4

TARGET="windowOrFrameName" Optional

If the destination document associated with the HREF attribute is to be loaded into a
window or frame other than the current window or frame, you can specify where the desti-

alternate contents index start
appendix copyright next stylesheet
bookmark glossary prev subsection
chapter help section
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<DIV> 245

HTM
L Reference
nation document should load by assigning a window or frame name to the TARGET
attribute. Target frame names must be assigned to frames and windows as identifiers. Assign
names to frames via the NAME attribute of the FRAME element; assign names to new
windows via the second parameter of the window.open() scripting method. If you omit
this attribute, the destination document replaces the document containing the link. This
attribute is applicable only when a value is assigned to the HREF attribute of the element.

If this feature is implemented in future browsers, the DIV element will probably have only
one destination document and one target (like the A element). If you want a link to change
the content of multiple frames, you can use a DIV element’s onClick event handler or a
javascript: pseudo-URL to fire a script that loads multiple documents. Set the
location.href property of each frame to the desired URL.

Example <DIV TARGET="display" HREF="chap3.html#sec2">...</DIV>

Value

Case-sensitive identifier when the frame or window name has been assigned via the target
element’s NAME attribute. Four reserved target names act as constants:

_blank Browser creates a new window for the destination document.

_parent Destination document replaces the current frame’s framesetting document (if
one exists; otherwise, it is treated as _self).

_self Destination document replaces the current document in its window or frame.

_top Destination document is to occupy the entire browser window, replacing any
and all framesets that may be loaded (also treated as _self if there are no
framesets defined in the window).

Default _self

TITLE NN n/a IE 4 HTML 4

TITLE="advisoryText" Optional

An advisory description of the destination document. Internet Explorer 4 implements this
attribute such that the browser displays a tooltip with the attribute’s value when the cursor
remains positioned over the element for a couple of seconds. The appearance of the tooltip
is governed by the operating system version of the browser. In Windows, the tooltip is the
standard small, light yellow rectangle; on the Mac, the tooltip displays as a cartoon bubble
in the manner of the MacOS bubble help system. If no attribute is specified, the tooltip does
not display.

Use this attribute with care. Because a DIV element can be fairly large, it is likely that the
cursor will frequently be at rest over the element when the user isn’t particularly paying
attention. The incessant display of the tooltip over the large screen area could become
annoying.

You can assign any descriptive text you like to this attribute. Not everyone will see it, so do
not put mission-critical information here. Future or special-purpose browsers might use this
attribute’s information to read information about the link to vision-impaired web surfers.

Example <DIV TITLE="Sub-Saharan Africa" HREF="chapter3.html">...</DIV>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

246 <DL>
Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

Object Model Reference
IE [window.]document.all.elementID.title

TYPE NN n/a IE n/a HTML 4

TYPE="MIMETYPE" Optional

An advisory about the content type of the destination document or resource. A browser
might use this information to assist in preparing support for a resource requiring a multi-
media player or plugin.

Example <DIV TYPE="video/mpeg" HREF="ski4.mpeg">...</DIV>

Value

Case-insensitive MIME type. A catalog of registered MIME types is available from ftp://
ftp.isi.edu/in-notes/iana/assignments/media-types/.

Default None.

<DL> NN all IE all HTML all

<DL>...</DL> End Tag: Required

The DL element is a part of the DL, DT, DD triumvirate of elements used to create a defini-
tion list in a document. The entire list is bracketed by the DL element’s tags. Each definition
term is denoted by a leading DT element tag, and the definition for the term is denoted by a
leading DD element tag. A schematic of a definition list sequence for three items looks like
the following:

<DL>
 <DT>Term 1
 <DD>Definition 1
 <DT>Term 2
 <DD>Definition 2
 <DT>Term 3
 <DD>Definition 3
</DL>

The entire list must close with an end tag for the encapsulating DL element. Note that the
DL element is the container of the entire list, which means that inheritable style sheet rules
assigned to the DL element apply to the nested DT and DD elements. Unwanted inherit-
ances can be overridden in the DT and DD elements.

Although the HTML specification forces no particular way of rendering a definition list,
Navigator and Internet Explorer are in agreement in left-aligning a DT element and
indenting any DD element that follows it. No special font formatting or visual elements are
added by the browser, but you are free (if not encouraged) to assign styles as you like. If
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<DL> 247

HTM
L Reference
you want to stack multiple terms and/or definitions, you can place multiple DT and/or DD
elements right after each other in the source code.

Because HTML is being geared toward context-sensitive tagging, avoid using definition lists
strictly as a formatting trick (to get some indented text). Use style sheets and adjustable
margin settings to accomplish formatting.

Example
<DL>
 <DT>Z-scale
 <DD>A railroad modeling scale of 1:220. The smallest mass-produced
 commercial model scale.
</DL>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

COMPACT NN 3 IE 3 HTML 3.2

COMPACT Optional

When set to true (by virtue of its presence in the DL element tag), the COMPACT Boolean
attribute instructs the browser to render a related DT and DD pair on the same line if space
allows. The criterion for determining this space (as worked out in both Navigator and
Internet Explorer) is related to the amount of indentation normally assigned to a DD element
(indentation size differs slightly with operating system). With COMPACT turned on, if the DT
element is narrower than the indentation space, the DD element is raised from the line
below and displayed on the same line as its DT element. Because the width of characters in
proportional fonts varies so widely, there is no hard-and-fast rule about the number of char-
acters of a DT element that lets the DD element come on the same line. But this compact
styling is intended for DT elements consisting of only a few characters.

CLASS DIR LANG STYLE TITLE
COMPACT ID LANGUAGE

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a n/a 4
onKeyPress n/a n/a 4
onKeyUp n/a n/a 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

248 <DT>
Example <DL COMPACT>ListItems</DL>

Value

Case-insensitive attribute name. Its presence sets the feature to true.

Default false

Object Model Reference
IE [window.]document.all.elementID.compact

<DT> NN all IE all HTML all

<DT>...</DT> End Tag: Optional

The DT element is a part of the DL, DT, DD triumvirate of elements used to create a defini-
tion list in a document. The entire list is bracketed by the DL element’s tags. Each definition
term is denoted by a leading DT element tag, and the definition for the term is denoted by a
leading DD element tag. A schematic of a definition list sequence for three items looks like
the following:

<DL>
 <DT>Term 1
 <DD>Definition 1
 <DT>Term 2
 <DD>Definition 2
 <DT>Term 3
 <DD>Definition 3
</DL>

A DT element is an inline element, whereas a DD element can contain block-level content,
including bordered text, images, and other objects. End tags are optional for both DT and
DD elements because the next start tag automatically signals the end of the preceding
element. The entire list, however, must close with an end tag for the encapsulating DL
element.

Although the HTML specification forces no particular way of rendering a definition list,
Navigator and Internet Explorer are in agreement in left-aligning a DT element and
indenting any DD element that follows it. No special font formatting or visual elements are
added by the browser, but you are free (if not encouraged) to assign styles as you like. If
you want to stack multiple terms and/or definitions, you can place multiple DT and/or DD
elements right after each other in the source code.

Because HTML is being geared toward context-sensitive tagging, avoid using definition lists
strictly as a formatting trick (to get some indented text). Use style sheets and adjustable
margin settings to accomplish formatting.

In Navigator 4, any styles assigned to DT and DD elements by way of the CLASS, ID, or
STYLE attribute do not work. If you wish to assign the same style attributes to both the DT
and DD elements, assign the style to the DL element; otherwise, wrap each DT and DD
element with a SPAN element whose styles the nested DT and DD elements inherit. This
workaround is observed in IE 4, although it is not necessary for IE 4-only documents.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 249

HTM
L Reference
Example
<DL>
 <DT>Z-scale
 <DD>A railroad modeling scale of 1:220. The smallest mass-produced
 commercial model scale.
</DL>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

 NN all IE all HTML all

... End Tag: Required

The EM element is one of a large group of elements that the HTML 4.0 recommendation
calls phrase elements. Such elements assign structural meaning to a designated portion of
the document. An EM element is one that is to be rendered differently from running body
text to designate emphasis.

Browsers have free rein to determine how (or whether) to distinguish EM element content
from the rest of the BODY element. Both Navigator and Internet Explorer elect to italicize the
text. This can be overridden with a style sheet as you see fit.

Example
<P>The night was dark, and the river's churning waters were very
cold.</P>

Object Model Reference
IE [window.]document.all.elementID

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

250 <EMBED>
Attributes

Event Handler Attributes

<EMBED> NN 2 IE 3 HTML n/a

<EMBED>...</EMBED> End Tag: Required

An EMBED element allows you to load media and file types other than those natively
rendered by the browser. Typically, such external data requires a plugin or helper applica-
tion to properly load the data and display its file. Notice that this element has been
supported by both Navigator and Internet Explorer since Versions 2 and 3, respectively, but
the element is still not a part of the HTML standard vocabulary. The HTML 4.0 specification
recommends the OBJECT element as the one to load the kind of external data covered by
the EMBED element in the browsers. Navigator 4 and Internet Explorer 4 also support the
OBJECT element, and you should gravitate toward that element for embedded elements if
your visitor browser base can support it.

Bear in mind that for data types that launch plugins, the control panel displayed for the
data varies widely among browsers, operating systems, and the plugins the user has
installed for that particular data type. It is risky business trying to carefully design a layout
combining a plugin’s control panel and surrounding text or other elements.

The list of attributes for the EMBED element is a long one, but pay special attention to the
browser compatibility rating for each attribute. Because the plugin technologies of the two
browsers are not identical, neither are the attribute sets. Even so, it is possible to assign an
EMBED element in one document that works on both browser brands when the embedded
element does not rely on an attribute setting not supported in one of the browsers. Some
plugins, however, may require or accept attribute name/value pairs that are not listed for
this element. At least in the case of Navigator, all attributes (including those normally
ignored by the browser) and their values are passed to the plugin. Therefore, you must also
check with the documentation for a plugin to determine what, if any, extra attributes may
be supported. The OBJECT element gets around this object-specific attribute problem by
letting you add any number of PARAM elements tailored to the object.

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<EMBED> 251

HTM
L Reference
The end tag is required in Internet Explorer but is optional in Navigator.

Example
<EMBED NAME="jukebox" SRC="jazz.aif" HEIGHT=100 WIDTH=200></EMBED>

Object Model Reference
NN [window.]document.elementName

IE [window.]document.all.elementID

Attributes

ALIGN NN all IE 4 HTML n/a

ALIGN="where" Optional

If the embedded object (or player control panel) occupies space on the page, the ALIGN
attribute determines how the object is rendered in physical relation to the element’s next
outermost container. If some additional text is specified between the start and end tags of
the EMBED element, the ALIGN attribute also affects how that text is rendered relative to the
object’s rectangular space.

Most of the rules for alignment constant values cited at the beginning of this chapter apply
to the EMBED element. Precise layout becomes difficult because the HTML page author
usually isn’t in control of the plugin control panel that is displayed on the page. Dimen-
sions for the element that work fine for one control panel are totally inappropriate for
another. (Compare Netscape’s stocky audio control panel to the narrow horizontal slider in
Internet Explorer.)

Typically, ALIGN attributes are deprecated in HTML 4.0 in favor of the align: style sheet
attribute. But if you are using the EMBED element for backward compatibility, stick with the
ALIGN attribute.

Example <EMBED SRC="jazz.aif" ALIGN="left" HEIGHT=100 WIDTH=200></EMBED>

Value

Each browser defines a different set of values for this attribute. Select the one(s) from the
following table that work for your deployment:

ALIGN CODEBASE ID PLUGINURL TYPE
ALT FRAMEBORDER NAME SRC UNITS
BORDER HEIGHT PALETTE STYLE VSPACE
CLASS HIDDEN PLUGINSPAGE TITLE WIDTH
CODE HSPACE

Value NN 4 IE 4
absbottom - •
absmiddle - •
baseline - •
bottom • •
left • •
middle • •
right • •
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

252 <EMBED>
Default bottom

Object Model Reference
IE [window.]document.all.elementID.align

ALT NN n/a IE 4 HTML n/a

ALT="textMessage" Optional

If Internet Explorer does not have the facilities to load and run the external media, the text
assigned to the ALT attribute is supposed to display in the document where the EMBED
element’s tag appears. Typically, this text provides advice on what the page visitor is
missing by not being able to load the data (although IE also presents a dialog about how to
get plugin information from an online source).

Use the ALT attribute with care. If the external data is not a critical part of your page’s
content, you may just want the rest of the page to load without calling attention to the
missing media controller in lesscapable browsers. The alternate message may be more
disturbing to the user than a missing media player.

The equivalent powers are available in Navigator with the NOEMBED element.

Example
<EMBED SRC="jazz.aif" ALT="Sound media player" HEIGHT=10 WIDTH=20></EMBED>

Value Any quoted string of characters.

Default None.

BORDER NN 2 IE n/a HTML n/a

BORDER=pixels Optional

Navigator provides a dedicated attribute to specifying the thickness of a border around an
EMBED element. This feature does not appear to be working in Navigator 4. Also, when the
EMBED element has style sheet attributes, setting a border for the element results in a
floating border around a small square outside of the EMBED element’s area.

Example <EMBED SRC="jazz.aif" BORDER=3 HEIGHT=150 WIDTH=250></EMBED>

Value Any integer pixel value.

Default None.

CODE NN n/a IE 4 HTML n/a

CODE="fileName.class" Required

I’m not sure why Microsoft specifies the CODE attribute for the EMBED element. Typically, a
CODE attribute points to a Java class filename. In theory, an applet could be loaded into a
document via the EMBED element (rather than the APPLET or OBJECT element), but this
approach does not work in IE 4. Nor does the CODEBASE element help the browser find a

texttop - •
top • •

Value NN 4 IE 4
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<EMBED> 253

HTM
L Reference
Java applet class filename assigned to the SRC attribute. My recommendation is to avoid this
attribute.

CODEBASE NN n/a IE 4 HTML n/a

CODEBASE="path" Optional

As with the CODE attribute, Internet Explorer 4 seems to ignore the CODEBASE attribute for
the EMBED element, despite its apparent support in the SDK documentation. The SRC
attribute must contain the path to the data file because it does not rely on the CODEBASE
attribute value. My recommendation is to avoid this attribute.

FRAMEBORDER NN 2 IE n/a HTML n/a

FRAMEBORDER="yes" | "no" Optional

Predating style sheet borders, the FRAMEBORDER attribute is a switch that lets you turn on a
plugin control panel’s border (whose thickness is set by the BORDER attribute). This attribute
does not appear to work in Navigator 4, nor does a style sheet border do what you’d
expect it to do.

Example
<EMBED SRC="jazz.aif" FRAMEBORDER="no" HEIGHT=150 WIDTH=250></EMBED>

Value yes | no

Default yes

HEIGHT, WIDTH NN 2 IE 3 HTML n/a

HEIGHT="length" Required

WIDTH="length"

The size that an embedded object (or its plugin control panel) occupies in a document is
governed by the HEIGHT and WIDTH attribute settings. Some browser versions might allow
you to get away without assigning these attributes, letting the plugin’s own user interface
design determine the height and width of its visible rectangle. It is best to specify the exact
dimensions of a plugin’s control panel whenever possible. (Control panels vary with each
browser and even between different plugins for the same browser.) In some cases, such as
Navigator 4 for the Macintosh, the control panel does not display if you fail to supply
enough height on the page for the control panel. If you assign values that are larger than
the actual control panel, the browser reserves that empty space on the page, which could
interfere with your intended page design.

Example <EMBED SRC="jazz.aif" HEIGHT=150 WIDTH=250></EMBED>

Value

Positive integer values (optionally quoted) or percentage values (quoted). You cannot
entirely hide an embedded object’s control panel by setting values to zero (one pixel
always shows and occupies space), but you can reduce its height and width to one pixel in
each dimension. If you want to hide a plugin, do so with DHTML by setting its positioning
display attribute to none. Navigator also includes a HIDDEN attribute that is backward
compatible for that browser brand.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

254 <EMBED>
Default None.

Object Model Reference
IE [window.]document.embeds[i].height

[window.]document.elementID.height
[window.]document.embeds[i].width
[window.]document.elementID.width

HIDDEN NN 2 IE 4 HTML n/a

HIDDEN="true" | "false" Optional

Predating style sheet borders, the HIDDEN attribute is a switch that lets you set whether the
embedded data’s plugin control panel appears on the screen. This might be desirable for
background music under script control (via Netscape’s LiveConnect). When you set the
HIDDEN attribute, the HEIGHT and WIDTH attributes are overridden.

Example <EMBED SRC="soothing.aif" HIDDEN></EMBED>

Value true | false

Default false

Object Model Reference
IE [window.]document.embeds[i].hidden

[window.]document.elementID.hidden

HSPACE, VSPACE NN 2 IE 3 HTML n/a

HSPACE=pixelCount Optional

VSPACE=pixelCount

Predating style sheet margins, the HSPACE and VSPACE attributes let you define a margin
that acts as whitespace padding around the visual content of the EMBED element. HSPACE
establishes a margin on the left and right sides of the rectangle; VSPACE establishes a
margin on the top and bottom sides of the rectangle. This attribute appears to work in Navi-
gator 4 but not in Internet Explorer 4. With these attributes not reflected as scriptable
properties of an EMBED element, it is likely that these attributes are truly not supported in IE
4, Microsoft’s SDK notwithstanding.

Example <EMBED SRC="soothing.aif" VSPACE=10 HSPACE=10></EMBED>

Value

Integer representing the number of pixels for the width of the margin on the relevant sides
of the EMBED element’s rectangle.

Default 0

ID NN n/a IE 4 HTML n/a

ID="elementIdentifier" Optional

A unique identifier that distinguishes this element from all the rest in the document. Can be
used to associate a single element with a style rule naming this attribute value as an ID
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<EMBED> 255

HTM
L Reference
selector. An element can have an ID assigned for uniqueness as well as a class for inclu-
sion within a group. See Chapter 3.

If you assign an ID attribute and not a NAME attribute, the value of the ID attribute can be
used as the EMBED element’s name in Internet Explorer script reference forms that use the
element name (document.all.embedName).

Example <EMBED ID="jazzSound" SRC="jazz.aif" HEIGHT=15 WIDTH=25></EMBED>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.embeds[i].id

[window.]document.elementID.id

NAME NN 2 IE 3 HTML n/a

NAME="elementIdentifier" Optional

If you are scripting a plugin (especially in Navigator via LiveConnect), it is usually more
convenient to create a reference to the embedded element by using a unique name you
assign to the item. Thus, if you edit the page and move or delete multiple EMBED elements
on the page, you do not have to worry about adjusting index values to array-style refer-
ences (document.embeds[i]).

Example <EMBED NAME="jukebox" SRC="jazz.aif" HEIGHT=15 WIDTH=25></EMBED>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.embeds[i].name

[window.]document.elementID.name

PALETTE NN 2 IE 4 HTML n/a

PALETTE="foreground" | "background" Optional

The Netscape documentation says that the PALETTE attribute lets you apply the back-
ground or foreground palette to the plugin invoked by the EMBED element, but only in the
Windows environment.

Example
<EMBED NAME="jukebox" SRC="jazz.aif" HEIGHT=150 WIDTH=250
PALETTE="foreground">
</EMBED>

Value Case-insensitive constant: foreground | background

Default background
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

256 <EMBED>
Object Model Reference
IE [window.]document.embeds[i].palette

[window.]document.elementID.palette

PLUGINSPAGE NN 2 IE n/a HTML n/a

PLUGINSPAGE="URL" Optional

If the MIME type of the data file assigned to the EMBED element’s SRC attribute is not
supported by an existing plugin or helper application in the browser, the PLUGINSPAGE
attribute is intended to provide a URL for downloading and installing the necessary plugin.
If you omit this attribute, Navigator presents a generic link to Netscape’s own resource
listing of plugin vendors.

Example
<EMBED NAME="jukebox" SRC="jazz.aif" HEIGHT=150 WIDTH=250
PLUGINSPAGE="http://www.giantco.com/plugin/install/index.html">
</EMBED>

Value Any valid URL.

Default None.

PLUGINURL NN 4 IE n/a HTML n/a

PLUGINURL="URL" Optional

Navigator 4 introduces the power (a feature called Smart Update) to allow somewhat auto-
matic installation of browser components. If a user does not have the necessary plugin
installed for your EMBED element’s data type, the PLUGINURL can point to a Java Archive
(JAR) file that contains the plugin and digitally signed objects to satisfy security issues
surrounding automatic installation (via Netscape’s Java Installation Manager). A JAR file is
both digitally signed and compressed (very much along the lines of a .zip file), and is
created with the help of Netscape’s JAR Packager tool.

You can include both the PLUGINSPAGE and PLUGINURL attributes in an EMBED element’s
tag to handle the appropriate browser version. Navigator 2 and 3 respond to the
PLUGINSPAGE attribute, whereas Navigator 4 gives precedence to the PLUGINURL attribute
when it is present.

Example
<EMBED NAME="jukebox" SRC="jazz.aif" HEIGHT=150 WIDTH=250
PLUGINURL="http://www.giantco.com/plugin/install.jar">
</EMBED>

Value Any valid URL to a JAR file.

Default None.

SRC NN 2 IE 3 HTML n/a

SRC="URL" Optional

The SRC attribute is a URL to a file containing data that is played through the plugin. For
most uses of the EMBED element, this attribute is required, but there are some circum-
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<EMBED> 257

HTM
L Reference
stances in which it may not be necessary (see the TYPE attribute). Browsers typically use
the filename extension to determine which plugin to load (based on browser preferences
settings for plugins and helper applications).

Example
<EMBED NAME="babyClip" SRC="Ugachaka.avi" HEIGHT=150 WIDTH=250></EMBED>

Value A complete or relative URL.

Default None.

Object Model Reference
IE [window.]document.embeds[i].src

[window.]document.elementID.src

TYPE NN 2 IE n/a HTML n/a

TYPE="MIMEtype" Optional

Navigator anticipated the potential of a plugin not requiring any outside data file. Instead,
such a plugin would more closely resemble an applet. If such a plugin is to be put into
your document, you still use the EMBED element but specify just the MIME type instead of
the data file URL (in the SRC attribute). This assumes, of course, that the MIME type is of
such a special nature that only one possible plugin would be mapped to that MIME type in
the browser settings. Either the SRC or TYPE attribute must be present in a Navigator EMBED
element tag.

Example
<EMBED TYPE="application/x-frobnitz" HEIGHT=150 WIDTH=250></EMBED>

Value

Any valid MIME type name as a quoted string, including the type and subtype portions
delimited by a forward slash.

Default None.

UNITS NN 2 IE 3 HTML n/a

UNITS="measurementUnitType" Optional

The UNITS attribute is supposed to dictate the kind of measurement units used for the
element’s HEIGHT and WIDTH attribute values. Both Navigator 4 and Internet Explorer 4
appear to treat the measurements in pixels, regardless of this attribute’s setting.

Example <EMBED SRC="jazz.aif" HEIGHT=150 WIDTH=250 UNITS="en"></EMBED>

Value

Not only does this attribute not appear to influence the rendering of an EMBED element, but
Navigator 4 and Internet Explorer 4 disagree on the precise spelling and available units for
values. Navigator 4 specifies choices of pixels or en; Internet Explorer goes with px or em.

Default pixels (or px).
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

258 <FIELDSET>
Object Model Reference
IE [window.]document.embeds[i].units

[window.]document.elementID.units

VSPACE
See HSPACE.

WIDTH
See HEIGHT.

<FIELDSET> NN n/a IE 4 HTML 4

<FIELDSET>...</FIELDSET> End Tag: Required

A FIELDSET element is a structural container for form elements (as distinguished from the
functional containment of the FORM element). In fact, you can define multiple FIELDSET
elements within a single FORM element to supply context to logical groupings of form
elements. For example, one FIELDSET element might contain text input fields for name and
address info; another FIELDSET might be dedicated to credit card information. In applica-
tions envisioned by the HTML 4.0 specification, users could use access keys to navigate
from one group to another, rather than have to tab ad nauseam to reach the next group.

Internet Explorer 4 boosts the attractiveness of this element by automatically drawing a rule
around the form elements within each FIELDSET container. You can also attach a label that
gets embedded within the rule by defining a LEGEND element immediately after the start tag
of a FIELDSET element. When IE 4 draws the rule, the box extends the full width of the
next outermost container geography—usually the document. If you’d rather have the box
cinch up around the visible form elements, you have to set the width style sheet property.
Unfortunately, the Mac and Windows versions do not render the box set to a specific width
the same way: the Windows version comes closest to honoring the pixel count, whereas the
Mac version is substantially wider.

Example
<FORM METHOD=POST ACTION="...">
<FIELDSET>
<LEGEND>Credit Card Information</LEGEND>
...inputElementsHere...
</FIELDSET>
</FORM>

Object Model Reference
IE [window.]document.all.elementID

Attributes
ALIGN DIR LANG STYLE VALIGN
CLASS ID LANGUAGE TITLE
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<FIELDSET> 259

HTM
L Reference
Event Handler Attributes

ALIGN NN n/a IE 4 HTML n/a

ALIGN="where" Optional

The ALIGN attribute appears only in Internet Explorer 4, and its implementation is far from
consistent across operating systems. In theory, the attribute should control the alignment of
INPUT elements it contains. This is true in the Macintosh version of IE 4, but in the
Windows version, the settings have a minor effect on whether the FIELDSET element rule is
flush left, flush right, or centered. It is best to let the default setting take precedence.

As a general rule, ALIGN attributes are deprecated in HTML 4.0 in favor of style sheets. Even
though the ALIGN attribute isn’t supported in HTML 4.0, you should feel free to use style
sheets even for this Internet Explorer-specific attribute.

Example <FIELDSET ALIGN="center">...</FIELDSET>

Value Allowed values are left | center | right.

Default left

Object Model Reference
IE [window.]document.all.elementID.align

Handler NN IE HTML
onBlur n/a 4 n/a
onChange n/a 4 n/a
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onFilterChange n/a 4 n/a
onFocus n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onResize n/a 4 n/a
onScroll n/a 4 n/a
onSelect n/a 4 n/a
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

260
TITLE NN n/a IE 4 HTML 4

TITLE="advisoryText" Optional

An advisory description of the element. In Internet Explorer 4, the title is rendered as a
tooltip when the cursor rests on the element for a moment. TITLE attributes of nested form
elements override the setting for the entire FIELDSET, allowing you to specify one tooltip
for the main fieldset area and more detailed tooltips for each element.

Example <FIELDSET TITLE="Credit Card Info">...</FIELDSET>

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

Object Model Reference
IE [window.]document.all.elementID.title

VALIGN NN n/a IE 4 HTML 4

VALIGN="alignmentConstant" Optional

Determines the vertical alignment of the FIELDSET within the FORM.

Example <FIELDSET VALIGN="bottom">...</FIELDSET>

Value

Four constant values are recognized by both IE 4 and HTML 4.0: top | middle | bottom |
baseline. With top and bottom, the content is rendered flush (or very close to it) to the
top and bottom of the table cell. Set to middle (the default), the content floats perfectly
centered vertically in the cell. When one cell’s contents might wrap to multiple lines at
common window widths (assuming a variable table width), it is advisable to set the VALIGN
attribute to baseline. This assures that the character baseline of the first (or only) line of a
cell’s text aligns with the other cells in the row—usually the most aesthetically pleasing
arrangement

Default middle

Object Model Reference
IE [window.]document.all.elementID.vAlign

 NN all IE all HTML 3.2

... End Tag: Required

A FONT element is a container whose contents are rendered with the font characteristics
defined by the element’s attributes. This element is deprecated in HTML 4.0 in favor of font
attributes available in style sheets that are applied directly to other elements or the artificial
SPAN container for inline font changes. This element will be supported for a long time to
come to allow backward compatibility with web pages designed for older browsers,
however.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 261

HTM
L Reference
The FONT element has evolved over its lifetime, adding new attributes along the way to
work in the more mature browsers. Navigator includes some proprietary attributes for
Version 4 that are better served by style sheets for cross-browser compatibility.

Example

Object Model Reference
IE [window.]document.all.elementID

Attributes

COLOR NN 2 IE 3 HTML 3.2

COLOR="colorTripletOrName" Optional

Sets the font color of all text contained by the FONT element. This attribute is deprecated in
HTML 4.0 in favor of style sheets.

Example ...

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default Browser default.

Object Model Reference
IE [window.]document.all.elementID.color

FACE NN 3 IE 3 HTML 4

FACE="fontFaceName1[, ... fontFaceNameN]" Optional

You can assign a hierarchy of font faces to use for a segment of text contained by a FONT
element. The browser looks for the first font face in the comma-delimited list of font face
names until it either finds a match on the client system or runs out of choices, at which
point the browser default font face is used. Font face names must match the system font
face names exactly. If you use this attribute (instead of the preferred style sheet attribute),
you can always suggest a generic font face (serif, sans-serif) as the final choice.

Example ...

Value

One or more font face names, including the recognized generic faces: serif | sans-serif
| cursive | fantasy | monospace.

Default Browser default.

CLASS FACE LANGUAGE SIZE TITLE
COLOR ID POINT-SIZE STYLE WEIGHT
DIR LANG
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

262
Object Model Reference
IE [window.]document.all.elementID.face

ID NN 4 IE 4 HTML 4

ID="elementIdentifier" Optional

A unique identifier that distinguishes this element from all the rest in the document. Can be
used to associate a single element with a style rule naming this attribute value as an ID
selector. An element can have an ID assigned for uniqueness as well as a class for inclu-
sion within a group. A style sheet rule applied to a FONT element overrides any directly
assigned attribute values. Therefore, you can define a set of font characteristics for non-CSS-
capable browsers and a modified version for CSS-capable browsers in the same tag. See
Chapter 3.

Example ...

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.all.elementID.id

POINT-SIZE NN 4 IE n/a HTML n/a

POINT-SIZE="pointSize" Optional

The POINT-SIZE attribute is Navigator 4’s non-CSS equivalent of setting the font size by
specific point size (rather than by relative font size directed by the SIZE attribute). If you
assign a value to the POINT-SIZE attribute and set the font-size style attribute, the style
attribute takes precedence. If you are aiming for cross-browser deployment, I suggest using
style sheets exclusively for precise point sizes.

Example ...

Value A positive integer, representing the desired point size.

Default Browser default.

SIZE NN all IE all HTML 3.2

SIZE="integerOrRelativeSize" Optional

Font sizes referenced by the SIZE attribute are the relative size scale that is not tied to any
one point size across operating system platforms. The default browser font size is 3. The
range of acceptable values for the SIZE attribute are integers from 1 to 7 inclusive. The
exact point size varies with the operating system and browser design.

Users can often adjust the default font size in preferences settings. The SIZE attribute over-
rides that setting. Moreover, SIZE values can be relative to whatever font size is set in the
preferences. By preceding an attribute value with a + or - sign, the browser’s default size
can be adjusted upward or downward, but always within the range of 1 through 7.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<FORM> 263

HTM
L Reference
Example
...
...

Value

Either an integer (quoted or not quoted) or a quoted relative value consisting of a + or -
symbol and an integer value.

Default 3

Object Model Reference
IE [window.]document.all.elementID.size

STYLE NN 4 IE 4 HTML 4

STYLE="styleSheetProperties" Optional

This attribute lets you set one or more style sheet rule property assignments for the current
element. A style sheet rule applied to a FONT element overrides any directly assigned
attribute values. Therefore, you can define a set of font characteristics for non-CSS-capable
browsers and a modified version for CSS-capable browsers in the same tag.

Example ...

Value

An entire CSS-syntax style sheet rule is enclosed in quotes. Multiple style attribute settings
are separated by semicolons. Style sheet attributes are detailed in Chapter 10.

Default None.

Object Model Reference
IE [window.]document.all.elementID.style

WEIGHT NN 4 IE n/a HTML n/a

WEIGHT="boldnessValue" Optional

The WEIGHT attribute is Navigator 4’s non-CSS equivalent of setting the font weight with a
regular attribute rather than by style sheet rule. The attribute does not appear to work, but
setting the font-weight style attribute does the job.

Value

Integer value between 100 and 900 in increments of 100. A value of 900 is the maximum
boldness setting.

Default Unknown.

<FORM> NN all IE all HTML all

<FORM>...</FORM> End Tag: Required

Despite the importance of HTML forms in communication between web page visitors and
the server, a FORM element at its heart is nothing more than a container of controls. Most,
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

264 <FORM>
but not all, form controls are created in the document as INPUT elements. Even if user inter-
action with INPUT elements is not intended for submission to a server (perhaps some client-
side scripting requires interaction with the user), such INPUT elements are contained by a
FORM element.

A document may contain any number of FORM elements, but a client may submit the
settings of controls from only one form at a time. Therefore, the only time it makes sense to
divide a series of form controls into multiple FORM elements is when the control groups can
be submitted independently of each other. If you need to logically or structurally group
controls while maintaining a single form, use the FIELDSET element to create the neces-
sary subgroupings of controls.

When a form is submitted to the server, all controls that have NAME attributes assigned to
them pass both their names and values—in name/value pairs—to the server for further
processing (or possibly as an email attachment or message with Navigator). A Common
Gateway Interface (CGI) program running on the server can accept and dissect the name/
value pairs for further processing (adding a record to a server database or initiating a
keyword search, for example). The server program is invoked via URL to the program
assigned to the ACTION attribute.

Inside browsers, the submission process consists of a few well-defined steps. The process
begins by the browser assembling a form data set out of the name/value pairs of form
controls. The name comes from the value assigned to the NAME attribute. A control’s value
depends on the type of control. For example, a text INPUT element’s value is the content
appearing in the text box at submission time; for a radio button within a radio group (all of
whose NAME attributes are assigned the same value), the value assigned to the VALUE
attribute of the selected radio button is inserted into the name/value pair for the radio
group.

The second step of submission encodes the text of each name/value pair. A + symbol is
substituted for each space character. Reserved characters (as defined by RFC 1738) are
escaped, and all other nonalphanumeric characters are converted to hexadecimal represen-
tations (in the form %HH, where HH is the hex code for the ASCII value of the character).
Name and value components of each name/value pair are separated by an = symbol, and
each name/value pair is delimited with an ampersand (&).

In the final step, the METHOD attribute setting determines how the escaped form data set is
transmitted to the server. With a METHOD of get, the form data set is appended to the URL
stated in the ACTION attribute, separated by a ? symbol. With a METHOD of post and a
default ENCTYPE, the data set is transmitted as a kind of (nonemail) message to the server.

Default behavior of the Enter key in forms has evolved into a recognized standard. When a
form consists of a single text INPUT element, a press of the Enter (or Return) key automati-
cally submits the form (as if the user had clicked on a SUBMIT button element. If the form
consists of two or more text INPUT elements, the Enter (or Return) key does not automati-
cally submit the form.

Form submission can be canceled in modern browsers with the help of scripts that perform
validation checking or other functions triggered by the onSubmit event handler. This event
fires prior to the form being submitted. If the event handler evaluates to false, the form is
not submitted, and the user may continue to edit the form elements.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<FORM> 265

HTM
L Reference
Example
<FORM NAME="orders" METHOD=POST ACTION="http://www.giantco.com/cgi-bin/
order">
...
</FORM>

Object Model Reference
NN [window.]document.forms[i]

[window.]document.formName

IE [window.]document.forms[i]
[window.]document.formName

Attributes

Event Handler Attributes

ACCEPT NN n/a IE n/a HTML 4

ACCEPT="MIMETypeList" Optional

Intended for use with INPUT elements of type file, the ACCEPT attribute lets you specify
one or more MIME types for allowable files to be uploaded to the server when the form is
submitted. The predicted implementation of this attribute would filter the file types listed in
file dialogs used to select files for uploading. In a way, this attribute provides client-side
validation of a file type so that files not conforming to the permitted MIME type are not
even sent to the server.

Example <FORM ACCEPT="text/html, image/gif" ...>...</FORM>

ACCEPT CLASS ID METHOD TARGET
ACCEPT-CHARSET DIR LANG NAME TITLE
ACTION ENCTYPE LANGUAGE STYLE

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onReset 3 4 4
onSelectStart n/a 4 n/a
onSubmit 2 3 4
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

266 <FORM>
Value

Case-insensitive MIME type (content type) value. For multiple items, a comma-delimited list
is allowed.

Default None.

ACCEPT-CHARSET NN n/a IE n/a HTML 4

ACCEPT-CHARSET="MIMETypeList" Optional

A server advisory (for servers that are equipped to interpret the information) about which
character sets it must receive from a client form.

Example <FORM ACCEPT-CHARSET="it, es" ...>...</FORM>

Value

Case-insensitive alias from the character set registry (ftp://ftp.isi.edu/in-notes/iana/
assignments/character-sets). Multiple character sets may be delimited by commas. The
reserved value, "unknown", is supposed to represent the character set that the server used
to generate the form for the client.

Default "unknown"

ACTION NN all IE all HTML all

ACTION="URL" Optional

Specifies the URL to be accessed when the form is being submitted. When the form is
submitted to a server for further processing, the URL may be to a CGI program or to an
HTML page that includes server-side scripts. (Those scripts execute on the server before the
HTML page is downloaded to the client.) As a result of the submission, the server returns an
HTML page for display in the client. If the returned display is to be delivered to a different
frame or window, the TARGET attribute must be specified accordingly.

You may also substitute a mailto: URL for the ACTION attribute value. Navigator turns the
name/value pairs of the form into a document for attachment to an email message (or as
the message body with the ENCTYPE attribute set to "text/plain"). For privacy reasons,
client users are notified of the impending email transmission and have the chance to cancel
the message. Internet Explorer through Version 4 does not automatically include form
element data inside an email message begun with a mailto: URL.

If you omit the ACTION attribute and the form is submitted, the current page reloads itself,
returning all form elements to their default values.

Example
<FORM METHOD=POST ACTION="http://www.giantco.com/orders/order.html">

Value A complete or relative URL.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<FORM> 267

HTM
L Reference
Object Model Reference
NN [window.]document.forms[i].action

[window.]document.formName.action

IE [window.]document.forms[i].action
[window.]document.formName.action

ENCTYPE NN all IE all HTML all

ENCTYPE="MIMEType" Optional

Sets a MIME type for the data being submitted to the server with the form. For typical form
submissions (where the METHOD attribute is set to post), the default value is the proper
content type. If you include a file INPUT element, specify "multipart/form-data" as the
ENCTYPE attribute. And for Navigator, it is usually more convenient to have form data
submitted to a mailto: URL to be in the message body instead of as a message attach-
ment. To embed the form data into the message body, set the ENCTYPE to "text/plain".

Example
<FORM METHOD=POST ACTION="mailto:orders@giantco.com" ENCTYPE="text/plain">
...
</FORM>

Value

Case-insensitive MIME type (content type) value. For multiple items, a comma-delimited list
is allowed.

Default application/x-www-form-urlencoded

Object Model Reference
NN [window.]document.forms[i].encoding

[window.]document.formName.encoding

IE [window.]document.forms[i].encoding
[window.]document.formName.encoding

METHOD NN all IE all HTML all

METHOD=get | post Optional

Forms may be submitted via two possible HTTP methods: get and post. These methods
determine whether the form element data is sent to the server appended to the ACTION
attribute URL (get) or as a transaction message body (post). In practice, when the ACTION
and METHOD attributes are not assigned in a FORM element, the form performs an uncondi-
tional reload of the same document, restoring form controls to their default values.

Due to potential problems with internationalization, the get method is deprecated in HTML
4.0. Because so much of the World Wide Web depends on this method and get is the
default method on most browsers, the get method is unlikely to go away for a long time.

Example
<FORM METHOD=POST ACTION="http://www@giantco.com/orders/order.html">
...
</FORM>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

268 <FORM>
Value

Case-insensitive values of get or post. These values do not have to be quoted.

Default get

Object Model Reference
NN [window.]document.forms[i].method

[window.]document.formName.method

IE [window.]document.forms[i].method
[window.]document.formName.method

NAME NN 2 IE 3 HTML n/a

NAME="elementIdentifier" Optional

Assigns an identifier to the entire FORM element. This value is particularly useful in writing
scripts that reference the form or its nested controls.

Example
<FORM NAME="orders" METHOD=POST ACTION="http://www.giantco.com/cgi-bin/
order">
...
</FORM>

Value Case-sensitive identifier.

Default None.

Object Model Reference
NN [window.]document.forms[i].name

[window.]document.formName.name

IE [window.]document.forms[i].name
[window.]document.formName.name

TARGET NN all IE all HTML all

TARGET="windowOrFrameName" Optional

If the HTML document returned from the server after it processes the form submission is to
be loaded into a window or frame other than the current window or frame, you can specify
where the returned document should load by assigning a window or frame name to the
TARGET attribute. Target frame names must be assigned to frames and windows as identi-
fiers. Assign names to frames via the NAME attribute of the FRAME element; assign names to
new windows via the second parameter of the window.open() scripting method. If you
omit this attribute, the returned document replaces the document containing the FORM
element. An identifier other than one belonging to an existing frame or window opens a
new window for the returned document.

A FORM element can have only one returned document and one target. If you want a form
submission to change the content of multiple frames, you can include a script in the
returned document whose onLoad event handler loads or dynamically writes a document
into a different frame. (Set the location.href property of each frame to a desired URL.)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<FRAME> 269

HTM
L Reference
Example
<FORM METHOD=POST ACTION="http://www.giantco.com/cgi-bin/order"
TARGET="new">
...
</FORM>

Value

Case-sensitive identifier when the frame or window name has been assigned via the target
element’s NAME attribute. Four reserved target names act as constants:

_blank Browser creates a new window for the destination document.

_parent Destination document replaces the current frame’s framesetting document (if
one exists; otherwise, it is treated as _self).

_self Destination document replaces the current document in its window or frame.

_top Destination document is to occupy the entire browser window, replacing any
and all framesets that may be loaded (also treated as _self if there are no
framesets defined in the window).

Default _self

Object Model Reference
NN [window.]document.forms[i].target

[window.]document.formName.target

IE [window.]document.forms[i].target
[window.]document.formName.target

<FRAME> NN 2 IE 3 HTML 4

<FRAME> End Tag: Forbidden

The FRAME element defines properties of an individual window space that is some frac-
tional portion of the entire browser window. A FRAME element must be defined within the
context of a FRAMESET element. It is the FRAMESET that defines the row and column
arrangement of a related group of frames.

A browser treats a frame as a separate browser window within the browser application’s
window. As such, each frame window can load its own content, independent of other
frames. Although no attributes of the FRAME element are required, assigning a value to the
NAME attribute is highly recommended if you have forms or links whose returned or destina-
tion document is to be displayed in a different frame. Scripting among multiple frames also
benefits greatly from names assigned to frames because it makes references to those frames
(and their contents) more easily understandable to someone reading the script code.

Example
<FRAMESET COLS="150,*">
 <FRAME NAME="navbar" SRC="nav.html">
 <FRAME NAME="main" SRC="page1.html">
</FRAMESET>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

270 <FRAME>
Object Model Reference
NN [window.]frameName

[window.]frames[i]

IE [window.]frameName
[window.]frames[i]
[window.]document.all.frameID

Attributes

BORDERCOLOR NN 3 IE 4 HTML n/a

BORDERCOLOR="colorTripletOrName" Optional

If your frameset displays borders (as set with the BORDER attribute of the FRAMESET
element), but you want a subset of the frames in the frameset to be rendered with a border
color different from the rest, you can assign a color to the BORDERCOLOR attribute of an
individual FRAME element. Mixing border colors in a frameset exposes your HTML to the
risk of different rendering techniques of each browser and operating system. Not only do
the precise pixel composition of borders vary, but each browser and operating system may
resolve conflicts between different colored borders differently. If you assign a color to only
some frames of a frameset, be sure to test the look on as many browser versions and oper-
ating systems as possible to evaluate the visual effect of your color choices.

Example <FRAME NAME="navbar" SRC="nav.html" BORDERCOLOR="salmon">

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default None.

Object Model Reference
IE [window.]document.all.frameID.borderColor

DATAFLD NN n/a IE 4 HTML n/a

DATAFLD="columnName" Optional

Used with IE 4 data binding to associate a remote data source column name in lieu of an
SRC attribute for a FRAME element. The data source column must contain a valid URI (rela-
tive or absolute). A DATASRC attribute must also be set for the element.

Example <FRAME DATASRC="#DBSRC3" DATAFLD="newsURL">

Value Case-sensitive identifier.

Default None.

BORDERCOLOR FRAMEBORDER LANGUAGE NAME STYLE
CLASS HEIGHT LONGDESC NORESIZE TITLE
DATAFLD ID MARGINHEIGHT SCROLLING WIDTH
DATASRC LANG MARGINWIDTH SRC
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<FRAME> 271

HTM
L Reference
Object Model Reference
IE [window.]document.all.frameID.dataFld

DATASRC NN n/a IE 4 HTML n/a

DATASRC="dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example <FRAME DATASRC="#DBSRC3" DATAFLD="newsURL">

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.all.frameID.dataSrc

FRAMEBORDER NN 3 IE 3 HTML 4

FRAMEBORDER="borderSwitch" Optional

Controls whether an individual frame within a frameset displays a border. The setting is
supposed to override the FRAMEBORDER attribute setting of the containing FRAMESET
element. Controlling individual frame borders appears to be a problem for most browsers in
most operating system versions. Turning off the border of one frame may have no effect if
all adjacent frames have their borders on. Feel free to experiment with the effects of turning
some borders on and some borders off, but be sure to test the final effect on all browsers
and operating systems used by your audience. Rely more comfortably on the FRAMEBORDER
attribute of the entire FRAMESET.

Example <FRAME NAME="navbar" SRC="nav.html" FRAMEBORDER=no>

Value

On-off values for this attribute vary with the source. HTML 4.0 specifies the values of 1 (on)
and 0 (off). Navigator uses yes and no. Internet Explorer 4 accepts both sets of values. For
cross-browser compatibility, use the yes/no pairing.

Default yes

Object Model Reference
IE [window.]document.all.frameID.frameBorder

HEIGHT, WIDTH NN n/a IE 4 HTML n/a

HEIGHT="length" Optional

WIDTH="length"

Microsoft HTML documentation for IE 4 says that the HEIGHT and WIDTH attributes control
the size of a frame. In practice in IE 4, these attributes have no direct control over the
appearance of the frames within a frameset. Instead, the COLS and ROWS attributes of the
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

272 <FRAME>
containing FRAMESET govern the initial geometry of a frame. Because the corresponding
object properties for a frame are documented, but not part of the IE 4 document object
model, the HEIGHT and WIDTH attributes are most likely in the documentation by error. Do
not use them.

LONGDESC NN n/a IE n/a HTML 4

LONGDESC="URL" Optional

Specifies a URL of a document that contains a longer description of the element than what
the content of the TITLE attribute reveals. One application of this attribute in future
browsers is to retrieve an annotated description of the element for users who cannot read
the browser screen.

Example
<FRAME LONGDESC="navDesc.html" TITLE="Navigation Bar" SRC="navbar.html">

Value Any valid URI, including complete and relative URLs.

Default None.

MARGINHEIGHT, MARGINWIDTH NN n/a IE 3 HTML 4

MARGINHEIGHT="pixelCount" Optional

MARGINWIDTH="pixelCount"

The number of pixels between the inner edge of a frame and the content rendered inside
the frame. The MARGINHEIGHT attribute controls space along the top and (when scrolled)
the bottom edges of a frame; the MARGINWIDTH attribute controls space on the left and right
edges of a frame. The HTML 4.0 specification leaves default behavior up to browsers.

Without any prompting, Internet Explorer 4 automatically inserts a margin of 14 (Windows)
or 8 (Macintosh) pixels inside a frame. But if you attempt to override the default behavior,
be aware that setting any one of these two attributes causes the value of the other to go to
zero. Therefore, unless you want the content to be absolutely flush with various frame
edges, you need to assign values to both attributes. Due to the disparity in default values
for each operating system, you cannot assign truly default values to these attributes.

Example <FRAME SRC="navbar.html" MARGINHEIGHT=20 MARGINWIDTH=14>

Value Any positive integer value or zero.

Default 14 (Windows) or 8 (Macintosh).

Object Model Reference
IE [window.]document.all.frameID.marginHeight

[window.]document.all.frameID.marginWidth

NAME NN 2 IE 3 HTML 4

NAME="elementIdentifier" Optional

When links and forms must load their destination or returned documents into frames other
than the one holding the link or form, those elements have TARGET attributes indicating
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<FRAME> 273

HTM
L Reference
which frame receives the new content. To direct such content to a frame, the frame must
have a value assigned to its NAME attribute. That same value is assigned to the TARGET
attribute of the A or FORM element. Client-side scripting also uses the frame’s name in
building references to other frames or content in other frames. It is good practice to assign a
unique identifying name to all frames.

Example <FRAME NAME="navbar" SRC="nav.html">

Value Case-sensitive identifier.

Default None.

Object Model Reference
NN [window.]frameName.name

[window.]frames[i].name

IE [window.]frameName.name
[window.]frames[i].name
[window.]document.all.frameID.name

NORESIZE NN 2 IE 3 HTML 4

NORESIZE Optional

Frame borders can be resized by the user dragging the border perpendicular to the axis of
the border edge. When present, the NORESIZE attribute instructs the browser to prevent the
frame’s edges from being manually resized by the user. All border edges of the affected
FRAME element become locked, meaning that all edges that extend to other frames in the
frameset remain locked as well.

Example <FRAME SRC="navbar.html" NORESIZE>

Value The presence of the attribute makes the frame nonresizable.

Default Frames are resizable by default.

Object Model Reference
IE [window.]document.all.frameID.noResize

SCROLLING NN 2 IE 3 HTML 4

SCROLLING=auto | no | yes Optional

By default, browsers add vertical and/or horizontal scrollbars when the content loaded into
a frame exceeds the visible content region of the frame. Scrollbars can affect the layout of
some content because they occupy space normally devoted to content (that is, the frame
does not expand to accommodate scrollbars). Also, due to differences in default font sizes
in browsers and operating system versions, a given collection of text content may display
differently in different clients. If you want to prevent scrollbars from appearing in the frame,
set the SCROLLING attribute to no; if you want scrollbars to be in the frame at all times, set
the attribute to yes. In the latter case, if the content does not require scrolling, the scroll-
bars are disabled. In some older versions of Navigator, the automatic scrollbars remain
visible, even if content not requiring them is subsequently loaded into a frame. In Navi-
gator 4 (and all versions of Internet Explorer), the automatic scrollbars appear only when
needed.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

274 <FRAME>
Setting the SCROLLING attribute to no should be used only after you have tested on all
browsers and platforms that mission-critical content is always visible in the frame. If the
frame is set to not scroll and has the NORESIZE attribute set, some users might not be able
to see all the content of the frame.

Example <FRAME SRC="navbar.html" SCROLLING=no>

Value Case-insensitive constant values (quoted or not): auto | no | yes.

Default auto

Object Model Reference
IE [window.]document.all.frameID.scrolling

SRC NN 2 IE 3 HTML 4

SRC="URL" Optional

Defines the URL of the content to be loaded into the FRAME element. The URL can be an
absolute URL or one relative to the URL of the document containing the frameset specifica-
tions. You may also use the javascript: pseudo-URL to have the returned value of a
script appear in the frame. For example, if you want a frame to be blank when the frameset
loads, you can define a function in the frameset document that returns a blank HTML page.
The SRC attribute for each soon-to-be blank frame invokes the function from the vantage
point of the child frame:

<HTML>
<SCRIPT LANGUAGE="JavaScript">
function blank() {
 return "<HTML></HTML>"
}
</SCRIPT>
<FRAMESET COLS="50%,50%">
 <FRAME NAME=leftFrame SRC="javascript:parent.blank()">
 <FRAME NAME=rightFrame SRC="javascript:parent.blank()">
</FRAMESET>
</HTML>

Another type of blank page is available from some browsers and versions via the
about:blank URL, which draws from an internal blank page. However, Navigator 2 and 3
for the Macintosh display an unwanted message with this URL in a window or frame.

Example <FRAME SRC="navbar.html">

Value A complete or relative URL or a javascript: pseudo-URL.

Default None.

Object Model Reference
IE [window.]document.all.frameID.src

WIDTH
See HEIGHT.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<FRAMESET> 275

HTM
L Reference
<FRAMESET> NN 2 IE 3 HTML 4

<FRAMESET>...</FRAMESET> End Tag: Required

Defines the layout of a multiple-frame presentation in a browser’s application window. The
primary duty of the FRAMESET element is to specify the geographical layout—in a row and
column array—of rectangular frames. Attributes defined in a FRAMESET element apply to all
FRAME elements nested within (unless overridden by a similar attribute for a specific
FRAME). A FRAMESET element’s tag takes the place in an HTML document that is normally
devoted to the BODY element.

You may nest a FRAMESET element within a FRAMESET element. This tactic allows you to
subdivide a frame from the outer FRAMESET element into two or more frames. For example,
if you define one FRAMESET element with three rows and two columns, you get a total of
six frames:

<FRAMESET ROWS="33%, 33%, 34%" COLS="50%, 50%">
 <FRAME NAME="r1c1"...>
 <FRAME NAME="r1c2"...>
 <FRAME NAME="r2c1"...>
 <FRAME NAME="r2c2"...>
 <FRAME NAME="r3c1"...>
 <FRAME NAME="r3c2"...>
</FRAMESET>

Figure 8-1 shows the resulting frame organization.

On the other hand, if you nest a frameset where a frame definition goes, that frame is
divided into whatever frame organization is defined by that nested frameset. Consider the
following nested frameset:

Figure 8-1. A three-row, two-column frameset
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

276 <FRAMESET>
<FRAMESET ROWS="33%, 33%, 34%">
 <FRAME NAME="r1"...>
 <FRAMESET COLS="50%, 50%">
 <FRAME NAME="r2c1"...>
 <FRAME NAME="r2c2"...>
 </FRAMESET>
 <FRAME NAME="r3"...>
</FRAMESET>

This produces the frame organization shown in Figure 8-2.

You may nest FRAMESET elements as deeply as your page design requires. Be aware that
frames can devour memory resources of browsers on some operating systems. Not all users
appreciate frames that display borders, even when such a structure may make logical sense
for your page design.

The outermost frameset document is the one whose TITLE attribute governs the display in
the browser window title bar. Documents loaded into individual frames have no control
over title bar display, although for reasons of scripting and potential application in future
browsers, the TITLE attribute of framed documents should be set anyway.

If you wish to offer an option for a user to remove a frameset, you can supply a link or
button that invokes a script. The script should set the top.location.href property to the
URL of the single most important document of the pages loaded into frames (the primary
content).

Example
<FRAMESET COLS="150,*">
 <FRAME NAME="navbar" SRC="nav.html">
 <FRAME NAME="main" SRC="page1.html">
</FRAMESET>

Figure 8-2. A nested frameset
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<FRAMESET> 277

HTM
L Reference
Object Model Reference
IE [windowRef.]document.all.framesetID

Attributes

Event Handler Attributes

BORDER NN 3 IE 4 HTML n/a

BORDER="pixelCount" Optional

Frames display 3-D borders by default. The default thickness of that border varies with
browser and operating system. You can adjust this thickness by assigning a different value
to the BORDER attribute of the frameset. Only the outermost FRAMESET element of a system
of nested framesets responds to the BORDER attribute setting.

Navigator 4 is consistent across Windows and Macintosh platforms by displaying a default
border that is the same thickness as when the BORDER attribute is set to 5. For IE 4, the
default value is 6 in Windows and 1 on the Mac (although the actual rendering is far more
than one pixel wide). Any single setting you make for the BORDER attribute therefore does
not look the same on all browsers. Moreover, at smaller settings, some browsers react
strangely. IE 4 won’t display a border in Windows when the value is 2 or less; Navigator
loses its 3-D effect when the value is 2 or less. Navigator also has a nasty habit of rendering
an odd divot in the center of frame bars on the Macintosh.

This hodge-podge deployment of frame borders may make you shy away from using them
altogether (set the BORDER attribute to 0). In some cases, however, borders provide reas-
suring visual contexts for frame content that requires a scrollbar. Having a scrollbar appear
floating in a browser window might be disconcerting to some viewers.

That the HTML 4.0 specification does not include a BORDER attribute might lead one to
believe it prefers the use of style sheet borders instead of borders tied only to frames.
Neither browser (through Version 4) responds to style sheet border settings, however.

Example <FRAMESET COLS="150,*" BORDER=0>...</FRAMESET>

Value

An integer value. A setting of zero eliminates the border entirely. Although the value is
supposed to represent the precise pixel thickness of borders in the frameset, this is not
entirely true for all operating systems or browsers.

BORDER COLS ID LANGUAGE STYLE
BORDERCOLOR FRAMEBORDER LANG ROWS TITLE
CLASS FRAMESPACING

Handler NN IE HTML
onBlur 3 4 n/a
onFocus 3 4 n/a
onLoad 2 3 4
onMove 4 n/a n/a
onResize 4 n/a n/a
onUnload 2 3 4
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

278 <FRAMESET>
Default See description.

Object Model Reference
IE [windowRef.]document.all.framesetID.border

BORDERCOLOR NN 3 IE 4 HTML n/a

BORDERCOLOR="colorTripletOrName" Optional

Establishes the rendering color for all visible borders in a frameset. A BORDERCOLOR setting
in an outermost FRAMESET element may be overridden by a BORDERCOLOR attribute of a
nested FRAMESET element (for the nested frameset’s frames only) or an individual FRAME
element. Browsers resolve conflicts of colors assigned to adjacent frames differently. Test
your color combinations carefully if you mix border colors.

Example <FRAMESET COLS="150,*" BORDERCOLOR="salmon">...</FRAMESET>

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default

Browser default, usually a shade of gray with black or blue highlighting for the 3-D effect.

Object Model Reference
IE [windowRef.]document.all.framesetID.borderColor

COLS NN 2 IE 3 HTML 4

COLS="columnLengthsList" Optional

Defines the sizes or proportions of the column arrangement of frames in a frameset. If it is
the intent to use the FRAMESET element to create frames in multiple columns, you must
assign a list of values to the COLS attribute.

Column size is defined in one of three ways:

• An absolute pixel size

• A percentage of the width available for the entire frameset

• A wildcard (*) to represent all available remaining space after other pixels and percent-
ages have been accounted for

Use an absolute pixel size when you want the width of a frame to be the same no matter
how the user has sized the overall browser window. This is especially useful when the
frame is to display an object of fixed width, such as an image. Use a percentage when you
want the frame width to be a certain proportion of the frameset’s width, no matter how the
user has adjusted the size of the overall browser window. If you use all percentage values
for the COLS attribute, they should add up to 100%. If the values don’t add up to 100%, the
browser makes the columns fit anyway. Finally, use the asterisk wildcard value to let the
browser calculate the width of one frame when all other frames in the frameset have fixed
or percentage values assigned to them. Separate the values within the attribute value string
with commas.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<FRAMESET> 279

HTM
L Reference
You can mix and match all three types of values in the attribute string. For example,
consider a three-column frameset. If you want the leftmost column to be exactly 150 pixels
wide, but the middle column must be 50% of the total frameset width, set the value as
follows:

<FRAMESET COLS="150,50%,*">

The precise width of the two rightmost frames is different with each browser window’s
width adjustment. The rightmost frame width in this example is roughly equal to one half
the width of the frameset minus the 150 pixels reserved for the leftmost frame.

To create a regular grid of frames, assign values to both the COLS and ROWS attributes in the
FRAMESET element’s tag. For an irregular array, you must nest FRAMESET elements, as
shown in the description of the FRAMESET element, earlier in this section.

Example <FRAMESET COLS="25%,50%,25%">...</FRAMESET>

Value

Comma-separated list of pixel, percentage, or wildcard (*) values. Internet Explorer 4 for
the Macintosh exhibits incorrect behavior with some combinations that include a wildcard
value.

Default 100%

Object Model Reference
IE [windowRef.]document.all.framesetID.cols

FRAMEBORDER NN 3 IE 3 HTML n/a

FRAMEBORDER="borderSwitch" Optional

Controls whether all frames within the frameset display a border (acting as dividers between
frame edges). The FRAMEBORDER attribute of FRAME elements can override the FRAMESET
element’s setting for this attribute, but some frame organizations don’t lend themselves well
to eliminating frames from subgroups of frames. Override the FRAMESET element’s attribute
with caution and testing on all browsers and operating system platforms.

Example <FRAMESET COLS="25%,50%,25%" FRAMEBORDER="no">...</FRAMESET>

Value

On-off values for this attribute vary with the browser. Navigator uses yes and no. Internet
Explorer 4 accepts both yes | no and 1 | 0 (only the latter pair are specified for IE 3). For
Version 4 cross-browser compatibility, use the yes/no pairing.

Default yes

Object Model Reference
IE [windowRef.]document.all.framesetID.frameBorder

FRAMESPACING NN n/a IE 3 HTML n/a

FRAMESPACING="pixelLength" Optional

The Internet Explorer FRAMESPACING attribute is an older version of the BORDER attribute.
The older attribute is supported in IE 4 for backward compatibility. The behavior of
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

280 <FRAMESET>
FRAMESPACING attribute is more uniform across operating system versions of IE 4: a setting
of 10 pixels generates a border between frames that is essentially identical in both Windows
and Mac versions. For an IE-only deployment, the FRAMESPACING attribute is a more accu-
rate way to create borders that look the same across operating system versions.

Example <FRAMESET COLS="25%,50%,25%" FRAMESPACING="7">...</FRAMESET>

Value

A positive integer. Unlike the BORDER attribute, however, a setting of zero does not remove
the border. Use the FRAMEBORDER attribute to hide borders entirely.

Default 2

Object Model Reference
IE [windowRef.]document.all.framesetID.frameSpacing

ROWS NN 2 IE 3 HTML 4

ROWS="rowLengthsList" Optional

Defines the sizes or proportions of the row arrangement of frames in a frameset. If it is the
intent to use the FRAMESET element to create frames with multiple rows, you must assign a
list of values to the ROWS attribute.

Row size is defined in one of three ways:

• An absolute pixel size

• A percentage of the height available for the entire frameset in the browser window

• A wildcard (*) to represent all available remaining space in the browser window after
other pixels and percentages have been accounted for

Use an absolute pixel size when you want the height of a frame row to be the same no
matter how the user has sized the overall browser window. This is especially useful when
the frame is to display an object of fixed height, such as an image. Use a percentage when
you want the frame height to be a certain proportion of the frameset’s height, no matter
how the user has adjusted the size of the overall browser window. If you use all percentage
values for the ROWS attribute, they should add up to 100%. If the values don’t add up to
100%, the browser makes the rows fit anyway. Finally, use the asterisk wildcard value to let
the browser calculate the height of one row when all other rows in the frameset have fixed
or percentage values assigned to them. Separate the values within the attribute value string
with commas.

You can mix and match all three types of values in the attribute string. For example,
consider a three-row frameset. If you want the bottom row to be exactly 80 pixels high to
accommodate a navigation bar, but the middle row must be 50% of the total frameset
height, set the value as follows:

<FRAMESET ROWS="*,50%,80">

The precise height of the two topmost frames is different with each browser window’s
height adjustment. The topmost frame height in this example is roughly equal to one half
the height of the frameset minus the 80 pixels reserved for the bottom row.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<H1>, <H2>, <H3>, <H4>, <H5>, <H6> 281

HTM
L Reference
To create a regular grid of frames, assign values to both the COLS and ROWS attributes in the
FRAMESET element’s tag. For an irregular array, you must nest FRAMESET elements, as
shown in the description of the FRAMESET element, earlier in this section.

Example <FRAMESET ROWS="25%,50%,25%">...</FRAMESET>

Value

Comma-separated list of pixel, percentage, or wildcard (*) values. Internet Explorer 4 for
the Macintosh exhibits incorrect behavior with some combinations that include a wildcard
value.

Default 100%

Object Model Reference
IE [windowRef.]document.all.framesetID.rows

STYLE NN n/a IE 4 HTML 4

STYLE="styleSheetProperties" Optional

This attribute lets you set one or more style sheet rule property assignments for the current
element. The format of the property assignments depends on the browser’s default style,
but both Navigator and Internet Explorer accept the CSS syntax. Documents loaded into
frames in IE 4 override style settings for a frameset, so don’t bother writing STYLE attributes
for FRAMESET elements.

Value

An entire CSS-syntax style sheet rule is enclosed in quotes. Multiple style attribute settings
are separated by semicolons. Style sheet attributes are detailed in Chapter 10.

Default None.

Object Model Reference
IE [windowRef.]document.all.framesetID.style

<H1>, <H2>, <H3>,
<H4>, <H5>, <H6> NN all IE all HTML all

<H1>...</H1>, <H2>...</H2>, <H3>...</H3> End Tag: Required

<H4>...</H4>, <H5>...</H5>, <H6>...</H6>

HTML defines a series of six heading levels whose associated numbers are intended to
signify the relative importance of the section below the heading. The H1 element repre-
sents the most important, whereas H6 represents the least important. HTML document
parsers could examine a page’s tags to create a table of contents based on the headings.
This means that for proper document structure, these heading levels should be used in
proper sequence, without skipping levels for aesthetic purposes.

It is up to the browsers to determine the font, weight, and other characteristics of each
level. Each heading element is rendered on its own line, with no line break or paragraph
elements necessary to begin the content of the section titled with the heading. Figure 8-3
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

282 <H1>, <H2>, <H3>, <H4>, <H5>, <H6>
shows examples of how Navigator 4 and Internet Explorer 4 renders all six heading levels
in Windows 95. By and large, this pattern applies to other browser versions and operating
systems except for Navigator on the Macintosh, whose default H4 and H6 elements render
characters wider (albeit shorter) than the H3 and H5 elements preceding them.

You can always override the browser’s rendering style for any heading level or individual
heading with style sheet rules.

Example
<H1>The Solar System</H1>
<P>Floating gracefully within the Milky Way galaxy is our Solar System.
...</P>
<H2>The Sun</H2>
<P>At a distance of 93,000,000 miles from Earth, the Sun...</P>
<H3>The Planets</H3>
<P>Nine recognized planets revolve around the Sun. ...</P>
<H4>Mercury</H4>
...

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

Figure 8-3. Heading levels in Internet Explorer 4 and Navigator 4

ALIGN DIR LANG STYLE TITLE
CLASS ID LANGUAGE

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<HEAD> 283

HTM
L Reference
ALIGN NN all IE all HTML 3.2

ALIGN="where" Optional

Determines how the heading is rendered in physical relation to the next outermost
container, usually the body. Both Navigator and Internet Explorer support alignment values
for center, left, and right alignment. HTML 4.0 adds the possibility of a fully justified
alignment, as well.

The ALIGN attribute is deprecated in HTML 4.0 in favor of the text-align: style sheet
attribute.

Example <H1 ALIGN="center">Article I</H1>

Value

The following table shows values for the ALIGN attribute. Values may be treated as case-
insensitive values.

Default left

Object Model Reference
IE [window.]document.all.elementID.align

<HEAD> NN all IE all HTML all

<HEAD>...</HEAD> End Tag: Optional

The HEAD element contains document information that is generally not rendered as part of
the document in the browser window. At most, the TITLE element affects what the user
sees when a browser displays its content in the browser window’s titlebar.

Content of the HEAD element consists entirely of other elements that are intended to assist
the browser in working with document data. Another classification of data, handled in one
or more META elements, can also assist search engines and document parsers to learn more

onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a

Value NN 4 IE 4 HTML4.0
center • • •
justify - - •
left • • •
right • • •

Handler NN IE HTML
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

284 <HEAD>
about the document based on abstract information supplied by the author. The following
table shows the elements that may be nested inside a HEAD element according to three
different specifications.

Example
<HEAD>
<META NAME="Author" CONTENT="Danny Goodman">
<STYLE TYPE="text/css">
 H1 {color:cornflowerblue}
</STYLE>
</HEAD>

Object Model Reference
IE [window.]document.all.elementID

Attributes

CLASS NN n/a IE 4 HTML n/a

CLASS="className1[...classNameN]" Optional

An identifier generally used to associate an element with a style sheet rule defined for a
class selector. See Chapter 3. The CLASS attribute makes no sense for the HEAD element
because the attribute can’t be assigned to a class style selector that has not yet been
defined. (It gets defined later within the HEAD element.) This attribute appears to be in
Internet Explorer for the sake of consistency, rather than genuine functionality.

Value

Case-sensitive identifier. Multiple classes can be assigned by separating the class names with
spaces within the quoted attribute value.

Default None.

Object Model Reference
IE [window.]document.all.elementID.className

Element NN 4 IE 4 HTML 4.0
BASE • • •
BASEFONT • • -
BGSOUND - • -
ISINDEX • - •
LINK • • •
META • • •
NEXTID - • -
SCRIPT • • •
STYLE • • •
TITLE • • •

CLASS ID LANG PROFILE TITLE
DIR
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<HEAD> 285

HTM
L Reference
ID NN n/a IE 4 HTML n/a

ID="elementIdentifier" Optional

A unique identifier that distinguishes this element from all the rest in the document. You
can use this attribute value in Internet Explorer scripts as a way to reference the HEAD
element by ID rather than by the longer document.all.tags("HEAD")[0] reference.

Example <HEAD ID="docHead">...</HEAD>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.all.tags("HEAD")[0].id

[window.]document.all.elementID.id

PROFILE NN n/a IE n/a HTML 4

PROFILE="URLList" Optional

A meta data profile is a separate file (or browser built-in named definition) that defines one
or more meta data property behaviors. In some ways, a profile is like a header for meta
data whose properties are assigned in plain view within META elements inside a HEAD
element. Future browsers and external systems (such as search engines) may use the profile
information to extend the typical name/value assignments in META elements as imple-
mented in Version 4 (and earlier) browsers.

Example
<HEAD PROFILE="http://www.giantco.com/profiles/common">
 <META NAME="Author" content="Jane Smith">
 <META NAME="keywords" CONTENT="benefits,insurance,">
 ...
</HEAD>

Value Any valid URL or browser profile constant.

Default Browser default.

TITLE NN n/a IE 4 HTML n/a

TITLE="advisoryText" Optional

An advisory description of the element. Because the HEAD element does not display content
in the browser window, there is no region of the screen to associate with the normal tooltip
that displays TITLE attribute data.

Do not confuse the TITLE attribute of a HEAD element with the TITLE element that is
nested inside the HEAD element. The latter represents the title of the document that appears
in the browser window’s titlebar and can be used by document parsers to extract the title
for indexing purposes.

Example <HEAD TITLE="Widget Price List">...</HEAD>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

286 <HR>
Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

Object Model Reference
IE [window.]document.all.elementID.title

<HR> NN all IE all HTML all

<HR> End Tag: Forbidden

The HR element draws a horizontal rule according to visual rules built into the browser with
a variety of attribute controls. As a block element, the HR element starts and ends its rule on
its own line, as if the element were surrounded by BR elements. This element is not a
content container, and many of the attributes that have been in use for a long time are
deprecated in HTML 4.0 in favor of style sheet rules. The HTML recommendation leaves
default appearance specifications up to the browser maker.

Example <HR ALIGN="center" WIDTH="80%">

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

ALIGN ID LANGUAGE SIZE TITLE
CLASS LANG NOSHADE STYLE WIDTH
COLOR

Handler NN IE HTML
onBeforeUpdate n/a 4 n/a
onBlur n/a 4 n/a
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onFocus n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onResize n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<HR> 287

HTM
L Reference
ALIGN NN all IE all HTML 3.2

ALIGN="where" Optional

Determines how the HR element is rendered in physical relation to the next outermost
container (usually the BODY). The ALIGN attribute is deprecated in HTML 4.0 in favor of the
align: style sheet attribute.

Example <HR ALIGN="right">

Value One of three case-insensitive values: center | left | right.

Default left

Object Model Reference
IE [window.]document.all.elementID.align

COLOR NN n/a IE 4 HTML n/a

COLOR="colorTripletOrName" Optional

Sets the color of the HR element in Internet Explorer. Setting the COLOR attribute also turns
on the NOSHADE attribute. If you want a 3-D effect rule to appear with a color, use the style
sheet color: attribute. Navigator 4, however, doesn’t apply color style sheet rules to HR
elements.

Example <HR COLOR="salmon">

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default None.

Object Model Reference
IE [window.]document.all.elementID.color

NOSHADE NN all IE all HTML 3.2

NOSHADE Optional

The presence of the NOSHADE attribute tells the browser to render the rule as a flat (not
3-D) line. In Internet Explorer only, if you set the COLOR attribute, the browser changes the
default line style to a no-shade style.

Example <HR NOSHADE>

Value The presence of the attribute turns on no-shade rendering.

Default Off.

onRowEnter n/a 4 n/a
onRowExit n/a 4 n/a
onSelectStart n/a 4 n/a

Handler NN IE HTML
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

288 <HTML>
Object Model Reference
IE [window.]document.all.elementID.noShade

SIZE NN all IE all HTML 3.2

SIZE="pixelCount" Optional

You can override the default thickness of the HR element by assigning a value to the SIZE
attribute. The SIZE attribute is deprecated in HTML 4.0 in favor of the height: style sheet
attribute. You can use this style rule in Internet Explorer 4, but not in Navigator 4.

Example <HR SIZE=4>

Value Any positive integer. A setting of zero still draws a one-pixel thick rule.

Default 2

Object Model Reference
IE [window.]document.all.elementID.size

WIDTH NN all IE all HTML 3.2

WIDTH="length" Optional

Defines the precise pixel width or percentage of available width (relative to the containing
element) to draw the HR element rule. This attribute is deprecated in HTML 4.0 in favor of
the width: style sheet attribute.

Example <HR WIDTH="75%">

Value Any length value in pixels or percentage of available space.

Default 100%

Object Model Reference
IE [window.]document.all.elementID.width

<HTML> NN all IE all HTML all

<HTML>...</HTML> End Tag: Optional

The HTML element is the container of the entire document content, including the HEAD
element. Both the start and end tags are optional, but good style dictates the inclusion of
both. Typically, the HTML element start tag is the second line of an HTML file, following the
Document Type Definition (DTD) statement. If no DTD is provided in the file (it assumes
the browser’s default DTD), the HTML start tag becomes the first line of the file. The end tag
should be in the last line of the file (but it does not have to stand on its own line).

Example
<HTML>
<HEAD>
 ...
</HEAD>
<BODY>
 ...
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<I> 289

HTM
L Reference
</BODY>
</HTML>

Attributes

TITLE NN n/a IE 4 HTML n/a

TITLE="advisoryText" Optional

An advisory description of the element. In Internet Explorer 4, the title is rendered as a
tooltip when the cursor rests anywhere in the document for a moment. TITLE attributes of
other elements in the window override the attribute value set for the HTML element.

Example <HTML TITLE="It's a cool document!">...</HTML>

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

Object Model Reference
IE [window.]document.all.elementID.title

VERSION NN n/a IE n/a HTML 3.2

VERSION="string" Optional

The VERSION attribute is deprecated in HTML 4.0 and was never adopted by the major
browsers. Originally intended to specify the HTML DTD version supported by the docu-
ment, this information is universally supplied in the separate DTD statement (in the
!DOCTYPE element) above the HTML element in the document.

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

<I> NN all IE all HTML all

<I>...</I> End Tag: Required

The I element—one of several font style elements in HTML 4.0—renders its content in an
italic version of the font face governing the next outermost HTML container. You can nest
multiple font style elements to create combined styles, such as bold italic (<I>bold-
italic text</I>).

It is up to the browser to italicize a system font or perhaps load an italic version of the
currently specified font. If you are striving for font perfection, it is best to use style sheets
(and perhaps downloadable fonts) to specify a true italic font face, rather than risk the
browser’s extrapolation of an italic face from a system font.

DIR LANG TITLE VERSION
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

290 <IFRAME>
You can take advantage of the containerness of this element by assigning style sheet rules
to some or all I elements in a page. For example, you may wish all I elements to be in a
red color. By assigning the style rule I{color:red}, you can do it to all elements with
only a tiny bit of code.

Although this element is not deprecated in HTML 4.0, it would not be surprising to see it
lose favor to the font-style: style sheet attribute in the future.

Example <P>This product is <I>new</I> and <I>improved</I>!</P>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

<IFRAME> NN n/a IE 3 HTML 4

<IFRAME>...</IFRAME> End Tag: Required

An IFRAME element creates an inline frame within the natural flow of a document’s content.
The frame is a rectangular space into which you may load any other HTML document (or
use scripts to dynamically write content to the space). If you assign a value to the NAME
attribute of an IFRAME element, you may supply that name as the value of a TARGET
attribute of A, FORM, or other element that lets you define a target for a destination or
returned document.

Although an IFRAME element’s rectangular space begins immediately following the content
that comes before it (including in a line of text), all content following the end tag starts on
the next line following the frame rectangle. Text leading up to the IFRAME element can be
aligned in the same ways that text can be aligned around an IMG or OBJECT element.

Content between the start and end tags is ignored by browsers that support the IFRAME
element. All others display such content as inline HTML content (as a way to let users know

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<IFRAME> 291

HTM
L Reference
what they’re missing and perhaps provide a link to related information). The Navigator 4
element that comes closest to the functionality and behavior of the IFRAME element is the
ILAYER element.

Example
<IFRAME SRC="quotes.html" WIDTH=150 HEIGHT=90>

 Click here to see the latest quotes
</IFRAME>

Object Model Reference
IE [window.]document.frameName

Attributes

ALIGN NN n/a IE 3 HTML 4

ALIGN="alignmentConstant" Optional

Determines how the rectangle of the IFRAME element aligns within the context of
surrounding content. See the section “Alignment Constants” earlier in this chapter for a
description of the possibilities defined in Internet Explorer for this attribute. Only a subset
of the allowed constant values are specified in the HTML recommendation, whereas
Internet Explorer 4 runs the gamut.

Example
<IFRAME SRC="quotes.html" WIDTH=150 HEIGHT=90 ALIGN="baseline"></IFRAME>

Value Case-insensitive constant value.

Default bottom

Object Model Reference
IE [window.]document.frameName.align

BORDER NN n/a IE 4 HTML n/a

BORDER="pixelCount" Optional

Theory and practice of IFRAME element borders in Internet Explorer 4 diverge a lot, espe-
cially when trying to match behaviors across operating systems. IE 4 for the Macintosh
displays IFRAME elements with a 3-D effect around the border that is always visible, no
matter what border attribute settings are assigned. For the Windows 95 version, the 3-D
effect goes away when you turn off the FRAMEBORDER attribute. As for the BORDER attribute,
the size of the border acts as a margin setting in IE 4/Mac, but only for the top and left
edges of the frame space: content is displaced to the right and down by the border size,
causing the content to flow over the right and bottom edges—quite a mess. The BORDER

ALIGN DATASRC ID MARGINWIDTH STYLE
BORDER FRAMEBORDER LANG NAME TITLE
BORDERCOLOR FRAMESPACING LANGUAGE NORESIZE VSPACE
CLASS HEIGHT LONGDESC SCROLLING WIDTH
DATAFLD HSPACE MARGINHEIGHT SRC
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

292 <IFRAME>
attribute setting appears to have no effect in Windows 95. In no case does the border
around an IFRAME look like a FRAME element border in IE 4.

That the HTML 4.0 specification does not include a BORDER attribute might lead one to
believe it prefers the use of style sheet borders, instead of borders tied only to frames. If
you want a genuine border around an IFRAME element in IE 4, use a style sheet border
instead. Its behavior is far more consistent and predictable (and is thoroughly unrelated to
nonfunctioning style sheet borders for frames defined by a FRAMESET).

Example <IFRAME SRC="quotes.html" WIDTH=150 HEIGHT=90 BORDER=10></IFRAME>

Value A positive integer value.

Default 0

Object Model Reference
IE [window.]document.frameName.border

BORDERCOLOR NN n/a IE 4 HTML n/a

BORDERCOLOR="colorTripletOrName" Optional

The BORDERCOLOR attribute should assign a color to whatever border surrounds an IFRAME
element. In practice, because borders controlled by attributes do not appear in the
Windows 95 version of Internet Explorer 4, no color appears either. On the Macintosh side,
an assigned color may appear on two adjacent edges of an IFRAME element, but the look is
unpredictable. Use style sheet rules to assign borders and border colors to IFRAME
elements.

Example
<IFRAME SRC="quotes.html" WIDTH=150 HEIGHT=90 BORDERCOLOR="salmon">
</IFRAME>

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default None.

Object Model Reference
IE [window.]document.frameName.borderColor

DATAFLD NN n/a IE 4 HTML n/a

DATAFLD="columnName" Optional

Used with IE 4 data binding to associate a remote data source column name in lieu of an
SRC attribute for an IFRAME element. The data source column must contain a valid URI
(relative or absolute). A DATASRC attribute must also be set for the element.

Example <IFRAME DATASRC="#DBSRC3" DATAFLD="newsURL"></IFRAME>

Value Case-sensitive identifier.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<IFRAME> 293

HTM
L Reference
Object Model Reference
IE [window.]document.frameName.dataFld

DATASRC NN n/a IE 4 HTML n/a

DATASRC="dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example <IFRAME DATASRC="#DBSRC3" DATAFLD="newsURL"></IFRAME>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.frameName.dataSrc

FRAMEBORDER NN n/a IE 3 HTML 4

FRAMEBORDER="borderSwitch" Optional

Controls whether an individual frame within a frameset displays a border. Setting IFRAME
element borders via the element’s attributes is chancy at best in Internet Explorer 4. Use
style sheet borders instead.

Example
<IFRAME SRC="quotes.html" WIDTH=150 HEIGHT=90 FRAMEBORDER=0></IFRAME>

Value

On-off values for this attribute vary with the source. HTML 4.0 specifies the values of 1 (on)
and 0 (off). Navigator uses yes and no. Internet Explorer 4 accepts the HTML values and
yes or no.

Default 1

Object Model Reference
IE [window.]document.frameName.frameBorder

FRAMESPACING NN n/a IE 4 HTML n/a

FRAMESPACING="pixelLength" Optional

Controls the thickness of space between multiple, adjacent IFRAME elements. In practice,
the attribute has no effect in Internet Explorer 4. Use style sheet border attributes to create
borders around IFRAME elements.

Value A positive integer.

Default 0
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

294 <IFRAME>
Object Model Reference
IE [window.]document.frameName.frameSpacing

HEIGHT, WIDTH NN n/a IE 4 HTML n/a

HEIGHT="length" Optional

WIDTH="length"

Microsoft HTML documentation for IE 4 says that the HEIGHT and WIDTH attributes control
the size of a IFRAME element. The attributes are recognized in IE 4 for Windows, but not
for the Macintosh. Moreover, these attributes are not recognized as scriptable properties—
often a sign that the attributes are not genuinely supported. Use these attributes at your
own risk. Instead, you can rely on style sheet positioning (using relative positioning) to set
the height and width of the element in all operating system platforms.

Example <IFRAME SRC="nav.html" HEIGHT=200 WIDTH=200>

Value Any length value in pixels or percentage of available space.

Default A width of 300 pixels; a height of 150 pixels.

HSPACE, VSPACE NN n/a IE 4 HTML n/a

HSPACE="pixelCount" Optional

VSPACE="pixelCount"

Sets padding around an IFRAME element within content flow. The HSPACE attribute controls
padding along the left and right edges (horizontal padding), and the VSPACE attribute
controls padding along the top and bottom edges (vertical padding). Adding such padding
provides an empty cushion around the frame. As an alternate, you can specify the various
margin style sheet settings, especially if you want to open space along only one edge.

Example <IFRAME SRC="nav.html" HSPACE=20 VSPACE=10>

Value Any positive integer.

Default 0

LONGDESC NN n/a IE n/a HTML 4

LONGDESC="URL" Optional

Specifies a URL of a document that contains a longer description of the element than what
the content of the TITLE attribute reveals. One application of this attribute in future
browsers is to retrieve an annotated description of the element for users who cannot read
the browser screen.

Example
<IFRAME LONGDESC="navDesc.html" TITLE="Navigation Bar" SRC="navbar.html">
</IFRAME>

Value Any valid URI, including complete and relative URLs.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<IFRAME> 295

HTM
L Reference
MARGINHEIGHT, MARGINWIDTH NN n/a IE 3 HTML 4

MARGINHEIGHT="pixelCount" Optional

MARGINWIDTH="pixelCount"

Determine the number of pixels between the inner edge of a frame and the content
rendered inside the frame. The MARGINHEIGHT attribute controls space along the top and
(when scrolled) the bottom edges of a frame; the MARGINWIDTH attribute controls space on
the left and right edges of a frame. The HTML 4.0 specification leaves default behavior up
to browsers.

Without any prompting, Internet Explorer 4 automatically inserts a margin of 14 (Windows)
or 8 (Macintosh) pixels inside a frame. But if you attempt to override the default behavior,
be aware that setting any one of these two attributes causes the value of the other to go to
zero. Therefore, unless you want the content to be absolutely flush with various frame
edges, you need to assign values to both attributes. Due to the disparity in default values
for each operating system, you cannot assign truly default values to these attributes.

Example
<IFRAME SRC="navbar.html" MARGINHEIGHT=20 MARGINWIDTH=14></IFRAME>

Value Any positive integer value or zero.

Default 14 (Windows) or 8 (Macintosh).

Object Model Reference
IE [window.]document.frameName.marginHeight

[window.]document.frameName.marginWidth

NAME NN n/a IE 3 HTML 4

NAME="elementIdentifier" Optional

When links and forms must load their destination or returned documents into frames other
than the one holding the link or form, those elements have TARGET attributes indicating
which frame receives the new content. To direct such content to a frame, the frame must
have a value assigned to its NAME attribute. That same value is assigned to the TARGET
attribute of the A or FORM element. Client-side scripting also uses the frame’s name in
building references to other frames or content in other frames. It is good practice to assign a
unique identifying name to all frames.

Example <IFRAME NAME="navbar" SRC="nav.html"></IFRAME>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.frameName.name
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

296 <IFRAME>
NORESIZE NN n/a IE 4 HTML n/a

NORESIZE Optional

It’s curious why the NORESIZE attribute is included in Internet Explorer for the IFRAME
element. Regardless of the setting, an IFRAME element cannot be manually resized by the
user.

Example <IFRAME SRC="navbar.html" NORESIZE></IFRAME>

Value

The presence of the attribute makes the frame nonresizable (although so does its absence).

Default An IFRAME element is supposed to be resizable by default, but in practice it is
not.

Object Model Reference
IE [window.]document.frameName.noResize

SCROLLING NN n/a IE 3 HTML 4

SCROLLING=auto | no | yes Optional

By default, browsers add vertical and/or horizontal scrollbars when the content loaded into
an inline frame exceeds the visible content region of the element. Scrollbars can affect the
layout of some content because they occupy space normally devoted to content (that is, the
frame does not expand to accommodate scrollbars). Also, due to differences in default font
sizes in browsers and operating system versions, a given collection of text content may
display differently in different clients. If you want to prevent scrollbars from appearing in
the frame, set the SCROLLING attribute to no; if you want scrollbars to be in the frame at all
times, set the attribute to yes. In the latter case, if the content does not require scrolling, the
scrollbars are visible, but disabled.

Setting the SCROLLING attribute to no should be used only after you have tested on all
browsers and platforms that mission-critical content is always visible in the frame. If the
frame is set to not scroll, some users might not be able to see all content of the frame.

Example <IFRAME SRC="navbar.html" SCROLLING=no></IFRAME>

Value Case-insensitive constant values (optionally quoted): auto | no | yes.

Default auto

Object Model Reference
IE [window.]document.frameName.scrolling

SRC NN n/a IE 3 HTML 4

SRC="URL" Optional

Defines the URL of the content to be loaded into the IFRAME element. The URL can be an
absolute URL or one relative to the URL of the document containing the frameset specifica-
tions. You may also use the javascript: pseudo-URL to have the returned value of a
script appear in the frame. If you omit the SRC attribute, the frame opens empty.

Example <IFRAME SRC="navbar.html"></IFRAME>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<ILAYER> 297

HTM
L Reference
Value A complete or relative URL or a javascript: pseudo-URL.

Default None.

Object Model Reference
IE [window.]document.frameName.src

STYLE NN n/a IE 4 HTML 4

STYLE="styleSheetProperties" Optional

This attribute lets you set one or more style sheet rule property assignments for the current
element. Styles affect the inline frame and not its content. Therefore, a border assigned to
an IFRAME element style appears around the frame, not inside the frame.

Example <IFRAME SRC="navbar.html" STYLE="border:solid blue 3px"></IFRAME>

Value

An entire CSS-syntax style sheet rule is enclosed in quotes. Multiple style attribute settings
are separated by semicolons. Style sheet attributes are detailed in Chapter 10.

Default None.

Object Model Reference
IE [window.]document.frameName.style

VSPACE
See HSPACE.

WIDTH
See HEIGHT.

<ILAYER> NN 4 IE n/a HTML n/a

<ILAYER>...</ILAYER> End Tag: Required

An ILAYER element is an inline version of the Navigator-specific LAYER element. In some
respects, the ILAYER element works like the IFRAME element in Internet Explorer, but an
ILAYER is automatically regarded as a positionable element in Navigator’s object model
(e.g., like a block-level element whose CSS position: attribute is set to relative). As a
result, many of the attributes are the same as the LAYER element and are named according
to the Navigator way of positioning, sizing, and stacking positionable elements. It is unlikely
that the LAYER or ILAYER elements will be adopted by the W3C, so you are encouraged to
use CSS-Positioning syntax (which works on both browser platforms) instead.

Content for an ILAYER element can be read in from a separate file (with the SRC attribute)
or wired into the current document by placing the HTML between the start and end tags.
You can include both types of content in the same ILAYER element. Content from the SRC
document is rendered first (as its own block-level element), with additional content starting
on its own line below the external content’s rectangle.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

298 <ILAYER>
Example
<ILAYER ID="thingy1" SRC="quotes.html" WIDTH=150 HEIGHT=90></ILAYER>

Object Model Reference
NN [window.]document.layerName

Attributes

Event Handler Attributes

ABOVE NN 4 IE n/a HTML n/a

ABOVE="layerID" Optional

Names the positionable element that is to be above (in front of) the current ILAYER in the
stacking order. This is a different way to set the Z-INDEX attribute that does not rely on an
arbitrary numbering system. If you use the ABOVE attribute, do not use the BELOW or Z-INDEX
attribute for the same ILAYER element.

Example <ILAYER ID="thingy4" SRC="quotes.html" ABOVE="thingy3"></ILAYER>

Value Case-sensitive identifier.

Default None.

Object Model Reference
NN [window.]document.layerName.above

BACKGROUND NN 4 IE n/a HTML n/a

BACKGROUND="URL" Optional

Specifies an image file that is used as a backdrop to the text and other content of the
ILAYER element. Unlike normal images that get loaded into browser content, a back-
ground image loads in its original size (without scaling) and tiles to fill the available layer
space. Smaller images download faster but are obviously repeated more often in the back-
ground. Animated GIFs are also allowable but very distracting to the reader. When selecting
a background image, be sure it is very muted in comparison to the main content so that the
content stands out clearly. Background images, if used at all, should be extremely subtle.

ABOVE BGCOLOR ID TOP WIDTH
BACKGROUND CLIP LEFT VISIBILITY Z-INDEX
BELOW HEIGHT SRC

Handler NN IE HTML
onBlur 4 n/a n/a
onFocus 4 n/a n/a
onLoad 4 n/a n/a
onMouseDown 4 n/a n/a
onMouseOut 4 n/a n/a
onMouseOver 4 n/a n/a
onMouseUp 4 n/a n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<ILAYER> 299

HTM
L Reference
Example
<ILAYER ID="thingy4" SRC="quotes.html" BACKGROUND="blueCrinkle.jpg">
</ILAYER>

Value Any valid URL to an image file, including complete and relative URLs.

Default None.

Object Model Reference
NN [window.]document.layerName.background

BELOW NN 4 IE n/a HTML n/a

BELOW="layerID" Optional

Names the positionable element that is to be below (behind) the current ILAYER in the
stacking order. This is a different way to set the Z-INDEX attribute that does not rely on an
arbitrary numbering system. If you use the BELOW attribute, do not use the ABOVE or Z-INDEX
attribute for the same ILAYER element.

Example <ILAYER ID="thingy4" SRC="quotes.html" BELOW="thingy5"></ILAYER>

Value Case-sensitive identifier.

Default None.

Object Model Reference
NN [window.]document.layerName.below

BGCOLOR NN 4 IE n/a HTML n/a

BGCOLOR="colorTripletOrName" Optional

Establishes a fill color (behind the text and other content) for the entire layer rectangle. If
you combine a BGCOLOR and BACKGROUND, any transparent areas of the background image
let the background color show through.

Example <ILAYER SRC="quotes.html" BGCOLOR="tan"></ILAYER>

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with operating system.

Object Model Reference
NN [window.]document.layerName.bgColor

CLIP NN 4 IE n/a HTML n/a

CLIP="[leftPixel, topPixel,] rightPixel, bottomPixel" Optional

A clipping region is a rectangular view to the full ILAYER content. Only content that is
within the clipping rectangle can be seen on the page. The default value of the CLIP
attribute is determined by the space required to display the content as it naturally flows into
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

300 <ILAYER>
the element. Setting the CLIP attribute lets you rein in long content that might flow beyond
a fixed rectangle desired for the page design.

Example <ILAYER SRC="quotes.html" CLIP="50,50"></ILAYER>

Value

CLIP attribute values are pixel measures from the top and left edges of the element as it
flows in the document. The order of values is clockwise from the left edge, around the rect-
angle sides: left, top, right, bottom. If you supply only two values, Navigator assumes the
left and top values are zero, meaning that you wish to adjust only the right and bottom
edges. Thus, a setting of "50,50" means that the clipping region is 50-pixels square, starting
at the top-left corner of the layer’s rectangle. If you want the same size view, but starting 10
pixels in from the left, the CLIP attribute setting becomes "10,0,60,50".

Default Naturally flowing viewing area of ILAYER content.

Object Model Reference
NN [window.]document.layerName.clip.left

[window.]document.layerName.clip.top
[window.]document.layerName.clip.right
[window.]document.layerName.clip.bottom

HEIGHT, WIDTH NN 4 IE n/a HTML n/a

HEIGHT="length" Optional

WIDTH="length"

Define the minimum size of the layer as it flows in the document. When you add content to
the layer, however, the attribute settings do not restrict the amount of the content that is
visible along either axis. For example, if you display an image in an ILAYER that is 120
pixels wide by 90 pixels high, the actual visible size of an ILAYER element whose HEIGHT
and WIDTH attributes are set to a smaller size expands to allow the full image to appear.
The same happens to text or other content: the viewable region expands to allow all
content to appear. To restrict the visible portion of the content, set the CLIP attribute.

Setting the HEIGHT and WIDTH attributes to specific sizes is helpful when you are creating a
colored or patterned rectangle (via the BGCOLOR or BACKGROUND attributes) to act as an
underlying layer beneath some other positioned content. Without content pushing on the
edges of the ILAYER, the HEIGHT and WIDTH attributes set the clipping region to their sizes.

Example <ILAYER BGCOLOR="yellow" HEIGHT=100 WIDTH=100></ILAYER>

Value

Positive integer values (optionally quoted) or percentage values (quoted). You can reduce
both values to zero to not only hide the element (which you can also do with the
VISIBILITY attribute), but prevent the element from occupying any page space.

Default Naturally flowing viewing area of ILAYER content.

Object Model Reference
NN [window.]document.layerName.height

[window.]document.layerName.width
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<ILAYER> 301

HTM
L Reference
ID NN 4 IE n/a HTML n/a

ID="elementIdentifier" Optional

A unique identifier that distinguishes this element from all the rest in the document. This is
the identifier used as values for the ABOVE and BELOW attributes. Scripts also use the ID
attribute value as the ILAYER element’s name for object references.

Example
<ILAYER ID="oldYeller" BGCOLOR="yellow" HEIGHT=100 WIDTH=100></ILAYER>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.layerName.name

LEFT, TOP NN 4 IE n/a HTML n/a

LEFT="pixelCount" Optional

TOP="pixelCount"

Define the positioned offset of the left and top edges of the layer relative to the spot in the
document where the ILAYER element would normally appear. This precise location relative
to the page varies because an ILAYER element is an inline layer, which means that it can
start anywhere within normally flowing HTML content. When you set either of these
attributes, Navigator preserves the space in the document where the ILAYER element
appears, rather than cinch up surrounding content to fill space vacated by the element that
has shifted its location. You are therefore likely to set these attributes for an ILAYER only
when attempting to accomplish a look tailored to very customized content (perhaps an
ILAYER amid inflow images).

Example <ILAYER BGCOLOR="yellow" LEFT=10 TOP=50></ILAYER>

Value Positive integer values (optionally quoted).

Default 0

Object Model Reference
NN [window.]document.layerName.left

[window.]document.layerName.top

SRC NN 4 IE n/a HTML n/a

SRC="URL" Optional

To load the content of an external HTML file into an ILAYER element, assign the URL of
that file to the SRC attribute. Any HTML content between the ILAYER start and end tags is
rendered on the page after the content loaded from the SRC URL. If you omit the SRC
attribute, only content between the tags is rendered. Scripts can change the corresponding
object property (src) after the document has loaded to dynamically change content within
the ILAYER element (without reloading the main document).

Example <ILAYER SRC="quotes.html"></ILAYER>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

302 <ILAYER>
Value A complete or relative URL.

Default None.

Object Model Reference
NN [window.]document.layerName.src

TOP
See LEFT.

VISIBILITY NN 4 IE n/a HTML n/a

VISIBILITY="visibilityConstant" Optional

Determines whether Navigator displays the ILAYER element. The default behavior is for a
layer to inherit the VISIBILITY attribute of its next outermost (parent) layer. For an
ILAYER element that is part of the basic document body, this means that the layer is seen
by default (the base layer is always visible). To hide a layer when the page loads, set the
VISIBILITY attribute to "hidden". You need set the attribute to "show" only if the
ILAYER element is nested within another LAYER whose VISIBILITY value is set to (or is
inherited as) "hidden".

Regardless of the VISIBILITY attribute setting, an ILAYER element always occupies its
normal inflow space in the document. This allows Navigator to change the visibility on the
fly (via scripting) without reloading the document. (Navigator 4 does not automatically
reflow changed content.)

Example <ILAYER SRC="quotes.html" VISIBILITY="hidden"></ILAYER>

Value One of the accepted constants: hidden | inherit | visible.

Default inherit

Object Model Reference
NN [window.]document.layerName.visibility

WIDTH
See HEIGHT.

Z-INDEX NN 4 IE n/a HTML n/a

Z-INDEX="layerNumber" Optional

Controls the positioning of layers along the Z-axis (front-to-back) of the document relative
to the next outermost layer container. When the Z-INDEX values of two or more position-
able elements within the same container (such as the base document layer) are identical
numbers, the loading order of the elements in the HTML source code controls the stacking
order, with the later elements stacked in front of earlier ones. The default Z-INDEX value
for all positionable elements is zero. Therefore, if you want only one positionable element
to appear in front of all the others that stack in their default order, you simply assign any
positive value (even 1) to that stand-out element. Stacking order of positionable elements
can be changed on-the-fly via scripting.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 303

HTM
L Reference
Example <ILAYER SRC="quotes.html" Z-INDEX=1></ILAYER>

Value Any integer.

Default 0

Object Model Reference
NN [window.]document.layerName.zIndex

 NN all IE all HTML all

 End Tag: Forbidden

The IMG element displays a graphical image in whatever MIME types the browser is
equipped to handle. Common image MIME types are GIF and JPEG. IMG elements are inline
elements, appearing anywhere in the document you specify, including in the middle of a
line of text. A large number of attributes affecting visual presentation of the element are
deprecated in HTML 4.0 in favor of style sheet rules. You will be able to use the attributes
safely for many browser generations to come, however, because of the need to be back-
ward compatible with the large collection of image-laden documents already on the Web.
Note, too, that if you intend to use style sheets for IMG element borders and margins in
Navigator 4, you must wrap the IMG element inside DIV or SPAN elements and assign the
style sheets to the surrounding element. This workaround works with Internet Explorer, too,
so you can use style sheets in cross-browser deployment.

If you want to make an entire image a clickable link, wrap the IMG element inside an A
element. To eliminate the typical link border around the image, set the BORDER attribute to
0. And for image maps (where different segments of an image link to different destina-
tions), the HTML recommendation encourages the use of client-side image maps (via the
USEMAP attribute) over the server-side image map (ISMAP).

To be backward compatible with earlier scriptable browsers, it is advisable to include
HEIGHT and WIDTH attribute assignments in all IMG element tags. When values are assigned
to these attributes, the browser renders pages more quickly because it doesn’t have to wait
for the image to load in order to determine its size and organize other content on the page.

Example

Object Model Reference
NN [window.]document.imageName

[window.]document.images[i]

IE [window.]document.imageName
[window.]document.images[i]
[window.]document.all.elementID

Attributes
ALIGN DATASRC ID LOOP STYLE
ALT DIR ISMAP LOWSRC TITLE
BORDER DYNSRC LANG NAME USEMAP
CLASS HEIGHT LANGUAGE SRC VSPACE
DATAFLD HSPACE LONGDESC START WIDTH
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

304
Event Handler Attributes

ALIGN NN all IE all HTML all

ALIGN="where" Optional

Determines how the IMG element is rendered in physical relation to the element’s next
outermost container and surrounding content. Some settings also let you “float” the image
to the left or right margin and let surrounding text wrap around the image (but no wrap-
ping with a centered image).

Most of the rules for alignment constant values cited at the beginning of this chapter apply
to the IMG element. Typically, ALIGN attributes are deprecated in HTML 4.0 in favor of the
style sheet attributes. But if you require backward compatibility for your document, stick
with the ALIGN attribute.

Example

Value

Each browser defines a different set of values for this attribute. Although the ALIGN attribute
has a long heritage, not all values do. The more esoteric values, such as absmiddle and

Handler NN IE HTML
onAbort 3 4 n/a
onAfterUpdate n/a 4 n/a
onBeforeUpdate n/a 4 n/a
onBlur n/a 4 n/a
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onError 3 4 n/a
onFocus n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onLoad 3 4 n/a
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onResize n/a 4 n/a
onRowEnter n/a 4 n/a
onRowExit n/a 4 n/a
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 305

HTM
L Reference
baseline, were added to browser offerings in Navigator 3 and Internet Explorer 4. Select
the value(s) from the following table that work for your deployment:

Default bottom

Object Model Reference
IE [window.]document.imageName.align

[window.]document.images[i].align

ALT NN all IE all HTML all

ALT="textMessage" Required

In a world littered with graphical browsers, it is often hard to remember that not everyone
can, or chooses to, download images. Aside from those using VT100 terminals with
browsers such as Lynx, pocket computers often offer better performance when images don’t
have to be downloaded and rendered. To replace the image in such a browser, the text
assigned to the ALT attribute is displayed where the IMG element appears on the page. The
ALT attribute should contain a brief description of what the image is. The HTML recommen-
dation calls the ALT attribute a requirement for the IMG element, but in practice, graphical
browsers can get by without it. Still, some browsers display the ALT text initially as the
image downloads from the server, providing a temporary alternate display. Be aware that
the size of the image area on the page may limit the amount of text you can use for ALT.
Make sure the description is readable.

Example
<IMG SRC="navbar.gif" USEMAP="#nav" ALT="Navigation Bar" WIDTH=400
HEIGHT=50>

Value Any quoted string of characters.

Default None.

Object Model Reference
IE [window.]document.imageName.alt

[window.]document.images[i].alt

Value NN 4 IE 4 HTML 4.0
absbottom • • -
absmiddle • • -
baseline • • -
bottom • • •
left • • •
middle • • •
right • • •
texttop • • -
top • • •
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

306
BORDER NN all IE all HTML 3.2

BORDER=pixels Optional

Navigator provides a dedicated attribute to specifying the thickness of a border around an
IMG element. Default rendering of the border is in black, but if the IMG element is wrapped
inside an A element, the border takes on the document’s various link colors (depending on
link state). If you want a different color for a plain border, use style sheets (with the appro-
priate DIV or SPAN wrapper for Navigator 4). When a link surrounds the image, you can
eliminate the colored border altogether by setting the BORDER attribute size to zero.

Example

Value Any integer pixel value.

Default 0

Object Model Reference
NN [window.]document.imageName.border

[window.]document.images[i].border

IE [window.]document.imageName.border
[window.]document.images[i].border

DATAFLD NN n/a IE 4 HTML n/a

DATAFLD="columnName" Optional

Used with IE 4 data binding to associate a remote data source column name with the SRC
attribute URL of an IMG element. The data source column must contain an absolute or rela-
tive URL. A DATASRC attribute must also be set for the IMG element.

Example

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.imageName.dataFld

[window.]document.images[i].dataFld

DATASRC NN n/a IE 4 HTML n/a

DATASRC="dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example

Value Case-sensitive identifier.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 307

HTM
L Reference
Object Model Reference
IE [window.]document.imageName.dataSrc

[window.]document.images[i].dataSrc

DYNSRC NN n/a IE 4 HTML n/a

DYNSRC="URL" Optional

Internet Explorer 4 allows video clips (and VRML) to be displayed via the IMG element (as
an alternate to the EMBED or OBJECT element). To help the browser differentiate between a
dynamic and static image source, you use the DYNSRC attribute in place of the SRC attribute
to load the video clip. All other visual aspects of the IMG element are therefore immedi-
ately applicable to the rectangular region devoted to playing the video clip. See also the
LOOP attribute for controlling the frequency of clip play and the START attribute.

Example

Value Any valid URL, including complete and relative URLs.

Default None.

Object Model Reference
IE [window.]document.images[i].dynsrc

[window.]document.imageName.dynsrc

HEIGHT, WIDTH NN all IE all HTML 3.2

HEIGHT="length" Optional

WIDTH="length"

Define the dimensions for the space on the page reserved for the image, regardless of the
actual size of the image. For best performance (and backward script compatibility), you
should set these attributes to the actual height and width of the source image. If you supply
a different measure, the browser scales the image to fit the space defined by these
attributes.

Example

Value

Positive integer values (optionally quoted) or percentage values (quoted).

Default Actual size of source image.

Object Model Reference
NN [window.]document.imageName.height

[window.]document.images[i].height
[window.]document.imageName.width
[window.]document.images[i].width

IE [window.]document.imageName.height
[window.]document.images[i].height
[window.]document.imageName.width
[window.]document.images[i].width
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

308
HSPACE, VSPACE NN all IE all HTML 3.2

HSPACE=pixelCount Optional

VSPACE=pixelCount

Define a margin that acts as whitespace padding around the visual content of the IMG
element. The HSPACE establishes a margin on the left and right sides of the image rect-
angle; the VSPACE establishes a margin on the top and bottom sides of the image rectangle.
Use the margin or padding attributes to duplicate the same functionality with style sheets
because these attributes are deprecated in HTML 4.0.

Example

Value

Integer representing the number of pixels for the width of the margin on the relevant sides
of the IMG element’s rectangle.

Default 0

Object Model Reference
NN [window.]document.imageName.hspace

[window.]document.images[i].hspace
[window.]document.imageName.vspace
[window.]document.images[i].vspace

IE [window.]document.imageName.hspace
[window.]document.images[i].hspace
[window.]document.imageName.vspace
[window.]document.images[i].vspace

ID NN 4 IE 3 HTML 4

ID="elementIdentifier" Optional

A unique identifier that distinguishes this element from all the rest in the document. Can be
used to associate a single element with a style rule naming this attribute value as an ID
selector. An element can have an ID assigned for uniqueness as well as a class for inclu-
sion within a group. See Chapter 3.

If you assign an ID attribute and not a NAME attribute, the value of the ID attribute cannot
be used reliably as the IMG element’s name in script reference forms that use the element
name. Some browser platforms insist on the NAME attribute being used in an image name
reference.

Example

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.imageName.id

[window.]document.images[i].id
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 309

HTM
L Reference
ISMAP NN all IE all HTML all

ISMAP Optional

The Boolean ISMAP attribute tells the browser that the IMG element is acting as a server-
side image map. To turn an image into a server-side image map, wrap the IMG element
with an A element whose HREF attribute points to the URL of the CGI program that knows
how to interpret the click coordinate information. The browser appends coordinate informa-
tion about the click to the URL like a GET form method appends form element data to the
ACTION attribute URL. In the following example, if a user clicks at the coordinate point 50,
25, the browser sends "http://www.giantco.com/cgi-bin/nav?50,25" to the server. A
server CGI program named nav might examine the region in which the coordinate point
appears and send the relevant HTML back to the client.

More recent browsers allow client-side image maps (see the USEMAP attribute), which
operate more quickly for the user because there is no communication with the server to
carry out the examination of the click coordinate point.

Example

Value The presence of the attribute turns the feature on.

Default Off.

Object Model Reference
IE [window.]document.imageName.isMap

[window.]document.images[i].isMap

LONGDESC NN n/a IE n/a HTML 4

LONGDESC="URL" Optional

Specifies a URL of a document that contains a longer description of the element than what
the content of the ALT or TITLE attributes reveal. One application of this attribute in future
browsers is to retrieve an annotated description of the element for users who cannot read
the browser screen.

Example

Value Any valid URL, including complete and relative URLs.

Default None.

LOOP NN n/a IE 3 HTML n/a

LOOP="loopCount" Optional

If you specify a video clip with the DYNSRC attribute, the LOOP attribute controls how many
times the clip should play (“loop”) after it loads. If you set the value to zero, the clip loads
but does not play initially. Video clips that are not currently running play when the user
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

310
double-clicks on the image, but you may need to provide instructions for that on the page
because there are no other obvious controls.

Example

Value Any positive integer or zero.

Default 1

Object Model Reference
IE [window.]document.imageName.loop

[window.]document.images[i].loop

LOWSRC NN 3 IE 4 HTML n/a

LOWSRC="URL" Optional

Both Navigator and Internet Explorer recognize the fact that not everyone has a fast Internet
connection and that high-resolution images can take a long time to download to the client.
To fill the void, the LOWSRC attribute lets the author specify a URL of a lower-resolution (or
alternate) image to download into the document space first. The LOWSRC image should be
the same pixel size as the primary SRC image.

Example

Value Any valid URL, including complete and relative URLs.

Default None.

Object Model Reference
NN [window.]document.imageName.lowsrc

[window.]document.images[i].lowsrc

IE [window.]document.imageName.lowsrc
[window.]document.images[i].lowsrc

NAME NN 3 IE 4 HTML n/a

NAME="elementIdentifier" Optional

If you are scripting an image (especially swapping precached images), it is usually more
convenient to create a reference to the IMG element by using a unique name you assign to
the item. Thus, if you edit the page and move or delete multiple IMG elements on the page,
you do not have to worry about adjusting index values to array-style references
(document.images[i]).

Example

Value Case-sensitive identifier.

Default None.

Object Model Reference
NN [window.]document.images[i].name

[window.]document.imageName.name
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 311

HTM
L Reference
IE [window.]document.images[i].name
[window.]document.imageName.name

SRC NN all IE all HTML all

SRC="URL" Required

URL to a file containing image data that is displayed through the IMG element. With the
exception of specifying a DYNSRC attribute in Internet Explorer for video clips, the SRC
attribute is required if you want to see any image in the IMG element space. The browser
must be equipped to handle the image MIME type. On the World Wide Web, the most
common image formats are GIF and JPEG.

Example

Value A complete or relative URL.

Default None.

Object Model Reference
NN [window.]document.images[i].src

[window.]document.imageName.src

IE [window.]document.images[i].src
[window.]document.imageName.src

START NN n/a IE 4 HTML n/a

START="fileopen" | "mouseover" Optional

Whenever you set the DYNSRC attribute of an IMG to display a video clip, you can direct the
element to start playing the video immediately after the video file loads or when the user
rolls the cursor over the image. The START attribute lets you decide the best user interface
for your page.

Example

Value One of the two case-insensitive constant values: fileopen | mouseover.

Default fileopen

Object Model Reference
IE [window.]document.images[i].start

[window.]document.imageName.start

STYLE NN 4 IE 3 HTML 4

STYLE="styleSheetProperties" Optional

This attribute lets you set one or more style sheet rule property assignments for the current
element. You may use the CSS or JavaScript syntax for assigning style attributes. But if you
are designing the page for cross-browser deployment, use only the CSS syntax, which both
Navigator and Internet Explorer support.

For use in Version 4 browsers, style sheets are recommended over dedicated attributes
where applicable, but due to the implementation in Navigator 4, you need to wrap IMG
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

312
elements with DIV or SPAN elements that contain border and margin-related style sheet
rules to make them work with IMG elements. The following example with the embedded
STYLE attribute works only in Internet Explorer.

Example

Value

An entire CSS-syntax style sheet rule is enclosed in quotes. Multiple style attribute settings
are separated by semicolons. Style sheet attributes are detailed in Chapter 10.

Default None.

Object Model Reference
IE [window.]document.images[i].style

[window.]document.imageName.style

USEMAP NN all IE all HTML 3.2

USEMAP="mapURL" Optional

You can define a client-side image map with the help of the MAP and AREA elements. The
MAP element is a named container for one or more AREA element. Each AREA element sets a
“hot” area on an image and assigns a link destination (and other settings) for a response to
the user clicking in that region. The purpose of the USEMAP attribute is to establish a
connection between the IMG element and a named MAP element in the same document. In
some respects, the MAP element’s name is treated like an anchor in that the “address” of the
MAP element is the element’s name preceded by a # symbol.

Example

Value

A URL to the MAP element in the same document (a hash symbol plus the MAP name).

Default None.

Object Model Reference
IE [window.]document.imageName.useMap

[window.]document.images[i].useMap

VSPACE
See HSPACE.

WIDTH
See HEIGHT.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<INPUT> 313

HTM
L Reference
<INPUT> NN all IE all HTML all

<INPUT> End Tag: Forbidden

An INPUT element is sometimes known as a form control, although not all INPUT elements
are visible on the page. For the most part, an INPUT element provides a place for users to
enter text, click buttons, and make selections from lists. The data gathered from this interac-
tion can be submitted to a server-side program (when the surrounding FORM element is
submitted), or it may be used strictly on the client as a way for users to interact with client-
side scripts.

Prior to HTML 4.0, INPUT elements were supposed to be wrapped by a FORM element in all
instances. This restriction is loosening up, but Navigator 4 still requires the FORM wrapper in
order to render INPUT elements.

The primary attribute that determines the kind of control that is displayed on the page is the
TYPE attribute. This attribute can have one of the following values: button, checkbox,
file, hidden, image, password, radio, reset, submit, or text. Not all INPUT element
types utilize the full range of other attributes; sometimes a single attribute has different
powers with different element types. For each attribute of the INPUT element, the listing
specifies the types to which it applies. Although the TEXTAREA element has its own tag, it is
often treated like another form control.

Example
<FORM METHOD=post ACTION="http://www.giantco.com/cgi-bin/query">
First Name: <INPUT TYPE="text" NAME="first" MAXLENGTH=15>

Last Name: <INPUT TYPE="text" NAME="last" MAXLENGTH=25>

ZIP Code: <INPUT TYPE="text" NAME="zip" MAXLENGTH=10>

<INPUT TYPE="reset">
<INPUT TYPE="submit">
</FORM>

Object Model Reference
NN [window.]document.formName.inputName

[window.]document.forms[i].elements[i]

IE [window.]document.formName.inputName
[window.]document.forms[i].elements[i]
[window.]document.all.elementID

Attributes

Event Handler Attributes

ACCEPT CHECKED DISABLED NAME TABINDEX
ACCESSKEY CLASS ID READONLY TITLE
ALIGN DATAFLD LANG SIZE TYPE
ALT DATASRC LANGUAGE SRC USEMAP
BORDER DIR MAXLENGTH STYLE VALUE

Handler NN IE HTML
onAfterUpdate n/a 4 n/a
onBeforeUpdate n/a 4 n/a
onBlur 2 3 4
onChange 2 3 4
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

314 <INPUT>
Not all events are active in all input types.

ACCEPT NN n/a IE n/a HTML 4

ACCEPT="MIMETypeList" Optional

Specifies one or more MIME types for allowable files to be uploaded to the server when the
form is submitted. The predicted implementation of this attribute would filter the file types
listed in file dialogs used to select files for uploading. In a way, this attribute provides
client-side validation of a file type so that files not conforming to the permitted MIME type
is not even sent to the server. The HTML 4.0 specification also has this attribute available in
the FORM element. It is unclear whether the implementations in browsers will recognize this
attribute in both places.

Input Types file

Example <INPUT TYPE="file" ACCEPT="text/html, image/gif" ...>

Value

Case-insensitive MIME type (content type) value. For multiple items, a comma-delimited list
is allowed.

Default None.

ACCESSKEY NN n/a IE 4 HTML 4

ACCESSKEY="character" Optional

A single character key that brings focus to the input element. The browser and operating
system determine if the user must press a modifier key (e.g., Ctrl, Alt, or Command) with
the access key to activate the link. In IE 4/Windows, the Alt key is required, and the key is
not case sensitive. This attribute does not work in IE 4/Mac.

Input Types button, checkbox, file, password, radio, reset, submit, text

Example <INPUT TYPE="text" NAME="first" MAXLENGTH=15 ACCESSKEY="f">

onClick 2 3 4
onDblClick 4 4 4
onDragStart n/a 4 n/a
onFocus 2 3 4
onHelp n/a 4 n/a
onKeyDown 4 4 4
onKeyPress 4 4 4
onKeyUp 4 4 4
onMouseDown 4 4 4
onMouseMove n/a 4 4
onMouseOut 3 4 4
onMouseOver 2 3 4
onMouseUp 4 4 4
onSelect 2 3 4
onSelectStart n/a 4 n/a

Handler NN IE HTML
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<INPUT> 315

HTM
L Reference
Value Single character of the document set.

Default None.

Object Model Reference
IE [window.]document.formName.inputName.accessKey

[window.]document.forms[i].elements[i].accessKey
[window.]document.all.elementID.accessKey

ALIGN NN all IE all HTML 3.2

ALIGN="alignmentConstant" Optional

Determines how the rectangle of the input image aligns within the context of the
surrounding content. See the section “Alignment Constants” earlier in this chapter for a
description of the possibilities defined in both Navigator and Internet Explorer for this
attribute. Not all attribute values are valid in browsers prior to the Version 4 releases.

Both browsers follow the same rules on laying out content surrounding an image whose
ALIGN attribute is set, but the actual results are sometimes difficult to predict when the
surrounding content is complex. A thorough testing of rendering possibilities with browser
windows set to various sizes prevents surprises later.

Input Types image

Example <INPUT TYPE="image" NAME="icon" SRC="icon.gif" ALIGN="absmiddle">

Value

Case-insensitive constant value. All constant values are available in Navigator 4 and Internet
Explorer 4.

Default bottom

Object Model Reference
IE [window.]document.formName.inputName.align

[window.]document.forms[i].elements[i].align
[window.]document.all.elementID.align

ALT NN n/a IE 4 HTML 4

ALT="textMessage" Optional

If a browser is not capable of displaying graphical images (or has the feature turned off),
the text assigned to the ALT attribute is supposed to display in the document where the
image INPUT element’s tag appears. Typically, this text provides advice on what the page
visitor is missing by not being able to view the image.

Input Types image

Example
<INPUT TYPE="image" NAME="icon" SRC="sndIcon.gif" ALT="Sound Icon">

Value Any quoted string of characters.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

316 <INPUT>
Object Model Reference
IE [window.]document.formName.inputName.alt

[window.]document.forms[i].elements[i].alt
[window.]document.all.elementID.alt

BORDER NN 4 IE 4 HTML n/a

BORDER=pixels Optional

Navigator and Internet Explorer treat images displayed by the INPUT element very much
like IMG elements. As such, you can specify a border around the image. Navigator displays
one by default. Because an INPUT element whose TYPE attribute is "image" acts as a
submit-style button, the border is rendered in the browser’s link colors. If you want a
different color for a plain border, use style sheets (with the appropriate DIV or SPAN
wrapper for Navigator 4). You can eliminate the colored border altogether in Navigator by
setting the BORDER attribute size to zero.

Input Types image

Example <INPUT TYPE="image" NAME="icon" SRC="sndIcon.gif" BORDER=0>

Value Any integer pixel value.

Default 2 (Navigator 4) or 0 (Internet Explorer 4).

Object Model Reference
IE [window.]document.formName.inputName.border

[window.]document.forms[i].elements[i].border
[window.]document.all.elementID.border

CHECKED NN 4 IE 3 HTML 4

CHECKED Optional

A Boolean attribute that designates whether the current checkbox or radio INPUT element is
turned on when the page loads. In the case of a radio button grouping, only one INPUT
element should have the CHECKED attribute. Scripts can modify the internal value of this
attribute after the page has loaded. When the form is submitted, an INPUT element whose
CHECKED attribute is turned on sends its name/value pair as part of the form data. The
name/value pair consists of values assigned to the NAME and VALUE attributes for the
element. If no value is assigned to the VALUE attribute, the string value "active" is auto-
matically assigned when the checkbox or radio button is highlighted. This is fine for
checkboxes because each one should be uniquely named. However, all radio buttons in a
related group must have the same name, so this default behavior doesn’t provide enough
information for most server-side programs to work with.

Input Types checkbox, radio

Example
<INPUT TYPE="checkbox" NAME="addToList" CHECKED>Send email updates to this
web site.

Value The presence of this attribute turns on its property.

Default Off.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<INPUT> 317

HTM
L Reference
Object Model Reference
NN [window.]document.formName.inputName.checked

[window.]document.forms[i].elements[i].checked

IE [window.]document.formName.inputName.checked
[window.]document.forms[i].elements[i].checked
[window.]document.all.elementID.checked

DATAFLD NN n/a IE 4 HTML n/a

DATAFLD="columnName" Optional

Used with IE 4 data binding to associate a remote data source column name with parts of
various INPUT elements. A DATASRC attribute must also be set for the element.

Input Types button, checkbox, hidden, password, radio, text

Example
<INPUT TYPE="text" NAME="first" DATASRC="#DBSRC3" DATAFLD="firstName">

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.formName.inputName.dataFld

[window.]document.forms[i].elements[i].dataFld
[window.]document.all.elementID.dataFld

DATASRC NN n/a IE 4 HTML n/a

DATASRC="dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Input Types button, checkbox, hidden, password, radio, text

Example
<INPUT TYPE="text" NAME="first" DATASRC="#DBSRC3" DATAFLD="firstName">

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.formName.inputName.dataSrc

[window.]document.forms[i].elements[i].dataSrc
[window.]document.all.elementID.dataSrc

DISABLED NN n/a IE 4 HTML 4

DISABLED Optional

A disabled INPUT element appears grayed out on the screen and cannot be activated by the
user. In Windows, a disabled form control cannot receive focus and does not become active
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

318 <INPUT>
within the tabbing order rotation. HTML 4.0 also specifies that the name/value pair of a
disabled INPUT element should not be sent when the form is submitted. INPUT elements
that normally perform submissions do not submit their form when disabled.

The DISABLED attribute is a Boolean type, which means that its presence in the attribute
sets its value to true. Its value can also be adjusted after the fact by scripting (see the
button object in Chapter 9).

Input Types All.

Example <BUTTON TYPE="submit" DISABLED>Ready to Submit </BUTTON>

Value The presence of the attribute disables the element.

Default false

Object Model Reference
IE [window.]document.formName.inputName.disabled

[window.]document.forms[i].elements[i].disabled
[window.]document.all.elementID.disabled

ID NN n/a IE 4 HTML 4

ID="elementIdentifier" Optional

A unique identifier that distinguishes this element from all the rest in the document. Can be
used to associate a single element with a style rule naming this attribute value as an ID
selector. Do not confuse the ID attribute with the NAME attribute, whose value is submitted
as part of a name/value pair with the form.

Input Types All.

Example
<INPUT TYPE="button" ID="next" VALUE=">>Next>>" onClick="goNext(3)">

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.formName.inputName.id

[window.]document.forms[i].elements[i].id
[window.]document.all.elementID.id

MAXLENGTH NN all IE all HTML all

MAXLENGTH="characterCount" Optional

Defines the maximum number of characters that may be typed into a text field INPUT
element. In practice, browsers beep or otherwise alert users when a typed character would
exceed the MAXLENGTH value. There is no innate correlation between the MAXLENGTH and
SIZE attributes. If the MAXLENGTH allows for more characters than fit within the specified
width of the element, the browser provides horizontal scrolling (albeit awkward for many
users) to allow entry and editing of the field.

Input Types password, text
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<INPUT> 319

HTM
L Reference
Example <INPUT TYPE="text" NAME="ZIP" MAXLENGTH=10>

Value Positive integer.

Default Unlimited.

Object Model Reference
IE [window.]document.formName.inputName.maxLength

[window.]document.forms[i].elements[i].maxLength
[window.]document.all.elementID.maxLength

NAME NN all IE all HTML all

NAME="elementIdentifier" Optional

If the INPUT element is part of a form being submitted to a server, the NAME attribute is
required if the value of the element is to be submitted with the form. For forms that are in
documents for the convenience of scripted form elements, INPUT element names are not
required but are helpful just the same in creating scripted references to these objects and
their properties or methods.

Input Types All.

Example <INPUT TYPE="text" NAME="ZIP" MAXLENGTH=10>

Value Case-sensitive identifier.

Default None.

Object Model Reference
NN [window.]document.formName.inputName.name

[window.]document.forms[i].elements[i].name

IE [window.]document.formName.inputName.name
[window.]document.forms[i].elements[i].name
[window.]document.all.elementID.name

READONLY NN n/a IE 4 HTML 4

READONLY Optional

When the READONLY attribute is present, the text field INPUT element cannot be edited on
the page by the user (although scripts can modify the content). A field marked as READONLY
should not receive focus within the tabbing order (although IE 4 for the Macintosh allows
the field to receive focus).

Input Types password, text

Example <INPUT TYPE="text" NAME="ZIP" READONLY>

Value The presence of the attribute sets its value to true.

Default false
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

320 <INPUT>
Object Model Reference
IE [window.]document.formName.inputName.readOnly

[window.]document.forms[i].elements[i].readOnly
[window.]document.all.elementID.readOnly

SIZE NN all IE all HTML all

SIZE="elementWidth" Optional

In practice, the SIZE attribute is limited to describing the character width of text field INPUT
elements. The actual rendered width is calculated based on the font setting (or default font)
for the element, but the results are not always perfect. Variations in font rendering (and the
ability to specify alternate font faces and sizes in Internet Explorer) sometimes lead to unex-
pectedly narrower fields. Therefore, it is not wise to automatically set the SIZE and
MAXLENGTH attributes to the same value without testing the results on a wide variety of
browsers and operating systems with worst-case data (for example, all “m” or “W” charac-
ters in proportional fonts). The HTML 4.0 specification indicates that the SIZE attribute
might be applied to other INPUT element types, but as of the Version 4 browsers, this is not
the case. In the meantime, you can use CSS-Positioning to make buttons wider than the
default size that tracks the width of the VALUE attribute string.

Input Types password, text

Example <INPUT TYPE="text" NAME="ZIP" MAXLENGTH=10 SIZE=12>

Value Any positive integer.

Default 20

Object Model Reference
IE [window.]document.formName.inputName.size

[window.]document.forms[i].elements[i].size
[window.]document.all.elementID.size

SRC NN all IE all HTML all

SRC="URL" Required

URL to a file containing image data that is displayed through the INPUT element of type
image. The browser must be equipped to handle the image MIME type. On the World Wide
Web, the most common image formats are GIF and JPEG.

Input Types image

Example <INPUT TYPE="image" NAME="icon" SRC="sndIcon.gif" BORDER=0>

Value A complete or relative URL.

Default None.

Object Model Reference
IE [window.]document.formName.inputName.src

[window.]document.forms[i].elements[i].src
[window.]document.all.elementID.src
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<INPUT> 321

HTM
L Reference
TABINDEX NN n/a IE 3 HTML 4

TABINDEX=integer Optional

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their TABINDEX attributes are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest TABINDEX value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same TABINDEX values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the TABINDEX attribute or have the value set to zero. These elements receive focus in the
order in which they appear in the document.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text and password INPUT fields.

Input Types button, checkbox, file, password, radio, reset, submit, text

Example <INPUT TYPE="text" NAME="country" TABINDEX=3>

Value

Any integer from 0 through 32767. In IE 4, setting the TABINDEX to -1 causes the element
to be skipped in tabbing order altogether.

Default None.

Object Model Reference
IE [window.]document.formName.inputName.tabIndex

[window.]document.forms[i].elements[i].tabIndex
[window.]document.all.elementID.tabIndex

TYPE NN all IE all HTML all

TYPE="elementType" Required

Advises the browser how to render the INPUT element (or even whether the element
should be rendered at all). Possible choices are as follows:

Type Description
button A clickable button whose action must be scripted. Its label is assigned by

the VALUE attribute. If you want to use HTML to format the label of a
button, use the BUTTON element instead.

checkbox A free-standing checkbox that provides two states (active and inactive). Its
label is created by HTML text before or after the INPUT element tag. The
VALUE attribute value is submitted with a form, so you can have multiple
checkboxes with the same name but different values if the server CGI script
wants its data that way.

file A button and field that lets the user select a local file for eventual uploading
to the server. A click of the button generates a File dialog, and the name (or
pathname) of the selected file appears in the field. The server must have a
CGI script running to accept the incoming file at submission time.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

322 <INPUT>
Example
<INPUT TYPE="button" VALUE="Toggle Sound" onClick="toggleSnd()">
<INPUT TYPE="checkbox" NAME="connections" VALUE="ISDN">ISDN
<INPUT TYPE="file" NAME="uploadFile">
<INPUT TYPE="hidden" NAME="prevState" VALUE="modify">
<INPUT TYPE="image" NAME="graphicSubmit" SRC="submit.jpg" HEIGHT=40
WIDTH=40>
<INPUT TYPE="password" NAME="password" MAXLENGTH=12 SIZE=20>
<INPUT TYPE="radio" NAME="creditCard" VALUE="Visa">Visa
<INPUT TYPE="reset">
<INPUT TYPE="submit" VALUE="Send Encrypted">
Social Security Number:<INPUT TYPE="text"NAME="ssn" VALUE="###-##-####"
onClick="validateSSN(this)">

Value

Any one of the known INPUT element types: button | checkbox | file | hidden |
image | password | radio | reset | submit | text.

Default text

Object Model Reference
NN [window.]document.formName.inputName.type

[window.]document.forms[i].elements[i].type

IE [window.]document.formName.inputName.type
[window.]document.forms[i].elements[i].type
[window.]document.all.elementID.type

hidden An invisible field often used to carry over database or state data from
submission to submission without bothering the user with its content (or
having to store the temporary data on the server). The name/value pair is
submitted with the form.

image A graphical button whose sole action is to submit the form. The coordinate
points x,y of the click on the image are submitted as two name/value pairs:
inputName.x=n; inputName.y=m.

password A text field that presents bullets or asterisks for each typed character to
ensure over-the-shoulder privacy for the user. The plain-language text is
submitted as the value for this element.

radio One of a related group of on-off buttons. Assigning the same value to the
NAME attribute of multiple radio buttons assembles them in a related group.
Clicking on one button in the group activates it while unhighlighting all
others. The VALUE attribute value is submitted with a form.

reset A button whose sole job is to revert the form’s elements to the values they
had when the form initially loaded into the client. A custom label can be
assigned via the VALUE attribute.

submit A button whose sole job is to submit the form. A custom label can be
assigned by the VALUE attribute. If NAME and VALUE attributes are assigned
for the element, their values are submitted with the form.

text A one-line field for typing text that gets submitted as the value of the
element. For a multiple-line field, see the TEXTAREA element.

Type Description
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<INS> 323

HTM
L Reference
USEMAP NN n/a IE n/a HTML 4

USEMAP="mapURL" Optional

The HTML 4.0 specification lists the USEMAP attribute for an INPUT element of type image.
In the future, this might lead to a link between image INPUT elements and the scriptable
powers of client-side image maps (such as rollovers), but for now, it is unknown for sure
how this attribute will be implemented in browsers.

VALUE NN all IE all HTML all

VALUE="text" Optional/Required

Preassigns a value to an INPUT element that is submitted to the server as part of the name/
value pair for the element. Some INPUT element types are not submitted (an unchecked
radio button, for example), but any value you associate with all but the button or reset type
INPUT element reaches the server when the element is submitted.

In the case of text and password INPUT elements, the VALUE attribute contains a default
entry. As the user makes a change to the content of the text field, the value changes,
although the source code does not. When a form is reset (via a reset INPUT element), the
default values are put back into the text fields.

The VALUE attribute is required only for checkbox and radio INPUT elements. For INPUT
elements that are rendered as standard clickable buttons, the VALUE attribute defines the
label that appears on the button.

Input Types All.

Example <INPUT TYPE="checkbox" NAME="connections" VALUE="ISDN">ISDN

Value Any text string.

Default None.

Object Model Reference
NN [window.]document.formName.inputName.value

[window.]document.forms[i].elements[i].value

IE [window.]document.formName.inputName.value
[window.]document.forms[i].elements[i].value
[window.]document.all.elementID.value

<INS> NN n/a IE 4 HTML 4

<INS>...</INS> End Tag: Required

The INS element and its companion, DEL, define a format that shows which segments of a
document’s content have been marked up for insertion (or deletion) during the authoring
process. This is far from a workflow management scheme, but in the hands of a supporting
WYSIWYG HTML authoring tool, these elements can assist in controlling generational
changes of a document in process.

Among the Version 4 browsers, only Internet Explorer supports the INS attribute. Text
contained by this element is rendered underlined (whereas DEL elements are in a
strikethrough style). The HTML 4.0 specification includes two potentially useful attributes
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

324 <INS>
(not in IE 4) for preserving hidden information about the date and time of the alteration and
some descriptive text about the change.

Example
<P>Four score and
<DEL CITE="Fixed the math">eight<INS>seven</INS> years ago...</P>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

CITE NN n/a IE n/a HTML 4

CITE="string" Optional

A description of the reason for the change or other notation to be associated with the
element, but normally hidden from view. This information is meant to be used by authoring
tools, rather than by visual browsers.

Example <INS CITE="Fixed the math --A.L.">seven</INS>

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

CITE DATETIME ID LANGUAGE TITLE
CLASS DIR LANG STYLE

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<INS> 325

HTM
L Reference
DATETIME NN n/a IE n/a HTML 4

DATETIME="datetimeString" Optional

The date and time the insertion was made. This information is most likely to be added into
a document with an HTML authoring tool designed to track content insertions and dele-
tions. Data from this attribute can be recalled later as an audit trail to changes of the
document. There can be only one DATETIME attribute value associated with a given INS
element.

Example
<INS DATETIME="1998-09-11T20:03:32-08:00">SomeInsertedTextHere</INS>

Value

The DATETIME attribute requires a value in a special date-time format that conveys informa-
tion about the date and time in such a way that the exact moment can be deduced from
any time zone around the world. Syntax for the format is as follows:

yyyy-MM-ddThh:mm:ssTZD

yyyy Four-digit year

MM Two-digit month (01 through 12)

dd Two-digit date (01 through 31)

T Uppercase “T” to separate date from time

hh Two-digit hour in 24-hour time (00 through 23)

mm Two-digit minute (00 through 59)

ss Two-digit second (00 through 59)

TZD Time Zone Designator

There are two formats for the Time Zone Designator. The first is simply the uppercase letter
“Z”, which stands for UTC (Coordinated Universal Time—also called “Zulu”). The other
format indicates the offset from UTC that the time shown in hh:mm:ss represents. This time
offset consists of a plus or minus symbol and another pair of hh:mm values. For time zones
west of Greenwich Mean Time (which, for all practical purposes is the same as UTC), the
operator is a negative sign because the main hh:mm:ss time is earlier than UTC; for time
zones east of GMT, the offset is a positive value. For example, Pacific Standard Time is
eight hours earlier than UTC: when it is 6:00 P.M. in the PST zone, it is 2:00 A.M. the next
morning at UTC. Thus, the following examples all represent the exact same moment in time
(Time Zone Designator shown in boldface for clarification only):

For more details about this way of representing time, see the ISO-8601 standard.

Default None.

1998-09-12T02:00:00Z UTC
1998-09-11T21:00:00-05:00 Eastern Standard Time
1998-09-11T18:00:00-08:00 Pacific Standard Time
1998-09-12T13:00:00+11:00 Sydney, Australia
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

326 <KBD>
<ISINDEX> NN all IE all HTML all

<ISINDEX> End Tag: Forbidden

The ISINDEX element is a longtime holdover from the earliest days of HTML and is depre-
cated in HTML 4.0 in favor of the text INPUT element. The ISINDEX element tag belongs in
the HEAD element. In modern browsers, it is rendered as a simple text field between two HR
elements. When a user types text into the field and presses the Enter/Return key, the
content of the field is URL encoded (with + symbols substituted for spaces) and sent to the
server with the URL of the current document. A CGI program on the server must know how
to process this URL and return HTML for display in the current window or frame.

Example
<HEAD>
<ISINDEX PROMPT="Enter a search string:">
</HEAD>

Object Model Reference
IE [window.]document.all.elementID

Attributes

PROMPT NN all IE all HTML <4

PROMPT="message" Optional

This attribute lets you assign the prompt message that appears with the element.

Example <ISINDEX PROMPT="Enter a search string:">

Value Any quoted string.

Default None.

<KBD> NN all IE all HTML all

<KBD>...</KBD> End Tag: Required

The KBD element is one of a large group of elements that the HTML 4.0 recommendation
calls phrase elements. Such elements assign structural meaning to a designated portion of
the document. A KBD element is one that displays text that a user is supposed to type on
the keyboard, presumably to fill a text field or issue some command.

Browsers have free rein to determine how (or whether) to distinguish KBD element content
from the rest of the BODY element. Both Navigator and Internet Explorer elect to use a
monospace font for the text. This can be overridden with a style sheet as you see fit.

Example
<P>If you don't know the answer, type <KBD>NONE</KBD> into the text box.
</P>

Object Model Reference
IE [window.]document.all.elementID

CLASS ID LANGUAGE STYLE TITLE
DIR LANG PROMPT
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<KEYGEN> 327

HTM
L Reference
Attributes

Event Handler Attributes

<KEYGEN> NN all IE n/a HTML n/a

<KEYGEN> End Tag: Forbidden

A KEYGEN element allows a form to be submitted with key encryption, where the server
expects a form to be packaged with an encrypted key. The client browser must have a
digital certificate installed. The user sees two results of including the KEYGEN element inside
a FORM element. First, a select list of available encryption key sizes is rendered in the form
where the KEYGEN element appears. When the user submits the form, the user may see one
or more security-related dialogs for confirmation. This element builds on the public-key
encryption systems built into Navigator.

Example
<FORM ...>
...
<KEYGEN NAME="encryptedOrder" CHALLENGE="39457582201">
</FORM>

Attributes

CHALLENGE NN all IE n/a HTML n/a

CHALLENGE="challengeString" Optional

If the server is equipped to interpret a challenge string for verification of an encrypted
package, the CHALLENGE attribute is the challenge string.

Example <KEYGEN NAME="encryptedOrder" CHALLENGE="39457582201">

Value Any string.

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a

CHALLENGE NAME
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

328 <LABEL>
Default Empty string.

NAME NN all IE n/a HTML n/a

NAME="identifier" Required

Encrypting a form turns the entire form into a value that is part of a name/value pair. The
NAME attribute assigns the “name” part of the name/value pair. If the server successfully
decrypts the package, the individual form element name/value pairs are available to the
server for further processing.

Example <KEYGEN NAME="encryptedOrder" CHALLENGE="39457582201">

Value Case-insensitive identifier.

Default None.

<LABEL> NN n/a IE 4 HTML 4

<LABEL>...</LABEL> End Tag: Required

The LABEL element defines a structure and container for the label associated with an INPUT
element. Because the rendered labels for most form controls are not part of the element’s
tag, the LABEL attribute provides a way for a browser to clearly link label content to the
control.

You have two ways to provide the association. One is to assign the ID attribute value of the
control to the FOR attribute of the LABEL element. The other is to wrap the INPUT element
inside a LABEL element. The latter is possible only if the label and control are part of
running body content; if you must physically separate the label from the control because
they exist inside separate TD elements of a table, you must use the FOR attribute linkage.
Whether the label is rendered in front of or after the control depends entirely on the rela-
tive locations of the tags in the source code. A future application for this element is for text-
to-speech browsers reading aloud the label for a control.

Example
<FORM>
<LABEL>Company:<INPUT TYPE="text" NAME="company"></LABEL>

<LABEL FOR="stateEntry">State:</LABEL>
<INPUT TYPE="text" NAME="state" ID="stateEntry">
...
</FORM>

Object Model Reference
IE [window.]document.all.elementID

Attributes
ACCESSKEY DATAFORMATAS FOR LANGUAGE TABINDEX
CLASS DATASRC ID STYLE TITLE
DATAFLD DIR LANG
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<LABEL> 329

HTM
L Reference
Event Handler Attributes

ACCESSKEY NN n/a IE 4 HTML 4

ACCESSKEY="character" Optional

A single character key that brings focus to the associated INPUT element. The browser and
operating system determine if the user must press a modifier key (e.g., Ctrl, Alt, or
Command) with the access key to bring focus to the element. In IE 4/Windows, the Alt key
is required, and the key is not case sensitive. This attribute does not work in IE 4/Mac.

Example <LABEL FOR="stateEntry" ACCESSKEY="s">State:</LABEL>

Value Single character of the document set.

Default None.

Object Model Reference
IE [window.]document.all.elementID.accessKey

DATAFLD NN n/a IE 4 HTML n/a

DATAFLD="columnName" Optional

Used with IE 4 data binding to associate a remote data source column name with the label
of an INPUT element. The data source column must be either plain text or HTML (see
DATAFORMATAS). A DATASRC attribute must also be set for the LABEL element.

Example
<LABEL FOR="stateEntry" DATASRC="#DBSRC3" DATAFLD="label"
DATAFORMATAS="HTML">
State:</LABEL>

Value Case-sensitive identifier.

Default None.

Handler NN IE HTML
onBlur n/a n/a 4
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onFocus n/a n/a 4
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

330 <LABEL>
Object Model Reference
IE [window.]document.all.elementID.dataFld

DATAFORMATAS NN n/a IE 4 HTML n/a

DATAFORMATAS="dataType" Optional

Used with IE 4 data binding, this attribute advises the browser whether the source material
arriving from the data source is to be treated as plain text or as tagged HTML. This attribute
setting depends entirely on how the data source is constructed.

Example
<LABEL FOR="stateEntry" DATASRC="#DBSRC3" DATAFLD="label"
DATAFORMATAS="HTML">
State:</LABEL>

Value IE 4 recognizes two possible settings: text | HTML.

Default text

Object Model Reference
IE [window.]document.all.elementID.dataFormatAs

DATASRC NN n/a IE 4 HTML n/a

DATASRC="dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example
<LABEL FOR="stateEntry" DATASRC="#DBSRC3" DATAFLD="label"
DATAFORMATAS="HTML">
State:</LABEL>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.all.elementID.dataSrc

FOR NN n/a IE 4 HTML 4

FOR="inputElementIdentifier" Optional

A unique identifier that is also assigned to the ID attribute of the INPUT element to which
the label is to be associated. The FOR attribute is necessary only when you elect not to wrap
the INPUT element inside the LABEL element, in which case the FOR attribute performs the
binding between the two elements.

Example <LABEL FOR="stateEntry">State:</LABEL>

Value Case-sensitive identifier.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<LAYER> 331

HTM
L Reference
Default None.

Object Model Reference
IE [window.]document.all.elementID.htmlFor

TABINDEX NN n/a IE n/a HTML 4

TABINDEX=integer Optional

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their TABINDEX attributes are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest TABINDEX value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same TABINDEX values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the TABINDEX attribute or have the value set to zero. These elements receive focus in the
order in which they appear in the document.

Although this attribute is not yet implemented in browsers, the expected behavior is that
when a LABEL element receives focus, the focus shifts automatically to the associated
INPUT element.

Example <LABEL FOR="stateEntry" TABINDEX=3>State:</LABEL>

Value Any integer from 0 through 32767.

Default None.

<LAYER> NN 4 IE n/a HTML n/a

<LAYER>...</LAYER> End Tag: Required

A LAYER element is a positionable element in Navigator’s object model (e.g., like a block-
level element whose CSS position: attribute is set to absolute). As a result, many of the
attributes are named according to the Navigator way of positioning, sizing, and stacking
positionable elements. It is unlikely that the LAYER or the related ILAYER elements will be
adopted by the W3C, so you are encouraged to use CSS-Positioning syntax (which works
on both browser platforms) instead.

Content for a LAYER element can be read from a separate file (with the SRC attribute) or
wired into the current document by placing the HTML between the start and end tags. You
can include both types of content in the same LAYER element. Content from the SRC docu-
ment is rendered first (as its own block-level element), with additional content starting on
its own line below the external content’s rectangle.

A LAYER element can be positioned anywhere within a document and can overlap content
belonging to other layers (including the base document layer). Under link or script control,
content for an individual layer can be changed without having to reload the other content
on the page. Moreover, LAYER elements may be nested inside one another. See Chapter 5,
Making Content Dynamic, for more details.

Example
<LAYER BGCOLOR="yellow" SRC="instrux.html" WIDTH=200 HEIGHT=300></LAYER>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

332 <LAYER>
Object Model Reference
NN [window.]document.layerName

Attributes

Event Handler Attributes

ABOVE NN 4 IE n/a HTML n/a

ABOVE="layerID" Optional

Names the positionable element that is to be above (in front of) the current LAYER in the
stacking order. This is a different way to set the Z-INDEX attribute that does not rely on an
arbitrary numbering system. If you use the ABOVE attribute, do not use the BELOW or Z-
INDEX attribute for the same LAYER element.

Example
<LAYER ID="instrux" BGCOLOR="yellow" SRC="instrux.html" ABOVE="help1"
WIDTH=200 HEIGHT=300>
</LAYER>

Value Case-sensitive identifier.

Default None.

Object Model Reference
NN [window.]document.layerName.above

BACKGROUND NN 4 IE n/a HTML n/a

BACKGROUND="URL" Optional

Specifies an image file that is used as a backdrop to the text and other content of the LAYER
element. Unlike normal images that get loaded into browser content, a background image
loads in its original size (without scaling) and tiles to fill the available layer space. Smaller
images download faster but are obviously repeated more often in the background.
Animated GIFs are also allowable but very distracting to the reader. When selecting a back-
ground image, be sure it is very muted in comparison to the main content so that the
content stands out clearly. Background images, if used at all, should be extremely subtle.

ABOVE BGCOLOR ID PAGEY VISIBILITY
BACKGROUND CLIP LEFT SRC WIDTH
BELOW HEIGHT PAGEX TOP Z-INDEX

Handler NN IE HTML
onBlur 4 n/a n/a
onFocus 4 n/a n/a
onLoad 4 n/a n/a
onMouseDown 4 n/a n/a
onMouseOut 4 n/a n/a
onMouseOver 4 n/a n/a
onMouseUp 4 n/a n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<LAYER> 333

HTM
L Reference
Example
<LAYER BACKGROUND="blueCrinkle.jpg" SRC="instrux.html" WIDTH=200
HEIGHT=300>
</LAYER>

Value Any valid URL to an image file, including complete and relative URLs.

Default None.

Object Model Reference
NN [window.]document.layerName.background

BELOW NN 4 IE n/a HTML n/a

BELOW="layerID" Optional

Names the positionable element that is to be below (behind) the current LAYER in the
stacking order. This is a different way to set the Z-INDEX attribute that does not rely on an
arbitrary numbering system. If you use the BELOW attribute, do not use the ABOVE or Z-INDEX
attribute for the same LAYER element.

Example
<LAYER BGCOLOR="yellow" SRC="instrux.html" WIDTH=200 HEIGHT=300
BELOW="thankyou">
</LAYER>

Value Case-sensitive identifier.

Default None.

Object Model Reference
NN [window.]document.layerName.below

BGCOLOR NN 4 IE n/a HTML n/a

BGCOLOR="colorTripletOrName" Optional

Establishes a fill color (behind the text and other content) for the entire layer rectangle. If
you combine a BGCOLOR and BACKGROUND, any transparent areas of the background image
let the background color show through.

Example
<LAYER BGCOLOR="yellow" SRC="instrux.html" WIDTH=200 HEIGHT=300></LAYER>

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with operating system.

Object Model Reference
NN [window.]document.layerName.bgColor
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

334 <LAYER>
CLIP NN 4 IE n/a HTML n/a

CLIP="[leftPixel, topPixel,] rightPixel, bottomPixel" Optional

A clipping region is a rectangular view to the full LAYER content. Only content that is within
the clipping rectangle can be seen on the page. The default value of the CLIP attribute is
either the default size of the content or the LAYER element’s width by the automatically
flowing content length. Setting the CLIP attribute lets you rein in long content that might
flow beyond a fixed rectangle desired for the page design.

Example
<LAYER BGCOLOR="yellow" SRC="instrux.html" CLIP="50,50" WIDTH=200
HEIGHT=300>
</LAYER>

Value

CLIP attribute values are pixel measures from the top and left edges of the element as it
flows in the document. The order of values is clockwise from the left edge, around the rect-
angle sides: left, top, right, bottom. If you supply only two values, Navigator assumes the
left and top values are zero, meaning that you wish to adjust only the right and bottom
edges. Thus, a setting of "50,50" means that the clipping region is 50-pixels square, starting
at the top-left corner of the layer’s rectangle. If you want the same size view starting 10
pixels in from the left, the CLIP attribute setting becomes "10,0,60,50".

Default Naturally flowing viewing area of LAYER content.

Object Model Reference
NN [window.]document.layerName.clip.left

[window.]document.layerName.clip.top
[window.]document.layerName.clip.right
[window.]document.layerName.clip.bottom

HEIGHT, WIDTH NN 4 IE n/a HTML n/a

HEIGHT="length" Optional

WIDTH="length"

Define the minimum size of the LAYER element. When you add content to the layer during
initial loading, however, the attribute settings do not restrict the amount of the content that
is visible along either axis. For example, if you display an image in a LAYER that is 120
pixels wide by 90 pixels high, the actual visible size of a LAYER element whose HEIGHT and
WIDTH attributes are set to a smaller size expands to allow the full image to appear. The
same happens to text or other content: the viewable region expands to allow all content to
appear. To restrict the visible portion of the content, set the CLIP attribute.

Setting the HEIGHT and WIDTH attributes to specific sizes is helpful when you are creating a
colored or patterned rectangle (via the BGCOLOR or BACKGROUND attributes) to act as an
underlying layer beneath some other positioned content. Without content pushing on the
edges of the LAYER, the HEIGHT and WIDTH attributes set the clipping region to their sizes.

Example
<LAYER BGCOLOR="yellow" SRC="instrux.html" WIDTH=200 HEIGHT=300></LAYER>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<LAYER> 335

HTM
L Reference
Value

Positive integer values (optionally quoted) or percentage values (quoted). You can reduce
both values to zero to not only hide the element (which you can also do with the
VISIBILITY attribute), but also prevent the element from occupying any page space.

Default Naturally flowing viewing area of LAYER content.

Object Model Reference
NN [window.]document.layerName.height

[window.]document.layerName.width

ID NN 4 IE n/a HTML n/a

ID="elementIdentifier" Optional

A unique identifier that distinguishes this element from all the rest in the document. This is
the identifier used as values for the ABOVE and BELOW attributes. Scripts also use the ID
attribute value as the LAYER element’s name for object references.

Example
<LAYER ID="oldYeller" BGCOLOR="yellow" SRC="instrux.html" WIDTH=200
HEIGHT=300>
</LAYER>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.layerName.name

LEFT, TOP NN 4 IE n/a HTML n/a

LEFT="pixelCount" Optional

TOP="pixelCount"

Define the positioned offset of the left and top edges of the layer relative to the spot in the
document where the LAYER element would normally appear in source code order. This
precise location relative to the page varies unless you also set the PAGEX and PAGEY
attributes, which absolutely position the element in the document space. Unlike what it
does for the ILAYER element, Navigator does not preserve the space in the document
where a LAYER element appears. The element is placed in its own plane, and the
surrounding source code content is cinched up—usually overlapping the LAYER content
unless the layer is positioned elsewhere.

Example
<LAYER BGCOLOR="yellow" SRC="instrux.html" WIDTH=200 HEIGHT=300 LEFT=10
TOP=50>
</LAYER>

Value Positive integer values (optionally quoted).

Default 0
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

336 <LAYER>
Object Model Reference
NN [window.]document.layerName.left

[window.]document.layerName.top

PAGEX, PAGEY NN 4 IE n/a HTML n/a

PAGEX="pixelCount" Optional

PAGEY="pixelCount"

To truly position a LAYER element with repeatable accuracy, you can use the top-left corner
of the document (page) as the point of reference. When you set the PAGEX and/or PAGEY
attributes, you establish an offset for the left and top edges of the LAYER element relative to
the corresponding edges of the entire document. Therefore, the zero point for a vertically
scrolled page may be above the visible area of the browser window.

Example
<LAYER BGCOLOR="yellow" SRC="instrux.html" WIDTH=200 HEIGHT=300 PAGEX=50
 PAGEY=350>
</LAYER>

Value Positive integer values (optionally quoted).

Default 0

Object Model Reference
NN [window.]document.layerName.pageX

[window.]document.layerName.pageY

SRC NN 4 IE n/a HTML n/a

SRC="URL" Optional

To load the content of an external HTML file into a LAYER element, assign the URL of that
file to the SRC attribute. Any HTML content between the LAYER start and end tags is
rendered on the page after the content is loaded from the SRC URL. If you omit the SRC
attribute, only content between the tags is rendered. Scripts can change the corresponding
object property (src) after the document has loaded to dynamically change content within
the LAYER element (without reloading the main document).

Example
<LAYER BGCOLOR="yellow" SRC="instrux.html" WIDTH=200 HEIGHT=300</LAYER>

Value A complete or relative URL.

Default None.

Object Model Reference
NN [window.]document.layerName.src

TOP
See LEFT.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<LAYER> 337

HTM
L Reference
VISIBILITY NN 4 IE n/a HTML n/a

VISIBILITY="visibilityConstant" Optional

Determines whether Navigator displays the LAYER element. The default behavior is for a
layer to inherit the VISIBILITY attribute of its next outermost (parent) layer. For a LAYER
element that is part of the basic document body, this means that the layer is seen by default
(the base layer is always visible). To hide a layer when the page loads, set the VISIBILITY
attribute to "hidden". You need set the attribute to "show" only if the LAYER element is
nested within another LAYER (or ILAYER) whose VISIBILITY value is set to (or is inher-
ited as) "hidden".

Example
<LAYER BGCOLOR="yellow" SRC="instrux.html" WIDTH=200 HEIGHT=300
PAGEX=50 PAGEY=350 VISIBILITY="hidden">
</LAYER>

Value One of the accepted constants: hidden | inherit | visible

Default inherit

Object Model Reference
NN [window.]document.layerName.visibility

WIDTH
See HEIGHT.

Z-INDEX NN 4 IE n/a HTML n/a

Z-INDEX="layerNumber" Optional

Controls the positioning of layers along the Z-axis (front-to-back) of the document relative
to the next outermost layer container. When the Z-INDEX values of two or more position-
able elements within the same container (such as the base document layer) are identical
numbers, the loading order of the elements in the HTML source code controls the stacking
order, with the later elements stacked in front of earlier ones. The default Z-INDEX value
for all positionable elements is zero. Therefore, if you want only one positionable element
to appear in front of all the others that stack in their default order, you simply assign any
positive value (even 1) to that standout element. Stacking order of positionable elements
can be changed on-the-fly via scripting.

Example
<LAYER BGCOLOR="yellow" SRC="instrux.html" WIDTH=200 HEIGHT=300 Z-INDEX=1>
</LAYER>

Value Any integer.

Default 0

Object Model Reference
NN [window.]document.layerName.zIndex
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

338 <LEGEND>
<LEGEND> NN n/a IE 4 HTML 4

<LEGEND>...</LEGEND> End Tag: Required

The LEGEND element acts as a label for a FIELDSET element. In visual browsers, this usually
means that the label is visually associated with the group border rendered for the FIELDSET
element. Internet Explorer 4 builds the LEGEND element into the FIELDSET border. A text-
to-speech browser might read the label aloud as a user navigates through a form. In
Internet Explorer, the LEGEND element must come immediately after the start tag of the
FIELDSET element for the association to stick. Because the content of the LEGEND element
is HTML content, you can assign styles to make the label stand out, if you like.

Example
<FORM METHOD=POST ACTION="...">
<FIELDSET>
<LEGEND>Credit Card Information</LEGEND>
...inputElementsHere...
</FIELDSET>
</FORM>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

ACCESSKEY NN n/a IE n/a HTML 4

ACCESSKEY="character" Optional

A single character key that brings focus to the first focusable control of the form associated
with the LEGEND element. The browser and operating system determine if the user must
press a modifier key (e.g., Ctrl, Alt, or Command) with the access key to bring focus to the
element. In IE 4/Windows, the Alt key is required, and the key is not case sensitive. This
attribute does not work in IE 4/Mac.

ACCESSKEY CLASS ID LANGUAGE TITLE
ALIGN DIR LANG STYLE

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<LEGEND> 339

HTM
L Reference
Example <LEGEND ACCESSKEY="c">Credit Card Information</LEGEND>

Value Single character of the document set.

Default None.

ALIGN NN n/a IE 4 HTML 4

ALIGN="where" Optional

Controls the alignment of the LEGEND element with respect to the containing FIELDSET
element. The permissible values do not always work as planned in Internet Explorer 4. For
example, the bottom value displays the label at the top left of the fieldset rectangle—so
does the top value, although it is supposed to be centered along the top. The other values
(center, left, and right) work as expected, but on the Macintosh, the center and
right settings inexplicably widen the fieldset rectangle. Be sure to check your desired
setting on both operating system platforms.

The ALIGN attribute is deprecated in HTML 4.0 in favor of style sheets. But even a style
sheet won’t position a label along the bottom of a fieldset in Internet Explorer 4.

Example <LEGEND ALIGN="right">Credit Card Information</LEGEND>

Value

Allowed values in HTML 4.0 are bottom | left | right | top. IE 4 adds center.

Default left

Object Model Reference
IE [window.]document.all.elementID.align

TITLE NN n/a IE 4 HTML 4

TITLE="advisoryText" Optional

An advisory description of the element. In Internet Explorer 4, the title is rendered as a
tooltip when the cursor rests on the element for a moment. The TITLE attribute of a
LEGEND overrides the TITLE setting for the entire FIELDSET.

Example <LEGEND TITLE="Credit Card Info">...</LEGEND>

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

Object Model Reference
IE [window.]document.all.elementID.title
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

340
 NN all IE all HTML all

... End Tag: Optional

The LI element is a single list item that is nested inside an OL or UL list container. The
outer container determines whether the LI item is preceded with a number or letter (indi-
cating sequence within an order) or a symbol that doesn’t connote any particular order. A
special category of style sheet attributes are devoted to list formatting. Therefore, a number
of formatting attributes for LI, OL, and UL elements are deprecated in HTML 4.0.

If you apply a style sheet rule to an LI element to adjust the color in Navigator 4, only the
leading symbol is colored. To color the text as well, wrap the LI element inside a SPAN
element and apply the style to the SPAN element. This works the same way in Navigator
and Internet Explorer.

Example

 Larry
 Moe
 Curly

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

TYPE NN all IE all HTML 3.2

TYPE="labelType" Optional

The TYPE attribute provides some flexibility in how the leading symbol or sequence
number is displayed in the browser. Values are divided into two groups, with one group
each dedicated to OL and UL items. For an unordered list (UL), you can specify whether the

CLASS ID LANGUAGE TITLE VALUE
DIR LANG STYLE TYPE

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 341

HTM
L Reference
leading symbol should be a disc, circle, or square; for an ordered list (OL), the choices are
among letters (uppercase or lowercase), Roman numerals (uppercase or lowercase), or
Arabic numerals. The TYPE attribute is deprecated in HTML 4.0 in favor of the list-
style-type: style sheet attribute.

For no apparent reason, the square type of unordered list item displays as solid in Windows
browsers and as hollow in Macintosh browsers.

Be aware that in current browser implementations, the TYPE attribute for a LI element sets
the type for subsequent LI elements in the list unless overridden by a TYPE attribute setting
in another LI element. In general, it is best to set the TYPE attribute of the OL or UL
element and let that setting govern all nested elements.

Example <LI TYPE="square">Chicken Curry

Value

When contained by a UL element, possible values are disc | circle | square. When
contained by an OL element, possible values are A | a | I | i | 1. Sequencing is
performed automatically as follows:

Default 1 and disc.

Object Model Reference
IE [window.]document.all.elementID.type

VALUE NN all IE all HTML 3.2

VALUE="number" Optional

The VALUE attribute applies only when the LI element is nested inside an OL element. You
can manually set the number used as a starting point for the sequencing of ordered list
items. This can come in handy when you need to break up an OL element with some
running text that is not part of the list.

Even though the value assigned to this attribute is a number, it does not affect the TYPE
setting. For example, setting VALUE to 3 when TYPE is A means that the sequence starts
from that LI element with the letter C.

Example <LI VALUE=3>Insert Tab C into Slot M. Tighten with a wingnut.

Value Any positive integer.

Default 1

Object Model Reference
IE [window.]document.all.elementID.value

Type Example
A A, B, C, ...
a a, b, c, ...
I I, II, III, ...
i i, ii, iii, ...
1 1, 2, 3, ...
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

342 <LINK>
<LINK> NN 4 IE 3 HTML all

<LINK>...</LINK> End Tag: Forbidden

Unlike the A element (informally called a link when it contains an HREF attribute), the LINK
element belongs inside the HEAD element and is a place for the document to establish links
with external documents, such as style sheet definition files or font definition files. By and
large, browsers have yet to exploit the intended powers of this element. A variety of
attributes let the author establish relationships between the current document and poten-
tially related documents. In theory, some of these relationships could be rendered as part of
the document or browser controls. Implementations of this element in both Navigator 4 and
Internet Explorer 4 are rather weak compared to the HTML 4.0 specification. At the same
time, several attributes (and all event handlers) defined in the HTML 4.0 specification aren’t
very helpful because they more typically apply to elements that actually display content on
the page. No explicit document content is rendered as a result of the LINK element. Some
of those attributes may be listed by mistake or merely for consistency. They are listed here,
but because they are not implemented in browsers, they are supplied for informational
purposes only.

Example
<HEAD>
<TITLE>Section 3</TITLE>
<LINK REV="Prev" HREF="sect2.html">
<LINK REL="Next" HREF="sect4.html">
<LINK REL="stylesheet" TYPE="text/css" HREF="myStyles.css">
</HEAD>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

CHARSET HREF LANG REV TARGET
CLASS HREFLANG MEDIA SRC TITLE
DIR ID REL STYLE TYPE
DISABLED

Handler NN IE HTML
onClick n/a n/a 4
onDblClick n/a n/a 4
onKeyDown n/a n/a 4
onKeyPress n/a n/a 4
onKeyUp n/a n/a 4
onMouseDown n/a n/a 4
onMouseMove n/a n/a 4
onMouseOut n/a n/a 4
onMouseOver n/a n/a 4
onMouseUp n/a n/a 4
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<LINK> 343

HTM
L Reference
CHARSET NN n/a IE n/a HTML 4

CHARSET="characterSet" Optional

Character encoding of the content at the other end of the link.

Example <LINK CHARSET="csISO5427Cyrillic" HREF="moscow.html">

Value

Case-insensitive alias from the character set registry (ftp://ftp.isi.edu/in-notes/iana/
assignments/character-sets).

Default Determined by browser.

DISABLED NN n/a IE 4 HTML n/a

DISABLED Optional

The presence of this attribute disables the LINK element. Unlike when this attribute is
applied to content-holding elements, in this case no content is grayed out in response.

Example <LINK REL="Index" HREF="indexList.html" DISABLED>

Value The presence of this attribute sets its value to true.

Default false

Object Model Reference
IE [window.]document.all.elementID.disabled

HREF NN n/a IE 3 HTML all

HREF="URI" Required

The URI of the destination of a link. Navigator 4 uses the SRC attribute for this purpose.
Include both attributes for a cross-browser implementation.

Example <LINK REL="Prev" HREF="sect2.html">

Value Any valid URI, including complete and relative URLs.

Default None.

Object Model Reference
IE [window.]document.all.elementID.href

HREFLANG NN n/a IE n/a HTML 4

HREFLANG="languageCode" Optional

The language code of the content at the destination of a link. Requires that the HREF
attribute also be set. This attribute is primarily an advisory attribute to help a browser
prepare itself for a new language set if the browser is so enabled.

Example <LINK HREFLANG="HI" HREF="hindi/Chap3.html">

Value Case-insensitive language code.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

344 <LINK>
Default Browser default.

MEDIA NN n/a IE n/a HTML 4

MEDIA="descriptorList" Optional

Sets the intended output device for the content of the destination document pointed to by
the HREF attribute. The MEDIA attribute looks forward to the day when browsers are able to
tailor content to specific kinds of devices such as pocket computers, text-to-speech digi-
tizers, or fuzzy television sets. The HTML 4.0 specification defines a number of constant
values for anticipated devices, but the list is open-ended, allowing future browsers to tailor
output to yet other kinds of media and devices.

Example
<LINK REL="Glossary" HREF="gloss.html" MEDIA="screen, tv, handheld">

Value

Case-sensitive constant values. Multiple values can be grouped together in a comma-
delimited list within a quoted string. Values defined in HTML 4.0 are all | aura |
braille | handheld | print | projection | screen | tty | tv .

Default screen

REL NN 4 IE 3 HTML 3.2

REL="linkTypes" Optional

Defines the relationship between the current element and the destination of the link. The
HTML 4.0 recommendation defines several link types; it is up to the browser to determine
how to employ the value. The element must include an HREF attribute for the REL attribute
to be applied.

Example <LINK REL="Next" HREF="sect6.html">

Value

Case-insensitive, space-delimited list of HTML 4.0 standard link types applicable to the
element. Internet Explorer 4 understands only stylesheet; Navigator 4 recognizes
stylesheet and fontdef. HTML 4.0-sanctioned link types are:

Default None.

Object Model Reference
IE [window.]document.all.elementID.rel

alternate contents index start
appendix copyright next stylesheet
bookmark glossary prev subsection
chapter help section
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<LINK> 345

HTM
L Reference
REV NN n/a IE n/a HTML 4

REV="linkTypes" Optional

A reverse link relationship. Like the REL attribute, the REV attribute’s capabilities are defined
by the browser, particularly with regard to how the browser interprets and renders the
various link types available in the HTML 4.0 specification. Given two documents (A and B)
containing links that point to each other, the REV value of B is designed to express the
same relationship between the two documents as denoted by the REL attribute in A.

Example <LINK REV="Prev" HREF="sect4.html">

Value

Case-insensitive, space-delimited list of HTML 4.0 standard link types applicable to the
element. See the REL attribute for sanctioned link types.

Default None.

SRC NN 4 IE n/a HTML n/a

SRC="URL" Optional

The URL of the destination of a link. Internet Explorer 4 and HTML 4.0 use the HREF
attribute for this purpose. Include both attributes for a cross-browser implementation.

Example <LINK REL="fontdef" HREF="fonts/garamond.pfr">

Value Any valid URL, including complete and relative URLs.

Default None.

TARGET NN n/a IE n/a HTML 4

TARGET="windowOrFrameName" Optional

Presumably, the TARGET attribute is provided in HTML 4.0 as a way to specify the destina-
tion for display of a document at the other end of the HREF attribute of the LINK element.
No browser yet implements this attribute because the LINK element so far does not link up
to content that can be displayed.

Value

Case-sensitive identifier when the frame or window name has been assigned via the target
element’s NAME attribute. Four reserved target names act as constants:

_blank Browser creates a new window for the destination document.

_parent Destination document replaces the current frame’s framesetting document (if
one exists; otherwise, it is treated as _self).

_self Destination document replaces the current document in its window or frame.

_top Destination document is to occupy the entire browser window, replacing any
and all framesets that may be loaded (also treated as _self if there are no
framesets defined in the window).

Default _self
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

346 <LISTING>
TYPE NN 4 IE 4 HTML 4

TYPE="MIMEType" Optional

An advisory about the content type of the destination document or resource. In practice,
this attribute so far is used to prepare the browser for the style sheet type being linked to.

Example
<LINK REL="stylesheet" TYPE="text/css" HREF="styles/mainStyle.html">

Value

Case-insensitive MIME type. A catalog of registered MIME types is available from ftp://
ftp.isi.edu/in-notes/iana/assignments/media-types/.

Default None.

Object Model Reference
IE [window.]document.all.elementID.type

<LISTING> NN all IE all HTML <4

<LISTING>...</LISTING> End Tag: Required

The LISTING element displays its content in a monospace font as a block element, as in
computer code listings rendered 132 columns wide. In most browsers, the font size is also
reduced from the default size. Browsers observe carriage returns and other whitespace in
element content. This element has been long deprecated in HTML and has even been
removed from the HTML 4.0 specification. You are encouraged to use the PRE element
instead.

Example
<LISTING>
<SCRIPT LANGUAGE="JavaScript">
 document.write("Hello, world.")
</SCRIPT>
</LISTING>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

CLASS LANG LANGUAGE STYLE TITLE
ID

Handler NN IE HTML
onClick n/a 4 n/a
onDblClick n/a 4 n/a
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 n/a
onKeyPress n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<MAP> 347

HTM
L Reference
<MAP> NN all IE all HTML 3.2

<MAP>...</MAP> End Tag: Required

A MAP element is a container for AREA elements that define the location and links of
hotspots of client-side image maps. The primary purpose of the MAP element is to associate
an identifier (the NAME attribute) that the USEMAP attribute points to when turning an IMG
element into a client-side image map. Most other attributes are style-related and may be
applied to the MAP element so that they are inherited by elements nested within.

Example
<IMG SRC="images/logo.gif" ALT="Scroll to the bottom for navigation links."
HEIGHT=300 WIDTH=250 USEMAP="#navigation">
<MAP NAME="navigation">
<AREA SHAPE="rect" COORDS="0,0,100,100" HREF="products.html">
<AREA SHAPE="rect" COORDS="0,100,300,100" HREF="support.html">
</MAP>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

onKeyUp n/a 4 n/a
onMouseDown n/a 4 n/a
onMouseMove n/a 4 n/a
onMouseOut n/a 4 n/a
onMouseOver n/a 4 n/a
onMouseUp n/a 4 n/a
onSelectStart n/a 4 n/a

CLASS ID LANGUAGE STYLE TITLE
DIR LANG NAME

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4

Handler NN IE HTML
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

348 <MARQUEE>
NAME NN all IE all HTML 3.2

NAME="identifier" Required

The identifier to which the USEMAP attribute of an IMG element points. Because the USEMAP
attribute is actually a URL type, its value resembles that of a link to an anchor: the name is
preceded by a hash symbol (only in the USEMAP attribute).

Example <MAP NAME="navigation"> ...</MAP>

Value Case-sensitive unique identifier.

Default None.

Object Model Reference
IE [window.]document.all.elementID.name

<MARQUEE> NN n/a IE 3 HTML n/a

<MARQUEE>...</MARQUEE> End Tag: Optional

The MARQUEE element is unique to Internet Explorer. It displays HTML content in a scrolling
region on the page. Scrolled content goes between the start and end tags. There is no
corresponding element in Navigator, although the effect can be duplicated in a cross-
browser fashion with a Java applet or more cumbersomely through Dynamic HTML.

Example
<MARQUEE BEHAVIOR="slide" DIRECTION="left" WIDTH=250 BGCOLOR="white">
Check out our monthly specials.
</MARQUEE>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

onMouseUp n/a 4 4
onSelectStart n/a 4 n/a

BEHAVIOR DATAFORMATAS HSPACE LOOP TITLE
BGCOLOR DATASRC ID SCROLLAMOUNT TRUESPEED
CLASS DIRECTION LANG SCROLLDELAY VSPACE
DATAFLD HEIGHT LANGUAGE STYLE WIDTH

Handler NN IE HTML
onAfterUpdate n/a 4 n/a
onBlur n/a 4 n/a
onBounce n/a 4 n/a
onClick n/a 4 n/a
onDblClick n/a 4 n/a

Handler NN IE HTML
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<MARQUEE> 349

HTM
L Reference
BEHAVIOR NN n/a IE 3 HTML n/a

BEHAVIOR="motionType" Optional

Sets the motion of the content within the rectangular space set aside for the MARQUEE
element. You have a choice of three motion types.

Example
<MARQUEE BEHAVIOR="slide" DIRECTION="left" WIDTH=250 BGCOLOR="white">
...
</MARQUEE>

Value One of the case-insensitive MARQUEE element motion types:

alternate Content alternates between marching left and right.

scroll Content scrolls (according to the DIRECTION attribute) into view and out of
view before starting again.

slide Content scrolls (according to the DIRECTION attribute) into view, stops at the
end of its run, blanks, and then starts again.

Default scroll

Object Model Reference
IE [window.]document.all.elementID.behavior

BGCOLOR NN n/a IE 3 HTML n/a

BGCOLOR="colorTripletOrName" Optional

Establishes a fill color (behind the text and other content) for the rectangular space reserved
for the MARQUEE element.

onDragStart n/a 4 n/a
onFinish n/a 4 n/a
onFocus n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 n/a
onKeyPress n/a 4 n/a
onKeyUp n/a 4 n/a
onMouseDown n/a 4 n/a
onMouseMove n/a 4 n/a
onMouseOut n/a 4 n/a
onMouseOver n/a 4 n/a
onMouseUp n/a 4 n/a
onResize n/a 4 n/a
onRowEnter n/a 4 n/a
onRowExit n/a 4 n/a
onSelectStart n/a 4 n/a
onStart n/a 4 n/a

Handler NN IE HTML
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

350 <MARQUEE>
Example
<MARQUEE BEHAVIOR="slide" DIRECTION="left" WIDTH=250 BGCOLOR="white">
...
</MARQUEE>

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with browser, browser version, and operating system.

Object Model Reference
IE [window.]document.all.elementID.bgColor

DATAFLD NN n/a IE 4 HTML n/a

DATAFLD="columnName" Optional

Used with IE 4 data binding to associate a remote data source column name with the
content scrolled by the MARQUEE element. The data source column must be either plain text
or HTML (see DATAFORMATAS). A DATASRC attribute must also be set for the MARQUEE
element.

Example
<MARQUEE BEHAVIOR="slide" DIRECTION="left" WIDTH=200
DATASRC="#DBSRC3" DATAFLD="news" DATAFORMATAS="HTML">
...
</MARQUEE>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.all.elementID.dataFld

DATAFORMATAS NN n/a IE 4 HTML n/a

DATAFORMATAS="dataType" Optional

Used with IE 4 data binding, this attribute advises the browser whether the source material
arriving from the data source is to be treated as plain text or as tagged HTML. This attribute
setting depends entirely on how the data source is constructed.

Example
<MARQUEE BEHAVIOR="slide" DIRECTION="left" WIDTH=200
DATASRC="#DBSRC3" DATAFLD="news" DATAFORMATAS="HTML">
...
</MARQUEE>

Value IE 4 recognizes two possible settings: text | HTML.

Default text
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<MARQUEE> 351

HTM
L Reference
Object Model Reference
IE [window.]document.all.elementID.dataFormatAs

DATASRC NN n/a IE 4 HTML n/a

DATASRC="dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example
<MARQUEE BEHAVIOR="slide" DIRECTION="left" WIDTH=200
DATASRC="#DBSRC3" DATAFLD="news" DATAFORMATAS="HTML">
...
</MARQUEE>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.all.elementID.dataSrc

DIRECTION NN n/a IE 4 HTML n/a

DIRECTION="scrollDirection" Optional

A MARQUEE element’s content may scroll in one of four directions. For optimum readability
in languages written left to right, it is easier to grasp the content when it scrolls either to the
left or downward.

Example
<MARQUEE BEHAVIOR="slide" DIRECTION="left" WIDTH=200>
...
</MARQUEE>

Value Four possible directions: down | left | right | up.

Default left

Object Model Reference
IE [window.]document.all.elementID.direction

HEIGHT, WIDTH NN n/a IE 4 HTML n/a

HEIGHT="length" Optional

WIDTH="length"

A MARQUEE element renders itself as a rectangular space on the page. You can override the
default size of this rectangle by assigning values to the HEIGHT and WIDTH attributes. The
default value for HEIGHT is determined by the font size of the largest font assigned to
content in the MARQUEE. Default width is set to 100% of the width of the next outermost
container (usually the document BODY). The WIDTH defines how much space is used at one
time or another by horizontally scrolling content. When the MARQUEE is embedded within a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

352 <MARQUEE>
TD element that lets the browser determine the table cell’s calculated width, you must set
the WIDTH of the MARQUEE element or risk having the browser set it to 1, making the
content unreadable.

If you want extra padding around the space, see the HSPACE and VSPACE attributes.

Example
<MARQUEE BEHAVIOR="slide" DIRECTION="left" HEIGHT=20 WIDTH=200>
...
</MARQUEE>

Value Any length value in pixels or percentage of available space.

Default A width of 100%; a height of 12 pixels.

Object Model Reference
IE [window.]document.all.elementID.height

[window.]document.all.elementID.width

HSPACE, VSPACE NN n/a IE 4 HTML n/a

HSPACE="pixelCount" Optional

VSPACE="pixelCount"

Internet Explorer provides attributes for setting padding around a MARQUEE element. The
HSPACE attribute controls padding along the left and right edges (horizontal padding),
whereas the VSPACE attribute controls padding along the top and bottom edges (vertical
padding). Adding such padding provides an empty cushion around the MARQUEE’s rect-
angle. As an alternate, you can specify the various margin style sheet settings, especially if
you want to open space along only one edge.

Example
<MARQUEE BEHAVIOR="slide" DIRECTION="left" HEIGHT=20 WIDTH=200
HSPACE=10 VSPACE=15>
...
</MARQUEE>

Value Any positive integer.

Default 0

Object Model Reference
IE [window.]document.all.elementID.hspace

[window.]document.all.elementID.vspace

LOOP NN n/a IE 4 HTML n/a

LOOP="count" Optional

Sets the number of times the MARQUEE element scrolls its content. After the final scroll, the
content remains in a fixed position. Constant animation can sometimes be distracting to
page visitors, so if you have the MARQUEE turn itself off after a few scrolls, you may be
doing your visitors a favor.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<MARQUEE> 353

HTM
L Reference
Example
<MARQUEE BEHAVIOR="slide" DIRECTION="left" HEIGHT=20 WIDTH=200 LOOP=3>
...
</MARQUEE>

Value

Any positive integer if you want the scrolling to stop. Otherwise, set the value to -1 or
infinite.

Default -1

Object Model Reference
IE [window.]document.all.elementID.loop

SCROLLAMOUNT NN n/a IE 4 HTML n/a

SCROLLAMOUNT="pixelCount" Optional

MARQUEE content looks animated by virtue of the browser clearing and redrawing its
content at a location offset from the previous location (in a direction set by the DIRECTION
attribute). You can make the scrolling appear faster by increasing the amount of space
between positions of each drawing of the content; conversely, you can slow down the
scrolling by decreasing the space. See also SCROLLDELAY.

Example
<MARQUEE BEHAVIOR="slide" DIRECTION="left" HEIGHT=20 WIDTH=200
SCROLLAMOUNT=2>
...
</MARQUEE>

Value Any positive integer.

Default 6

Object Model Reference
IE [window.]document.all.elementID.scrollAmount

SCROLLDELAY NN n/a IE 4 HTML n/a

SCROLLDELAY="milliseconds" Optional

Apparent scrolling speed can be influenced by the frequency of redrawing of the content as
its position shifts with each redraw (see SCROLLAMOUNT). Increasing the SCROLLDELAY
value slows down the scroll speed, whereas decreasing the value makes the scrolling go
faster. Be aware that on slower computers, you can reach a value at which no increase of
speed is discernible no matter how small you make the SCROLLDELAY value (see
TRUESPEED).

Example
<MARQUEE BEHAVIOR="slide" DIRECTION="left" HEIGHT=20 WIDTH=200
SCROLLDELAY=100>
...
</MARQUEE>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

354 <MENU>
Value

Any positive integer representing the number of milliseconds between content redraws.

Default 85 (Windows 95); 90 (Macintosh).

Object Model Reference
IE [window.]document.all.elementID.scrollDelay

TRUESPEED NN n/a IE 4 HTML n/a

TRUESPEED Optional

The MARQUEE element includes a built-in speed bump to prevent scrolling from being acci-
dentally specified too fast for visitors to read. If you genuinely intend the content to scroll
very fast, you can include the TRUESPEED attribute to tell the browser to honor
SCROLLDELAY settings below 60 milliseconds.

Example
<MARQUEE BEHAVIOR="slide" DIRECTION="left" HEIGHT=20 WIDTH=200
SCROLLDELAY=45 TRUESPEED>
...
</MARQUEE>

Value The presence of this attribute sets the value to true.

Default false

Object Model Reference
IE [window.]document.all.elementID.trueSpeed

VSPACE
See HSPACE.

WIDTH
See HEIGHT.

<MENU> NN all IE all HTML all

<MENU>...</MENU> End Tag: Required

The original idea of the MENU element was to allow browsers to generate single-column lists
of items. Virtually every browser, however, treats the MENU element the same as a UL
element to present an unordered single column list of items (usually preceded by bullets).
The MENU element is deprecated in HTML 4.0. You should be using the UL element for it in
any case, because you are assured backward compatibility and forward compatibility should
this element ever disappear from the browser landscape. Everything said here also applies
to the deprecated DIR element.

Example
Common DB Connector Types:
<MENU>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<META> 355

HTM
L Reference
 DB-9
 DB-12
 DB-25
</MENU>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

COMPACT NN n/a IE 3 HTML 3.2

COMPACT Optional

A Boolean attribute originally designed to let browsers render the list in a more compact
style than normal (smaller line spacing between items). Internet Explorer ignores this
attribute (despite the fact that support for this attribute is indicated in IE 3 documentation).

Example
<MENU COMPACT>...</MENU>

Value The presence of this attribute makes its value true.

Default false

<META> NN all IE all HTML all

<META> End Tag: Forbidden

A META element conveys hidden information about the document, both to the server that
dishes up the document and to the client that downloads the document. The element is also

CLASS DIR LANG STYLE TITLE
COMPACT ID LANGUAGE

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

356 <META>
used to embed document information that some search engines use for indexing and cate-
gorizing documents on the World Wide Web.

More than one META element may be included in a document, and all META elements
belong nested inside the HEAD element. The specific purpose of each META element is
defined by its attributes. Typically, a META element reduces to a name/value pair that is of
use to either the server or the client. For example, most browsers recognize attribute
settings that force the page to reload (or redirect to another page) after a timed delay. This
would be useful in a page whose content is updated minute-by-minute, because the
browser keeps reloading the latest page as often as indicated in the META element.

Several other elements and attributes in HTML 4.0 contain the same kind of meta-data that
might otherwise be located in META elements. Use the avenue that is best suited to your
intended server and browser environments. In many cases, real-world implementations
must catch up with the HTML 4.0 specification before you will be faced with those
decisions.

See also the ADDRESS, DEL, INS, LINK, and TITLE elements, as well as the PROFILE
attribute of the HEAD element.

Example
<HEAD PROFILE="http://www.giantco.com/profiles/common">
 <META NAME="Author" CONTENT="Jane Smith">
 <META NAME="keywords" CONTENT="benefits,insurance,plan">
 <META HTTP-EQUIV="refresh"

CONTENT="1;URL=http://www.giantco.com/truindex.html">
 <META HTTP-EQUIV="Content-Type" CONTENT="text/html;

charset=ISO-8859-5">
</HEAD>

Attributes

CONTENT NN all IE all HTML all

CONTENT="valueString" Required

The equivalent of the value of a name/value pair. The attribute is usually accompanied by
either a NAME or HTTP-EQUIV attribute, either of which act as the name portion of the
name/value pair. Specific values of the CONTENT attribute vary with the value of the NAME
or HTTP-EQUIV attribute. Sometimes, the CONTENT attribute value contains multiple values.
In such cases, the values are delimited by commas. Some of these values may be name/
value pairs in their own right, such as the content for a refresh META element. The first
value is a number representing the number of seconds delay before loading another docu-
ment; the second value indicates a URL of the document to load after the delay expires.

Example
<META HTTP-EQUIV="refresh"
CONTENT="2;URL=http://www.giantco.com/basicindex.html">

CONTENT HTTP-EQUIV NAME SCHEME TITLE
DIR LANG
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<META> 357

HTM
L Reference
Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

Object Model Reference
IE [window.]document.all.elementID.content

HTTP-EQUIV NN all IE all HTML all

HTTP-EQUIV="identifier" Optional

When a server sends a document to the client with the HTTP protocol, a number of HTTP
header fields are sent along, primarily as directives to the client about the content on its
way. META elements can add to those HTTP headers when the HTTP-EQUIV attribute is
assigned to a document. Browsers convert the HTTP-EQUIV and CONTENT attribute values
into the HTTP response header format of "name: value" and treat them as if they came
directly from the server.

Web standards define a long list of HTTP headers (see Webmaster in a Nutshell by Stephen
Spainhour and Valerie Quercia, published by O’Reilly & Associates), but some of the more
common values are shown in the following examples. You can have either the HTTDIREC-
TIONP-EQUIV or NAME attribute in a META element, but not both.

Example
<META HTTP-EQUIV="refresh"
CONTENT="1,http://www.giantco.com/truindex.html">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=ISO-8859-5">
<META HTTP-EQUIV="expires" CONTENT="Sun, 15 Jan 1998 17:38:00 GMT">

Value Any string identifier.

Default None.

Object Model Reference
IE [window.]document.all.elementID.httpEquiv

NAME NN all IE all HTML all

NAME="identifier" Optional

An identifier for the name/value pair that constitutes the META element. Typically, the
attribute value is a plain-language term that denotes the purpose of the META element, such
as "author" or "keywords". You can assign a value to either the NAME or HTTP-EQUIV
attribute, but not both, in the same META element.

Example
<META NAME="Author" CONTENT="Jane Smith">
<META NAME="keywords" CONTENT="benefits,insurance,plan">

Value Any string identifier.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

358 <MULTICOL>
Object Model Reference
IE [window.]document.all.elementID.name

SCHEME NN n/a IE n/a HTML 4

SCHEME="identifier" Optional

Provides one more organizational layer to meta-data supplied with a document. For
example, a university campus with several libraries might generate documents associated
with each of the libraries. Assuming that a browser is equipped to interpret meta-data about
this, one approach at assembling the tags is to create a separate NAME attribute value for
each library: NAME="law", NAME="main", NAME="engineering", and so on. But it may
also be necessary to associate these NAME values with a specific university. The SCHEME
attribute could be called into service to align the meta-data with a particular university:
SCHEME="Harvard". Now, other university library systems could use the same organiza-
tion of NAME attributes, but the SCHEME attribute clearly associates a given META element
with a specific university and library. Again, this assumes that the browser is empowered to
do something special with this meta-knowledge.

Example <META SCHEME="Chicago" NAME="restaurant" CONTENT="1029">

Value Any string identifier.

Default None.

<MULTICOL> NN 3 IE n/a HTML n/a

<MULTICOL>...</MULTICOL> End Tag: Required

A Navigator-specific element that renders its content in any number of evenly spaced
flowing columns on the page. The way this element flows content might remind you of a
desktop publishing program that automatically flows long content into column space that
has been defined for the page. There is no equivalent for this element in HTML or Internet
Explorer, but the columns style sheet attribute is defined in CSS2.

Example
<MULTICOL COLS=2 GUTTER=20 WIDTH=500>
LongFlowingHTMLContent
</MULTICOL>

Attributes

COLS NN 3 IE n/a HTML n/a

COLS="columnCount" Required

Defines the number of columns across which the browser distributes and renders the
content of the element. For a given width of the content, the browser does its best to make
each column the same length.

COLS GUTTER WIDTH
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<NOBR> 359

HTM
L Reference
Example
<MULTICOL COLS=2 GUTTER=20 WIDTH=500>
LongFlowingHTMLContent
</MULTICOL>

Value Any positive integer.

Default 1

GUTTER NN 3 IE n/a HTML n/a

GUTTER="pixelCount" Optional

Specifies the number of pixels to be placed between columns. The browser then calculates
the width of the content columns by subtracting all the gutters from the total available
width.

Example
<MULTICOL COLS=2 GUTTER=20 WIDTH=500>
LongFlowingHTMLContent
</MULTICOL>

Value Any positive integer.

Default 10

WIDTH NN 3 IE n/a HTML n/a

WIDTH="elementWidth" Optional

Defines the total width of the columns plus gutters. You can specify the width in pixels or
as a percentage of the width of the next outer container (usually the document BODY).

Example
<MULTICOL COLS=2 GUTTER=20 WIDTH=500>
LongFlowingHTMLContent
</MULTICOL>

Value Any length value in pixels or percentage of available space.

Default 100%

<NOBR> NN all IE all HTML n/a

<NOBR>...</NOBR> End Tag: Required

The NOBR element instructs the browser to render its content without wrapping the text to
the next line at the right edge of the window or container. Even if there are carriage returns
in the source code for the element’s content, the browser flows the text as one line.
Although this might seem convenient in circumstances involving careful layout of pages, it
may mean the user has to scroll horizontally to view the text—not something most users
like to do. Despite the longevity of the NOBR element in commercial browsers, it has never
been mentioned in formal HTML recommendations.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

360 <NOFRAMES>
Example
<NOBR>
Now is the time for all good men to
come to the aid of their country, even if
the text forces them to scroll horizontally.
</NOBR>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Object Model Reference
IE [window.]document.all.elementID

<NOEMBED> NN 2 IE n/a HTML n/a

<NOEMBED>...</NOEMBED> End Tag: Required

Navigator provides a tag for isolating advisory content that displays in browsers incapable
of working with plugins. All content between the start and end tags of the NOEMBED
element is not rendered in Navigator (or Internet Explorer) but is rendered in other
browsers (which ignore the tag but not the content). There are no attributes for this
element.

Example
<EMBED NAME="jukebox" SRC="jazz.aif" HEIGHT=100 WIDTH=200></EMBED>
<NOEMBED>
To play the music associated with this page, you need a modern graphical
browser.
</NOEMBED>

<NOFRAMES> NN 2 IE 3 HTML 4

<NOFRAMES>...</NOFRAMES> End Tag: Required

The NOFRAMES element contains HTML that is rendered by browsers incapable of displaying
frames. Browsers that are capable of displaying frames ignore the NOFRAMES element and
all content it contains. Content for this element should instruct the user about using frames
or perhaps offer a link to a frameless version of the page. The most common location for
the NOFRAMES element is inside a FRAMESET element. The HTML 4.0 specification, however,
sees nothing wrong with embedding the element in a rendered document, if it makes sense
for your application.

All attributes of the NOFRAMES element were added to support Cascading Style Sheets. This
seems odd, because it would seem very unlikely that a browser would support CSS but not
frames. Chalk it up to consistency.

Example
<FRAMESET COLS="150,*">
 <FRAME NAME="navbar" SRC="nav.html">
 <FRAME NAME="main" SRC="page1.html">

CLASS ID STYLE TITLE
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<NOSCRIPT> 361

HTM
L Reference
 <NOFRAMES>Your browser does not support frames.
 Click here for a frameless version.
 </NOFRAMES>
</FRAMESET>

Attributes

Event Handler Attributes

<NOLAYER> NN 4 IE n/a HTML n/a

<NOLAYER>...</NOLAYER> End Tag: Required

Navigator provides a tag for isolating advisory content that displays in browsers that don’t
recognize the LAYER element. All content between the start and end tags of the NOLAYER
element is not rendered in Navigator 4 but is rendered in other browsers (which ignore the
tag but not the content). You can place the NOLAYER element anywhere you want, but be
aware that it won’t be positioned like the LAYER element is intended to be.

There are no attributes for this element. If you attempt to set style sheet rules for the
NOLAYER element, they are ignored by browsers such as Internet Explorer. You can,
however, wrap the NOLAYER element inside a DIV or SPAN element to associate a style
sheet rule with the advisory text.

Example
<LAYER BGCOLOR="yellow" SRC="instrux.html" WIDTH=200 HEIGHT=300></LAYER>
<NOLAYER>
You are not seeing some content that requires Netscape Navigator 4 to view.
</NOLAYER>

<NOSCRIPT> NN 3 IE 4 HTML 4

<NOSCRIPT>...</NOSCRIPT> End Tag: Required

The NOSCRIPT element is intended to display content when a browser is not set to run the
scripts embedded in the current document. In practice, the element is observed only
starting with Navigator 3 and Internet Explorer 4. When a user disables scripting in a
browser, the NOSCRIPT element’s content is rendered wherever it falls in the source code.

CLASS ID LANG STYLE TITLE
DIR

Handler NN IE HTML
onClick n/a n/a 4
onDblClick n/a n/a 4
onKeyDown n/a n/a 4
onKeyPress n/a n/a 4
onKeyUp n/a n/a 4
onMouseDown n/a n/a 4
onMouseMove n/a n/a 4
onMouseOut n/a n/a 4
onMouseOver n/a n/a 4
onMouseUp n/a n/a 4
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

362 <OBJECT>
For older browsers, and those that don’t support scripting, the NOSCRIPT element is ignored
completely. Going forward, the HTML 4.0 specification recommends that browsers also
render the NOSCRIPT element’s content when scripts earlier in the document are of a
language type not supported or enabled in the browser. Also, if an HTML 4.0-compatible
browser should be developed that lacks scripting altogether, it, too, should render the
NOSCRIPT element’s contents.

All attributes of the NOSCRIPT element were added to support Cascading Style Sheets, inter-
nationalization, and events for HTML 4.0.

Example
<NOSCRIPT>
This document contains programming that requires a scriptable browser, such
as Microsoft Internet Explorer or Netscape Navigator. You may not have full
access to this page's powers at this time.
</NOSCRIPT>

Attributes

Event Handler Attributes

<OBJECT> NN 4 IE 3 HTML 4

<OBJECT>...</OBJECT> End Tag: Required

The OBJECT element supplies the browser with information to load and render data types
that are not natively supported by the browser. If the browser must load some external
program (a Java applet, a plugin, or some other helper), the information about the content
that is to be rendered is contained by the OBJECT element, its attributes, and optionally,
associated PARAM elements nested inside of it. Although today’s browsers recognize
elements such as APPLET and EMBED, the HTML specification indicates that the trend is to
combine all of this into the OBJECT element.

The HTML 4.0 specification allows nesting of OBJECT elements to give the browser a
chance to load alternate content if no plugin, or other necessary content aids, is available in
the browser. Essentially, the browser should be able to walk through nested OBJECT
elements until it finds one it can handle. For example, the outer OBJECT element may try to
load an MPEG2 video; if no player is available, the browser looks for the next nested

CLASS ID LANG STYLE TITLE
DIR

Handler NN IE HTML
onClick n/a n/a 4
onDblClick n/a n/a 4
onKeyDown n/a n/a 4
onKeyPress n/a n/a 4
onKeyUp n/a n/a 4
onMouseDown n/a n/a 4
onMouseMove n/a n/a 4
onMouseOut n/a n/a 4
onMouseOver n/a n/a 4
onMouseUp n/a n/a 4
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<OBJECT> 363

HTM
L Reference
OBJECT, which is a JPEG still image from the video; if the browser is not a graphical
browser, it would render some straight HTML that is the most nested item (although not as
an OBJECT element) within the hierarchy of nested OBJECTs:

<DIV>
<OBJECT data="proddemo.mpeg" type="application/mpeg">
 <OBJECT data="prodStill.jpg" type="image/jpeg">
 The all-new Widget 3000!
 </OBJECT>
</OBJECT>
</DIV>

HTML 4.0 details a framework for turning OBJECT elements consisting of images into client-
side image maps. The syntax is a little different from the MAP and AREA elements used for
IMG element image maps. The OBJECT element holding the image must have the SHAPES
attribute present. For each active region of the image, you then define an A element nested
within the OBJECT element. Each A element contains SHAPE and COORDS attributes, as well
as HREF and other applicable link attributes. For nested OBJECT elements, the image map’s
hotspots can be shared from a nested element to its parent element with the help of the
EXPORT attribute, as follows:

<OBJECT data="widget399.pdf" SHAPES>
 <OBJECT data="widget399.gif" SHAPES EXPORT>

 </OBJECT>
</OBJECT>

The long list of attributes for the OBJECT element attempts to handle every possible data
type that may come along in the future. Moreover, content-specific parameters may also be
passed via PARAM elements that can go inside the start and end tags of the OBJECT element.

To determine which attributes apply to a particular content type or object and what their
values look like, you have to rely on documentation from the supplier of the object or
plugin. That same documentation should let you know whether the functionality is avail-
able across browser brands and operating systems.

Example
<OBJECT ID="earth" CLASSID="clsid:83A38BF0-B33A-A4FF-C619A82E891D">
<PARAM NAME="srcStart" VALUE="images/earth0.gif">
<PARAM NAME="frameCount" VALUE="12">
<PARAM NAME="loop" VALUE="-1"
<PARAM NAME="fps" VALUE="10">
</OBJECT>

Attributes
ACCESSKEY CODE DECLARE LANG TABINDEX
ALIGN CODEBASE DIR LANGUAGE TITLE
ARCHIVE CODETYPE EXPORT NAME TYPE
BORDER DATA HEIGHT SHAPES USEMAP
CLASS DATAFLD HSPACE STANDBY VSPACE
CLASSID DATASRC ID STYLE WIDTH
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

364 <OBJECT>
Event Handler Attributes

ACCESSKEY NN n/a IE 4 HTML 4

ACCESSKEY="character" Optional

A single character key that brings focus to the element. The browser and operating system
determine if the user must press a modifier key (e.g., Ctrl, Alt, or Command) with the
access key to bring focus to the element. In IE 4/Windows, the Alt key is required, and the
key is not case sensitive. This attribute does not work in IE 4/Mac.

Example <OBJECT ... ACCESSKEY="g"></OBJECT>

Value Single character of the document set.

Default None.

Object Model Reference
IE [window.]document.all.elementID.accessKey

ALIGN NN 4 IE 3 HTML 4

ALIGN="alignmentConstant" Optional

Determines how the rectangle of the OBJECT element aligns within the context of
surrounding content. See the section “Alignment Constants” earlier in this chapter for a
description of the possibilities defined in both Navigator and Internet Explorer for this
attribute. Not all attribute values are valid in browsers prior to the Version 4 releases.

Handler NN IE HTML
onAfterUpdate n/a 4 n/a
onBeforeUpdate n/a 4 n/a
onBlur n/a 4 n/a
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onReadyStateChange n/a 4 n/a
onResize n/a 4 n/a
onRowEnter n/a 4 n/a
onRowExit n/a 4 n/a
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<OBJECT> 365

HTM
L Reference
Both browsers follow the same rules on laying out content surrounding an image whose
ALIGN attribute is set, but the actual results are sometimes difficult to predict when the
surrounding content is complex. A thorough testing of rendering possibilities with browser
windows set to various sizes prevents surprises later.

Example <OBJECT ... ALIGN="baseline"></OBJECT>

Value

Case-insensitive constant value. All constant values are available in Navigator 4 and Internet
Explorer 4.

Default bottom

Object Model Reference
IE [window.]document.all.elementID.align

ARCHIVE NN n/a IE n/a HTML 4

ARCHIVE="URLList" Optional

A space-delimited list of URLs of files that support the loading and running of the OBJECT
element. By explicitly specifying the files in the ARCHIVE attribute, the browser doesn’t
have to wait for the supporting files to be called by the content running in the OBJECT
element. Instead, the supporting files can be downloaded simultaneously with the primary
content. The ARCHIVE attribute may also include URLs assigned to the CLASSID or DATA
attributes, but one of these two attributes still needs to point to the primary content URL.

Example
<OBJECT ... ARCHIVE=" /images/anim3.gif /images/anim4.gif"></OBJECT>

Value A complete or relative URL.

Default None.

BORDER NN n/a IE n/a HTML 4

BORDER=pixels Optional

The thickness of a border around the OBJECT element. This attribute is supported in
Internet Explorer 3, but not in IE 4. The attribute is also deprecated in HTML 4.0 in favor of
style sheet borders.

Example <OBJECT ... BORDER=4></OBJECT>

Value Any integer pixel value.

Default None.

CLASSID NN 4 IE 3 HTML 4

CLASSID="URL" Optional

The URL of the object’s implementation. This attribute typically directs the browser to load
program, applet, or plugin class files. In Internet Explorer, the URL can point to the CLSID
directory that stores all of the IDs for registered ActiveX controls, such as DirectAnimation.
You must obtain the CLASSID value from the supplier of an ActiveX control. In Navigator 4,
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

366 <OBJECT>
the Java Archive (JAR) Installation Manager attempts to install a plugin from the CLASSID
URL if the plugin is not installed for data specified in the DATA attribute. Eventually, this
attribute may be used to load Java applets (IE 4 includes a CODE attribute to handle this
now), but through Version 4 of both browsers, Java applets are not yet supported in this
fashion.

Example
<OBJECT ID="earth" CLASSID="clsid:83A38BF0-B33A-A4FF-C619A82E891D">
</OBJECT>

Value A complete or relative URL.

Default None.

Object Model Reference
IE [window.]document.elementID.classid

CODE NN n/a IE 4 HTML n/a

CODE="fileName.class" Optional

The CODE attribute is likely an interim solution in Internet Explorer that allows the OBJECT
element to perform the same job as an APPLET element, using the same kind of attributes.
The CODE attribute value is the name of the Java applet class file. If the class file is in a
directory other than the document, the path to the directory must be assigned to the
CODEBASE attribute, just like in the APPLET element. Eventually, the CODE attribute may be
supplanted by the HTML 4.0 CLASSID attribute, which is intended for all object implemen-
tations. Parameters are passed to applets via PARAM elements, just like the ones nested
inside APPLET elements.

Example <OBJECT CODE="fileReader.class" CODEBASE="classes"></OBJECT>

Value Applet class filename.

Default None.

Object Model Reference
IE [window.]document.elementID.code

CODEBASE NN 4 IE 3 HTML 4

CODEBASE="path" Optional

Path to the directory holding the class file designated in either the CODE or CLASSID
attribute. The CODEBASE attribute does not name the class file, just the path. You can make
this attribute a complete URL to the directory, but don’t try to access a codebase outside of
the domain of the current document.

Example <OBJECT CODE="fileReader.class" CODEBASE="classes"></OBJECT>

Value

Case-sensitive pathname, usually relative to the directory storing the current HTML
document.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<OBJECT> 367

HTM
L Reference
Default None.

Object Model Reference
IE [window.]document.all.elementID.codeBase

CODETYPE NN n/a IE 3 HTML 4

CODETYPE="MIMEType" Optional

An advisory about the content type of the object referred to by the CLASSID attribute. A
browser might use this information to assist in preparing support for a resource requiring a
multimedia player or plugin. If the CODETYPE attribute is missing, the browser looks next
for the TYPE attribute setting (although it is normally associated with content linked by the
DATA attribute URL). If both attributes are missing, the browser gets the content type infor-
mation from the resource as it downloads.

Example
<OBJECT CLASSID="clsid:83A38BF0-B33A-A4FF-C619A82E891D"
CODETYPE="application/x-crossword">
</OBJECT>

Value

Case-insensitive MIME type. A catalog of registered MIME types is available from ftp://
ftp.isi.edu/in-notes/iana/assignments/media-types/.

Default None.

Object Model Reference
IE [window.]document.all.elementID.codeType

DATA NN 4 IE 3 HTML 4

DATA="URL" Optional

URL of a file containing data for the OBJECT element (as distinguished from the object
itself). For data whose content type can be opened (and viewed or played) with any
compatible object or plugin, the DATA and TYPE attributes are generally sufficient to launch
the plugin and get the content loaded. But if the content requires a very specific plugin or
ActiveX control, you should include a CLASSID attribute that points to the object’s imple-
mentation as well. In that case, you can specify the content type with either the CODETYPE
or TYPE attributes. Relative URLs are calculated relative to the CODEBASE attribute, if one is
assigned; otherwise the URL is relative to the document’s URL.

Example <OBJECT DATA="proddemo.mpeg" TYPE="application/mpeg"></OBJECT>

Value A complete or relative URL.

Default None.

Object Model Reference
IE [window.]document.elementID.data
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

368 <OBJECT>
DATAFLD NN n/a IE 4 HTML n/a

DATAFLD="columnName" Optional

Used with IE 4 data binding to associate a remote data source column name to an OBJECT
element attribute determined by properties set in the object. A DATASRC attribute must also
be set for the element.

Example
<OBJECT CLASSID="clsid:83A38BF0-B33A-A4FF-C619A82E891D"
DATASRC="#DBSRC3" DATAFLD="dataFile">
</OBJECT>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.all.elementID.dataFld

DATASRC NN n/a IE 4 HTML n/a

DATASRC="dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example
<OBJECT CLASSID="clsid:83A38BF0-B33A-A4FF-C619A82E891D"
DATASRC="#DBSRC3" DATAFLD="dataFile">
</OBJECT>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.all.elementID.dataSrc

DECLARE NN n/a IE n/a HTML 4

DECLARE Optional

The presence of the DECLARE attribute instructs the browser to regard the current OBJECT
element as a declaration only, without instantiating the object. A browser may use this
opportunity to precache data that does not require the object being loaded or run. Another
OBJECT element pointing to the same CLASSID and/or DATA attribute values, but without
the DECLARE attribute, gets the object running.

Example
<OBJECT CLASSID="clsid:83A38BF0-B33A-A4FF-C619A82E891D" DECLARE>
</OBJECT>

Value The presence of the attribute sets it to true.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<OBJECT> 369

HTM
L Reference
Default false

EXPORT NN n/a IE n/a HTML 4

EXPORT Optional

If a set of nested OBJECT elements contain images and those images are established as
image maps, you can define one set of image maps for a nested OBJECT and share those
specifications with the parent OBJECT element by including an EXPORT element.

Example
<OBJECT data="widget399.pdf" SHAPES>
 <OBJECT data="widget399.gif" SHAPES EXPORT>
 <A HREF="w399Specs.html TARGET="main" SHAPE="rect"
COORDS="10,10,40,50">
 <A HREF="w399Price.html TARGET="main" SHAPE="rect"
COORDS="40,10,80,50">
 <A HREF="w399Order.html TARGET="main" SHAPE="rect"
COORDS="10,50,80,100">
 </OBJECT>
</OBJECT>

Value The presence of the EXPORT attribute sets it to true.

Default false

HEIGHT, WIDTH NN 4 IE 3 HTML 4

HEIGHT="length" Required

WIDTH="length"

The size that an embedded object (or its plugin control panel) occupies in a document is
governed by the HEIGHT and WIDTH attribute settings. Some browser versions might allow
you to get away without assigning these attributes and letting the plugin’s own user inter-
face design determine the height and width of its visible rectangle. It is best to specify the
exact dimensions of a plugin’s control panel or the data (in the case of images) whenever
possible (control panels vary with each browser and even between different plugins for the
same browser). In some cases, such as Navigator 4 for the Macintosh, the object may not
display if you fail to supply enough height on the page. If you assign values that are larger
than the actual object or its control panel, the browser reserves that empty space on the
page, which could interfere with your intended page design.

Example <OBJECT DATA="blues.aif"HEIGHT=150 WIDTH=250></OBJECT>

Value

Positive integer values (optionally quoted) or percentage values (quoted).

Default None.

Object Model Reference
IE [window.]document.elementID.height

[window.]document.elementID.width
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

370 <OBJECT>
HSPACE, VSPACE NN n/a IE 3 HTML 4

HSPACE=pixelCount Optional

VSPACE=pixelCount

A margin that acts as whitespace padding around the visual content of the OBJECT
element’s rectangular space. HSPACE establishes a margin on the left and right sides of the
rectangle; VSPACE establishes a margin on the top and bottom sides of the rectangle.

Example
<OBJECT DATA="blues.aif"HEIGHT=150 WIDTH=250 VSPACE=10 HSPACE=10></OBJECT>

Value

Integer representing the number of pixels for the width of the margin on the relevant sides
of the OBJECT element’s rectangle.

Default 0

Object Model Reference
IE [window.]document.elementID.hspace

[window.]document.elementID.vspace

NAME NN n/a IE n/a HTML 4

NAME="elementIdentifier" Optional

The HTML 4.0 specification provides for a NAME attribute of the OBJECT element for
instances in which the object is part of a form that is submitted to the server. The NAME
attribute in this case performs the same function as the NAME attribute of an INPUT element;
it acts as a label for some data being submitted. The code that is loaded into the OBJECT
element must be programmed to return a value if it is to be submitted via an HTML form.

Example
<OBJECT NAME="embedded" CLASSID="clsid:83A38BF0-B33A-A4FF-C619A82E891D"
HEIGHT=150 WIDTH=250>
</OBJECT>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.all.elementID.name

SHAPES NN n/a IE n/a HTML 4

SHAPES Optional

The presence of the SHAPES attribute instructs the browser to treat the OBJECT element’s
image as a client-side image map and the nested A elements as hotspot definitions for the
map. Nested A elements must include COORDS attribute settings. An OBJECT element can
inherit the image map specifications from a nested OBJECT element, provided the nested
object specifies both the SHAPES and EXPORT attributes.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<OBJECT> 371

HTM
L Reference
Example
<OBJECT data="widget399.pdf" SHAPES>
 <OBJECT data="widget399.gif" SHAPES EXPORT>
 <A HREF="w399Specs.html TARGET="main" SHAPE="rect"
COORDS="10,10,40,50">
 <A HREF="w399Price.html TARGET="main" SHAPE="rect"
COORDS="40,10,80,50">
 <A HREF="w399Order.html TARGET="main" SHAPE="rect"
COORDS="10,50,80,100">
 </OBJECT>
</OBJECT>

Value The presence of the SHAPES attribute sets it to true.

Default false

STANDBY NN n/a IE n/a HTML 4

STANDBY="HTMLText" Optional

HTML content to be displayed while the OBJECT is loading. Although this attribute has not
been implemented in Version 4 browsers, presumably the message is to be displayed in the
rectangular region intended for the OBJECT element, just as the ALT message appears in an
IMG element space while the image loads.

Example
<OBJECT CLASSID="clsid:83A38BF0-B33A-A4FF-C619A82E891D"
HEIGHT=150 WIDTH=250 STANDBY="Loading movie...">
</OBJECT>

Value Any HTML content.

Default None.

TABINDEX NN n/a IE 3 HTML 4

TABINDEX=integer Optional

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their TABINDEX attributes are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest TABINDEX value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same TABINDEX values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the TABINDEX attribute or have the value set to zero. These elements receive focus in the
order in which they appear in the document.

Example
<OBJECT CLASSID="clsid:83A38BF0-B33A-A4FF-C619A82E891D"
HEIGHT=150 WIDTH=250 TABINDEX=4>...
</OBJECT>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

372 <OBJECT>
Value

Any integer from 0 through 32767. In IE 4, setting the TABINDEX to -1 causes the element
to be skipped in tabbing order altogether.

Default None.

Object Model Reference
IE [window.]document.all.elementID.tabIndex

TYPE NN 4 IE 3 HTML 4

TYPE="MIMEType" Required

An advisory about the content type of the data referred to by the DATA attribute. A browser
might use this information to assist in preparing support for a resource requiring a multi-
media player or plugin. The DATA element first looks to the CODETYPE attribute for this
information. But if the CODETYPE attribute is missing, the browser looks next for the TYPE
attribute setting. If both attributes are missing, the browser gets the content type informa-
tion from the resource as it downloads.

Example
<OBJECT DATA="movies/prodDemo.mpeg" TYPE="application/mpeg">
</OBJECT>

Value

Case-insensitive MIME type. A catalog of registered MIME types is available from ftp://
ftp.isi.edu/in-notes/iana/assignments/media-types/.

Default None.

Object Model Reference
IE [window.]document.all.elementID.type

USEMAP NN n/a IE n/a HTML 4

USEMAP="mapURL" Optional

The HTML 4.0 specification lists the USEMAP attribute for an OBJECT element. Because the
specification includes another way to associate a client-side image map with an OBJECT
element (see the SHAPES attribute), it is unknown at this point if the intention of the
USEMAP attribute is for an OBJECT element to be able to point to a named MAP element (as
does an IMG element for its client-side image map).

VSPACE
See HSPACE.

WIDTH
See HEIGHT.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 373

HTM
L Reference
 NN all IE all HTML all

... End Tag: Required

The OL element is a container for an ordered list of items. An “ordered list” means that the
items are rendered with a leading sequence number or letter (depending on the TYPE
attribute setting or list-style-type style sheet attribute setting). Content for each list
item is defined by a nested LI element. If you apply a style sheet rule to an OL element, the
style is inherited by the nested LI elements.

Example

 Choose Open from the File menu.
 Locate the file you wish to edit, and click on the filename.
 Click the Open button.

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

COMPACT NN n/a IE n/a HTML 3.2

COMPACT Optional

A Boolean attribute originally designed to let browsers render the list in a more compact
style than normal (smaller line spacing between items). This attribute is not implemented in
current browsers.

Example <OL COMPACT>...

Value The presence of this attribute makes its value true.

Default false

CLASS DIR LANG START TITLE
COMPACT ID LANGUAGE STYLE TYPE

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

374 <OPTGROUP>
START NN all IE all HTML all

START="number" Optional

Assigns a custom starting number for the sequence of items in the OL element. This is
convenient when a sequence of items must be disturbed by running body text. Although
the value is a number, the corresponding Arabic numeral, Roman numeral, or alphabet
letter is used to render the value. This attribute is deprecated in HTML 4.0 in favor of a set
of counter-style attributes specified in the CSS2 final recommendation.

Example <OL START=5> ...

Value Any positive integer.

Default None.

Object Model Reference
IE [window.]document.all.elementID.start

TYPE NN all IE all HTML 3.2

TYPE="labelType" Optional

The TYPE attribute provides some flexibility in how the sequence number is displayed in
the browser. For an ordered list, the choices are among letters (uppercase or lowercase),
Roman numerals (uppercase or lowercase), or Arabic numerals. The TYPE attribute is depre-
cated in HTML 4.0 in favor of the list-style-type style sheet attribute.

Example <OL TYPE="a">...

Value

Possible values are A | a | I | i | 1. Sequencing is performed automatically as follows:

Default 1

Object Model Reference
IE [window.]document.all.elementID.type

<OPTGROUP> NN n/a IE n/a HTML 4

<OPTGROUP>...</OPTGROUP> End Tag: Required

The OPTGROUP element offers the possibility that future browsers will provide a hierar-
chical SELECT element. An OPTGROUP element represents a container of OPTION elements.
The LABEL attribute is the text that would appear in the main SELECT element listing, with
nested OPTION elements cascading off the side when the OPTGROUP element is highlighted.

Type Example
A A, B, C, ...
a a, b, c, ...
I I, II, III, ...
i i, ii, iii, ...
1 1, 2, 3, ...
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<OPTGROUP> 375

HTM
L Reference
Example
<SELECT NAME="carCos">
 <OPTGROUP LABEL="American">
 <OPTION VALUE="General Motors">General Motors
 <OPTION VALUE="Ford">Ford Motor Company
 <OPTION VALUE="Chrysler">Chrysler Corporation
 </OPTGROUP>
 <OPTGROUP LABEL="Japanese">
 <OPTION VALUE="Toyota">Toyota
 <OPTION VALUE="Honda">Honda
 <OPTION VALUE="Nissan">Nissan
 </OPTGROUP>
</SELECT>

Attributes

Event Handler Attributes

DISABLED NN n/a IE n/a HTML 4

DISABLED Optional

The presence of this attribute disables the OPTGROUP element and its nested OPTION
elements.

Example <OPTGROUP LABEL="Engineering" DISABLED>

Value The presence of this attribute sets its value to true.

Default false

LABEL NN n/a IE n/a HTML 4

LABEL="labelText" Required

The text of the SELECT element entry for the OPTGROUP is defined by the LABEL attribute.
This is plain text, not HTML.

Example <OPTGROUP LABEL="Engineering" DISABLED>

CLASS DISABLED LABEL LANGUAGE TITLE
DIR ID LANG STYLE

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

376 <OPTION>
Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

<OPTION> NN all IE all HTML all

<OPTION>...</OPTION> End Tag: Optional

The OPTION element defines an item that appears in a SELECT element listing, whether the
listing is in a pop-up menu or scrolling list. OPTION elements associated with a SELECT
element must be nested within the start and end tags of the SELECT element.

SELECT elements supply name/value pairs when the element is submitted as part of a FORM
element. Typically, the NAME attribute of the SELECT element and the VALUE attribute of the
selected option are submitted as the name/value pair. Therefore, it is important to assign a
meaningful value to the VALUE attribute of each OPTION element in a select list. You can
use the VALUE attribute to disguise user-unfriendly (but server-friendly) values from the
user, while presenting a user-friendly entry that appears in the select list. Content for the
human-readable entry of a select list is entered after the OPTION element’s start tag. The end
tag is optional because the entry is delimited either by the next OPTION element start tag or
the SELECT element’s end tag. See also the OPTGROUP attribute for possible future grouping
of OPTION elements into hierarchical menu groupings.

Example
<SELECT NAME="chapters">
 <OPTION VALUE="1">Chapter 1
 <OPTION VALUE="2">Chapter 2
 <OPTION VALUE="3">Chapter 3
 <OPTION VALUE="4">Chapter 4
</SELECT>

Object Model Reference
NN [window.]document.formName.selectName.optionName

[window.]document.forms[i].elements[i].optionName

IE [window.]document.formName.selectName.optionName
[window.]document.forms[i].elements[i].optionName
[window.]document.all.elementID

Attributes

Event Handler Attributes

CLASS ID LANG SELECTED TITLE
DIR LABEL LANGUAGE STYLE VALUE
DISABLED

Handler NN IE HTML
onDragStart n/a 4 n/a
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<OPTION> 377

HTM
L Reference
DISABLED NN n/a IE n/a HTML 4

DISABLED Optional

The presence of this attribute disables the OPTION element in the list.

Example <OPTION VALUE="Met101" DISABLED>Meteorology 101

Value The presence of this attribute sets its value to true.

Default false

LABEL NN n/a IE n/a HTML 4

LABEL="labelText" Required

The LABEL attribute is included in HTML 4.0 in anticipation of possible hierarchical select
lists. The LABEL is intended to be a shorter alternate entry for an OPTION element when it is
rendered hierarchically. It overrides the normal text associated with the OPTION element.

Example <OPTION LABEL="Meteo 101" VALUE="met101"> Meteorology 101

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

SELECTED NN all IE all HTML all

SELECTED Optional

The presence of the SELECTED attribute preselects the item within the SELECT element.
When the SELECT element is set to MULTIPLE, more than one OPTION element may have
the SELECTED attribute set.

Example <OPTION VALUE="met101" SELECTED> Meteorology 101

Value The presence of this attribute sets its value to true.

Default false

Object Model Reference
NN [window.]document.formName.selectName.optionName.selected

[window.]document.forms[i].elements[i].selected

IE [window.]document.formName.selectName.optionName.selected
[window.]document.forms[i].elements[i].selected

VALUE NN all IE all HTML all

VALUE="text" Optional

Associates a value with an OPTION that may or may not be the same as the text displayed in
the SELECT element. When the SELECT element is in a form submitted to the server, the
value of the VALUE attribute is assigned to the name/value pair for the SELECT element if
the option has been selected by the user (or is designated as SELECTED with that attribute
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

378 <P>
and the user has made no other selection). For scripting purposes, the VALUE attribute
might contain values such as URLs or string representations of objects that may subse-
quently be processed by scripts.

Example <OPTION VALUE="met101"> Meteorology 101

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

Object Model Reference
NN [window.]document.formName.selectName.optionName.value

[window.]document.forms[i].elements[i].value

IE [window.]document.formName.selectName.optionName.value
[window.]document.forms[i].elements[i].value

<P> NN all IE all HTML all

<P>...</P> End Tag: Optional

A P element defines a paragraph structural element in a document. With HTML 4.0, the P
element is formally a block-level element, which means that content for a P element begins
on its own line, and content following the P element starts on its own line. No other block-
level elements may be nested inside a P element. If you omit the end tag, the element ends
at the next block-level element start tag.

The nature of the P element has changed over time. In early implementations of HTML, the
element represented only a paragraph break (a new line with some extra line spacing).
Version 4 browsers render P elements in a hybrid way such that the start tag of a P element
inserts a line space before the block. This means that a P element cannot start at the very
top of a page unless it is positioned via CSS-P. Use the P element for structural purposes,
rather than formatting purposes.

Content of a P element does not recognize extra whitespace that appears in the source
code. Other elements, such as PRE, render content just as it is formatted in the source code.

Example
<P>This is a simple, one-sentence paragraph.</P>
<P>This second paragraph starts on its own line, with a little extra
line spacing.</P>

Object Model Reference
IE [window.]document.all.elementID

Attributes
ALIGN DIR LANG STYLE TITLE
CLASS ID LANGUAGE
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<PARAM> 379

HTM
L Reference
Event Handler Attributes

ALIGN NN all IE all HTML 3.2

ALIGN="where" Optional

Determines how the paragraph text is justified within the available width of the next outer-
most container (usually the document BODY).

The ALIGN attribute is deprecated in HTML 4.0 in favor of the style sheet attribute.

Example <P ALIGN="center">...</P>

Value Text alignment values are center | left | right.

Default left

Object Model Reference
IE [window.]document.all.elementID.align

<PARAM> NN 2 IE 3 HTML 3.2

<PARAM> End Tag: Forbidden

The PARAM element may be nested within an APPLET or OBJECT element to pass parame-
ters to the Java applet or object as it is being loaded. Parameters provide ways for HTML
authors to adjust settings of an applet or object without having to recode the applet or
object. A parameter typically passes a name/value pair, which is assigned to the NAME and
VALUE attributes. You can have more than one PARAM element per applet or object. The
documentation for the applet or object should provide you with necessary information to
pass those parameter values.

Example
<APPLET CODE="simpleClock.class" NAME="myClock" WIDTH=400 HEIGHT=50>
<PARAM NAME="bgColor" VALUE="black">
<PARAM NAME="fgColor" VALUE="yellow">
</APPLET>

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

380 <PARAM>
Attributes

DATAFLD NN n/a IE 4 HTML n/a

DATAFLD="columnName" Optional

Used with IE 4 data binding to associate a remote data source column name with the
parameter passed to a Java applet or object. In the following example, data from a data
source column named backColor is assigned to the VALUE attribute, even though the
attribute is not explicitly shown in the tag. More complex relationships are also possible
with both OBJECT and APPLET elements. Eventually, Internet Explorer will be able to bind
changes of applet property values to data source columns to update the data source and to
pass data source changes to an applet using a technique for naming get and set property
methods found in JavaBeans.

Example
<PARAM NAME="bgColor" DATASRC="#DBSRC2"DATAFORMATAS="text"
DATAFLD="backColor">

Value Case-sensitive identifier.

Default None.

DATAFORMATAS NN n/a IE 4 HTML n/a

DATAFORMATAS="dataType" Optional

Used with IE 4 data binding, this attribute advises the browser whether the source material
arriving from the data source is to be treated as plain text or as tagged HTML. This attribute
setting depends entirely on how the data source is constructed and what kind of data the
PARAM element is expecting.

Example
<PARAM NAME="bgColor" DATASRC="#DBSRC2"DATAFORMATAS="text"
DATAFLD="backColor">

Value IE 4 recognizes two possible settings: text | HTML.

Default text

DATASRC NN n/a IE 4 HTML n/a

DATASRC="dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example
<PARAM NAME="bgColor" DATASRC="#DBSRC2"DATAFORMATAS="text"
DATAFLD="backColor">

Value Case-sensitive identifier.

DATAFLD DATASRC NAME VALUE VALUETYPE
DATAFORMATAS ID TYPE
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<PARAM> 381

HTM
L Reference
Default None.

NAME NN 2 IE 3 HTML 3.2

NAME="elementIdentifier" Required

Assigns an identifier for the parameter that the applet or object is expecting. Parameters
generally supply a name/value pair. An applet, for example, includes a routine that fetches
each parameter by name and assigns the passed value to a variable within the applet.
Documentation for the applet or object should provide a list of names and value types
corresponding to the PARAM elements.

Example <PARAM NAME="loop" VALUE="4">

Value Case-sensitive identifier.

Default None.

TYPE NN n/a IE n/a HTML 4

TYPE="MIMEType" Optional

When the VALUETYPE attribute is set to "ref", the TYPE attribute value advises the browser
about the content type of the file referenced by the URL assigned to the VALUE attribute.
Omit the TYPE attribute for other settings of the VALUETYPE attribute.

Example
<PARAM NAME="help" VALUE="http://www.giantco.com/help.html" VALUETYPE="ref"
TYPE="text/html">

Value

Case-insensitive MIME type. A catalog of registered MIME types is available from ftp://
ftp.isi.edu/in-notes/iana/assignments/media-types/.

Default None.

VALUE NN 2 IE 3 HTML 3.2

VALUE="runTimeParameterValue" Optional

The parameter value to be passed to an applet or object as the executable program or data
loads. Parameter values are passed as string values, and it is up to the applet or object to
perform the necessary internal coercion of the data to the desired data type. The VALUE
attribute is listed as optional because there may be instances in which the presence of the
PARAM element NAME attribute may be sufficient for the object.

Example <PARAM NAME="loop" VALUE="4">

Value Any string value.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

382 <PLAINTEXT>
VALUETYPE NN n/a IE n/a HTML 4

VALUETYPE="paramValueType" Optional

OBJECT element parameters can come in three flavors: data, object, and ref. The
VALUETYPE attribute uses these constants to tell the browser how to treat the value assigned
to the VALUE attribute for passing to the object. When the VALUETYPE is data, the VALUE
attribute is passed as a plain text string. A VALUETYPE of object means that the VALUE
attribute consists of an identifier to some other OBJECT element defined earlier in the same
document. The other object may be one whose DECLARE attribute is set, and now the
parameter values are being passed to instantiate the object. When VALUETYPE is ref, the
VALUE attribute is a URL that points to a file or other resource where run-time values are
stored (perhaps a set of parameter values).

Example
<PARAM NAME="anime" VALUE="http://www.giantco.com/params/animation.txt"
VALUETYPE="ref" TYPE="text/html">

Value Three possible constant values: data | object | ref.

Default data

<PLAINTEXT> NN all IE all HTML <4

<PLAINTEXT>...</PLAINTEXT> End Tag: Optional

The PLAINTEXT element displays its content in a monospace font as a block element, but
with a twist. All document source code coming after the start tag is rendered as-is in the
browser window. You cannot turn off the PLAINTEXT element. Even the end tag is
rendered as-is. This element has been long deprecated in HTML and has even been
removed from the HTML 4.0 specification. You are encouraged to use the PRE element
instead.

Specifying any element attribute in Internet Explorer 4 for the Macintosh causes the
PLAINTEXT element to be ignored. In other words, the source code is rendered and the
attribute is applied to the content contained by the element if applicable (such as a style
sheet rule).

Example
<P>The rest of the HTML code follows:</P>
<PLAINTEXT>
...
</HTML>

Object Model Reference
IE [window.]document.all.elementID

Attributes
CLASS LANG LANGUAGE STYLE TITLE
ID
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<PRE> 383

HTM
L Reference
Event Handler Attributes

<PRE> NN all IE all HTML all

<PRE>...</PRE> End Tag: Required

The PRE element defines a block of preformatted text. Preformatted text is usually rendered
by default in a monospace font and, more importantly, it preserves the whitespace (multiple
spaces between words and new lines) entered into the source code for the content. Unlike
the deprecated PLAINTEXT element, the PRE element doesn’t ignore HTML tags. Instead, it
passes such tags onto the browser for normal rendering. If you want to display HTML tags
in a block of preformatted text, use entities for the less-than (<) and greater-than (>)
symbols. This prevents them from being interpreted as genuine tags but renders the
symbols within the preformatted text block.

Browsers are supposed to ignore a whitespace line break immediately following a PRE
element start tag in case you wish to start the content on a new line in the source code. By
and large, the Version 4 browsers follow this rule (with the exception of IE 4 for the Mac).

The HTML 4.0 specification is adamant about the PRE element maintaining its monospaced
font size and line spacing. It lists the following elements that should not be included inside
a PRE element: APPLET, BASEFONT, BIG, FONT, IMG, OBJECT, SMALL, SUB, and SUP. Any
one of these destroys the fixed-size pitch of the PRE element. The recommendation also
encourages authors to avoid overriding the monospaced font settings with style sheets.

One last admonition concerns using tab characters to indent or align text within a PRE
element. Not all browsers render tab characters the same way. Avoid potential problems by
using space characters and let the PRE element’s preservation of whitespace do the job. No
nonbreaking spaces () are necessary in a PRE element.

Example
<P>Here is the script example:</P>
<PRE>
<SCRIPT LANGUAGE="JavaScript">
 document.write("Hello, world.")
</SCRIPT>
</PRE>

Handler NN IE HTML
onClick n/a 4 n/a
onDblClick n/a 4 n/a
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 n/a
onKeyPress n/a 4 n/a
onKeyUp n/a 4 n/a
onMouseDown n/a 4 n/a
onMouseMove n/a 4 n/a
onMouseOut n/a 4 n/a
onMouseOver n/a 4 n/a
onMouseUp n/a 4 n/a
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

384 <PRE>
Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

COLS NN all IE n/a HTML n/a

COLS="columnCount" Optional

The maximum number of characters per line of preformatted code. This Navigator-specific
attribute automatically sets the WRAP attribute to true. Without this attribute, the source
code formatting governs the line width.

Example <PRE COLS=80>...</PRE>

Value Any positive integer.

Default None.

WIDTH NN n/a IE n/a HTML 4

WIDTH="columnCount" Optional

The HTML 4.0 specification introduces the WIDTH attribute to allow setting a maximum
number of characters to be rendered on a preformatted line of text. Presumably, browsers
that support this attribute in the future will wrap lines so that words do not break in the
middle. Without this attribute, the source code formatting governs the line width. Navigator
provides this functionality with the COLS attribute.

Example <PRE WIDTH=80>...</PRE>

Value Any positive integer.

Default None.

CLASS DIR LANG STYLE WIDTH
COLS ID LANGUAGE TITLE WRAP

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<Q> 385

HTM
L Reference
WRAP NN all IE n/a HTML n/a

WRAP Optional

The presence of the WRAP attribute instructs Navigator to word-wrap preformatted text so
that text does not run beyond the right edge of the browser window or frame. WRAP is set
to true automatically when the COLS attribute is set.

Example <PRE WRAP>...</PRE>

Value The presence of the attribute sets its value to true.

Default false

<Q> NN n/a IE 4 HTML 4

<Q>...</Q> End Tag: Required

The Q element is intended to set off an inline quote inside a document. The HTML 4.0 spec-
ification indicates that browsers should automatically surround the content of a Q element
with language-sensitive quotation marks, and that authors should not include quotes.
Internet Explorer 4 does not render such quote marks. If you need quotes around quoted
text, you have no choice at this point but to include them yourself and not use the Q
element (because a future browser may add those quotes to the content). For a block-level
quotation, see the BLOCKQUOTE element.

Example
<P>The preamble to the U.S. Constitution begins,
<Q>We the People of the United States</Q></P>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

CITE DIR LANG STYLE TITLE
CLASS ID LANGUAGE

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

386 <S>
CITE NN n/a IE n/a HTML 4

CITE="URL" Optional

A URL pointing to an online source document from which the quotation is taken. This is
not in any way a mechanism for copying or extracting content from another document.
Presumably, this HTML 4.0 recommendation is to encourage future browsers and search
engines to utilize a reference to online source material for the benefit of readers and surfers.

Value

Any valid URL to a document on the World Wide Web, including absolute or relative URLs.

Default None.

<S> NN 3 IE 3 HTML 3.2

<S>...</S> End Tag: Required

The S element renders its content as strikethrough text. This element is identical to the
STRIKE element; it was adopted because it more closely resembled the one-character
element names for other type formatting (such as B, I, and U elements). In any case, both S
and STRIKE elements are deprecated in HTML 4.0 in favor of the text-
decoration:line-through style sheet attribute.

Example
<P>If at first you don't succeed, <S>do it over</S> try, try again.</P>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<SCRIPT> 387

HTM
L Reference
<SAMP> NN all IE all HTML all

<SAMP>...</SAMP> End Tag: Required

The SAMP element is one of a large group of elements that the HTML 4.0 recommendation
calls phrase elements. Such elements assign structural meaning to a designated portion of
the document. A SAMP element is one that contains text that is sample output from a
computer program or script. This is different from a code example, which is covered by the
CODE element.

Browsers have free rein to determine how (or whether) to distinguish SAMP element content
from the rest of the BODY element. Both Navigator and Internet Explorer elect to render the
text in monospace font. This can be overridden with a style sheet as you see fit.

Example
<P>When you press the Enter key, you will see <SAMP>Hello, world!</SAMP>
on the screen.</P>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

<SCRIPT> NN 2 IE 3 HTML 4

<SCRIPT>...</SCRIPT> End Tag: Required

The SCRIPT element provides a container for lines of script code written in any scripting
language that the browser is capable of interpreting. Script statements that are not written
inside a function definition are executed as the page loads; function definitions are loaded
but their execution is deferred until explicitly invoked by user or system action (events).
You can have more than one SCRIPT element in a document, and you may include SCRIPT
elements written in different script languages within the same document.

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

388 <SCRIPT>
An important shift in attribute syntax is introduced with HTML 4.0. To specify the scripting
language of the statements within a SCRIPT element, the LANGUAGE attribute has been used
since the first scriptable browsers. HTML 4.0 deprecates that attribute in favor of the TYPE
attribute, whose value is a MIME type. When the TYPE attribute is widely adopted by
browsers, you may want to include both attributes in documents for long-term backward
compatibility with older browsers.

Newer browsers also allow script statements to be imported into the document from a
document whose URL is specified for the SRC attribute. Older, nonscriptable browsers don’t
recognize the SCRIPT element and may attempt to render the script statements as regular
HTML content. To prevent this, wrap the script statements inside HTML block comment
markers. The end-of-comment marker (-->) must be preceded by a JavaScript comment
marker (//) to prevent JavaScript from generating a script error.

Example
<SCRIPT TYPE="text/javascript" LANGUAGE="JavaScript">
<!--
function howdy() {
 alert("Hello, world!")
}
//-->
</SCRIPT>

Attributes

CHARSET NN n/a IE n/a HTML 4

CHARSET="characterSet" Optional

Character encoding of the content in the file referred to by the SRC attribute.

Example <SCRIPT CHARSET="csISO5427Cyrillic" SRC="moscow.js"></SCRIPT>

Value

Case-insensitive alias from the character set registry (ftp://ftp.isi.edu/in-notes/iana/
assignments/character-sets).

Default Determined by browser.

DEFER NN n/a IE 4 HTML 4

DEFER Optional

The presence of the DEFER attribute instructs the browser to render regular HTML content
without looking for the script to generate content as the page loads. This is an advisory
attribute only. The browser doesn’t have to hold up rendering further HTML content as it
parses the content of the SCRIPT element in search of document.write() statements.

Example
<SCRIPT TYPE="text/javascript" LANGUAGE="JavaScript" DEFER>
...
</SCRIPT>

CHARSET DEFER FOR LANGUAGE TITLE
CLASS EVENT ID SRC TYPE
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<SCRIPT> 389

HTM
L Reference
Value The presence of this attribute sets its value to true.

Default false

Object Model Reference
IE [window.]document.all.elementID.defer

EVENT NN n/a IE 4 HTML n/a

EVENT="eventName" Optional

Internet Explorer 4’s event model allows binding of object events to SCRIPT elements with
the help of the EVENT and FOR attributes. As the page loads, the browser registers each
SCRIPT element with its event and object binding so that when the object generates the
event, the script statements inside the SCRIPT element execute—without having to write
event handlers for the objects or wrap the script statements inside function definitions.
Event values are written either as unquoted event names or as quoted event names
formatted as functions (with trailing parentheses and optional parameter names). Use this
type of script-event binding only in Internet Explorer. Navigator attempts to execute the
script statements while the page loads.

Example
<SCRIPT FOR=window EVENT=onresize>
...
</SCRIPT>

Value

Case-sensitive event name (unquoted) or the event name as a function inside a quote pair.
The object described in the FOR attribute must support the event named in the EVENT
attribute.

Default None.

Object Model Reference
IE [window.]document.all.elementID.event

FOR NN n/a IE 4 HTML n/a

FOR=elementID Optional

Internet Explorer 4’s event model allows binding of object events to SCRIPT elements with
the help of the EVENT and FOR attributes. As the page loads, the browser registers each
SCRIPT element with its event and object binding so that when the object generates the
event, the script statements inside the SCRIPT element execute—without having to write
event handlers for the objects or wrap the script statements inside function definitions. Use
the unique ID attribute value of the element whose event you wish to handle. Use this type
of script-event binding only in Internet Explorer. Navigator attempts to execute the script
statements while the page loads.

Example
<SCRIPT FOR=firstNameEntry EVENT="onChange()">
...
</SCRIPT>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

390 <SCRIPT>
Value

Case-sensitive ID value of the event-generating element, unquoted. The object described in
the FOR attribute must support the event named in the EVENT attribute.

Default None.

Object Model Reference
IE [window.]document.all.elementID.htmlFor

LANGUAGE NN 2 IE 3 HTML 4

LANGUAGE="scriptingLanguage" Optional

Sets the scripting language for script statements defined in the element. This attribute is
deprecated in HTML 4.0 (in favor of the TYPE attribute), but it has been so widely used
since the first days of scriptable browsers that its use and support will continue for a long
time to come.

Example
<SCRIPT LANGUAGE="JavaScript">
...
</SCRIPT>

Value

Internet Explorer recognizes four case-insensitive language names: JAVASCRIPT | JSCRIPT
| VBS | VBSCRIPT. Navigator recognizes only JAVASCRIPT. Versions of JavaScript are also
supported in appropriate browsers. To keep the attribute values one-word identifiers, the
version numbers are tacked onto the end of the "JavaScript" language name. The
version-less "JavaScript" is observed by all browsers; "JavaScript1.1" is recognized
only by Navigator 3; "JavaScript1.2" is recognized by Navigator 4 and Internet Explorer
4. When SCRIPT elements are assigned these later version values, older browsers that don’t
support the named version ignore the SCRIPT elements.

Default JavaScript

Object Model Reference
IE [window.]document.all.elementID.language

SRC NN 3 IE 4 HTML 4

SRC="URL" Optional

Imports a file of script statements from an external file. Once the external statements are
loaded, the browser treats them as if they were embedded in the main HTML document.
This attribute had some support in Internet Explorer 3, but it relied on a specific JScript.dll
version, which makes it unreliable to blindly use it in IE 3.

In theory, you should be able to add script statements inside a SCRIPT element that loads
an external script library file. In practice, it is more reliable to provide a separate SCRIPT
element for each external library file and for in-document scripts.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<SELECT> 391

HTM
L Reference
Current implementations limit the SRC attribute to point to JavaScript external files. Such
files must have a .js filename extension, and the server must have the extension and
application/x-javascript MIME type set to serve up such files.

Example <SCRIPT LANGUAGE="JavaScript" SRC="stringParseLib.js"></SCRIPT>

Value

Any valid URL. Current browsers require files whose names end in the .js extension. A
complete URL may help overcome difficulties in some earlier browsers that implement this
feature.

Default None.

Object Model Reference
IE [window.]document.all.elementID.src

TYPE NN n/a IE 4 HTML 4

TYPE="elementType" Required

An advisory about the content type of the script statements. The content type should tell the
browser which scripting engine to use to interpret the script statements. The TYPE attribute
may eventually replace the LANGUAGE attribute as the one defining the scripting language in
which the element’s statements are written. To be compatible with future and past
browsers, you may include both the LANGUAGE and TYPE attributes in a SCRIPT element.

Example
<SCRIPT TYPE="text/javascript" LANGUAGE="JavaScript">
...
</SCRIPT>

Value

Case-insensitive MIME type. Values are limited to one(s) for which a particular browser is
equipped.

Default text/javascript in Internet Explorer 4.

Object Model Reference
IE [window.]document.all.elementID.type

<SELECT> NN all IE all HTML all

<SELECT>...</SELECT> End Tag: Required

The SELECT element displays information from nested OPTION elements as either a scrolling
list or pop-up menu in a document. Users typically make a selection from the list of items
(or multiple selections from a scrolling list if the SIZE attribute is set greater than 1 and the
MULTIPLE attribute is set). The VALUE attribute of the selected OPTION item is submitted as
the value part of a name/value pair to the server with a form. Navigator requires that a
SELECT element be placed inside a FORM element.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

392 <SELECT>
Example
<SELECT NAME="chapters">
 <OPTION VALUE="chap1.html">Chapter 1
 <OPTION VALUE="chap2.html">Chapter 2
 <OPTION VALUE="chap3.html">Chapter 3
 <OPTION VALUE="chap4.html">Chapter 4
</SELECT>

Object Model Reference
NN [window.]document.formName.selectName

[window.]document.forms[i].elements[i]

IE [window.]document.formName.selectName
[window.]document.forms[i].elements[i]
[window.]document.all.elementID

Attributes

Event Handler Attributes

ACCESSKEY DATAFLD ID MULTIPLE STYLE
ALIGN DATASRC LANG NAME TABINDEX
CLASS DISABLED LANGUAGE SIZE

Handler NN IE HTML
onAfterUpdate n/a 4 n/a
onBeforeUpdate n/a 4 n/a
onBlur 2 3 4
onChange 2 3 4
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onFocus 2 3 4
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onResize n/a 4 n/a
onRowEnter n/a 4 n/a
onRowExit n/a 4 n/a
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<SELECT> 393

HTM
L Reference
ACCESSKEY NN n/a IE 4 HTML n/a

ACCESSKEY="character" Optional

A single character key that brings focus to the element. The browser and operating system
determine if the user must press a modifier key (e.g., Ctrl, Alt, or Command) with the
access key to bring focus to the element. In IE 4/Windows, the Alt key is required, and the
key is not case sensitive. This attribute does not work in IE 4/Mac.

Example
<SELECT NAME="chapters" ACCESSKEY="c">
...
</SELECT>

Value Single character of the document set.

Default None.

Object Model Reference
IE [window.]document.formName.selectName.accessKey

[window.]document.forms[i].elements[i].accessKey

ALIGN NN n/a IE 4 HTML 4

ALIGN="alignmentConstant" Optional

Determines how the rectangle of the SELECT element (particularly when the SIZE attribute
is set greater than 1) aligns within the context of surrounding content. See the section
“Alignment Constants” earlier in this chapter for a description of the possibilities defined in
both Navigator and Internet Explorer for this attribute.

Example
<SELECT NAME="chapters"MULTIPLE ALIGN="baseline">
...
</SELECT>

Value

Case-insensitive constant value. All constant values are available in Internet Explorer 4.

Default bottom (IE 4/Windows); absmiddle (IE 4/Macintosh).

Object Model Reference
IE [window.]document.formName.selectName.align

[window.]document.forms[i].elements[i].align

DATAFLD NN n/a IE 4 HTML n/a

DATAFLD="columnName" Optional

Used with IE 4 data binding to associate a remote data source column name to the
selectedIndex property of a SELECT element (i.e., a zero-based index value of the item
currently selected in the list, as described in the SELECT object of Chapter 9). As such, you
can use data binding only with SELECT elements that do not specify the MULTIPLE
attribute. A DATASRC attribute must also be set for the element.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

394 <SELECT>
Example
<SELECT NAME="chapters" DATASRC="#DBSRC3" DATAFLD="chapterRequest">
 <OPTION VALUE="chap1.html">Chapter 1
 <OPTION VALUE="chap2.html">Chapter 2
 <OPTION VALUE="chap3.html">Chapter 3
 <OPTION VALUE="chap4.html">Chapter 4
</SELECT>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.formName.selectName.dataFld

[window.]document.forms[i].elements[i].dataFld

DATASRC NN n/a IE 4 HTML n/a

DATASRC="dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example
<SELECT NAME="chapters" DATASRC="#DBSRC3" DATAFLD="chapterRequest">
 <OPTION VALUE="chap1.html">Chapter 1
 <OPTION VALUE="chap2.html">Chapter 2
 <OPTION VALUE="chap3.html">Chapter 3
 <OPTION VALUE="chap4.html">Chapter 4
</SELECT>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.formName.selectName.dataSrc

[window.]document.forms[i].elements[i].dataSrc

DISABLED NN n/a IE 4 HTML 4

DISABLED Optional

The presence of this attribute disables the entire SELECT element and its nested OPTION
elements. The element receives no events when it is disabled.

Example
<SELECT NAME="chapters" DISABLED>
 <OPTION VALUE="chap1.html">Chapter 1
 <OPTION VALUE="chap2.html">Chapter 2
 <OPTION VALUE="chap3.html">Chapter 3
 <OPTION VALUE="chap4.html">Chapter 4
</SELECT>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<SELECT> 395

HTM
L Reference
Value The presence of this attribute sets its value to true.

Default false

Object Model Reference
IE [window.]document.formName.selectName.disabled

[window.]document.forms[i].elements[i].disabled

MULTIPLE NN all IE all HTML all

MULTIPLE Optional

The presence of the MULTIPLE attribute instructs the browser to render the SELECT element
as a list box and to allow users to make multiple selections from the list of options. By
default, the SIZE attribute is set to the number of nested OPTION elements, but the value
may be overridden with the SIZE attribute setting. Users can select contiguous items by
Shift-clicking on the first and last items of the group. To make discontiguous selections,
Windows users must Ctrl-click on each item; Mac users must Command-click on each item.
The MULTIPLE attribute has no effect when SIZE is set to 1 to display a pop-up menu.

Example
<SELECT NAME="equipment" MULTIPLE>
<OPTION VALUE="monitor">Video monitor
<OPTION VALUE="modem">Modem
<OPTION VALUE="printer">Printer
...
</SELECT>

Value The presence of this attribute sets its value to true.

Default false

Object Model Reference
NN [window.]document.formName.selectName.type

[window.]document.forms[i].elements[i].type

IE [window.]document.formName.selectName.multiple
[window.]document.forms[i].elements[i].multiple
[window.]document.formName.selectName.type
[window.]document.forms[i].elements[i].type

NAME NN all IE all HTML all

NAME="elementIdentifier" Optional

The name submitted as part of the element’s name/value pair with the form. It is similar to
the NAME attribute of INPUT elements.

Example
<SELECT NAME="cpu">
<OPTION VALUE="486">486
<OPTION VALUE="pentium">Pentium
<OPTION VALUE="pentium2">Pentium II
...
</SELECT>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

396 <SELECT>
Value Case-sensitive identifier.

Default None.

Object Model Reference
NN [window.]document.formName.selectName.name

[window.]document.forms[i].elements[i].name

IE [window.]document.formName.selectName.name
[window.]document.forms[i].elements[i].name

SIZE NN all IE all HTML all

SIZE="rowCount" Optional

Controls the number of rows of OPTION elements that appear in the SELECT element. With
a value of 1, the SELECT element displays its content as a pop-up menu; with a value
greater than 1, OPTION items are rendered in a list box. Browsers control the width of the
element, based on the widest text associated with nested OPTION elements.

Example
<SELECT NAME="equipment" SIZE=3>
<OPTION VALUE="monitor">Video monitor
<OPTION VALUE="modem">Modem
<OPTION VALUE="printer">Printer
...
</SELECT>

Value Any positive integer.

Default 1

Object Model Reference
IE [window.]document.formName.selectName.size

[window.]document.forms[i].elements[i].size

TABINDEX NN n/a IE 4 HTML 4

TABINDEX=integer Optional

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their TABINDEX attributes are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest TABINDEX value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same TABINDEX values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the TABINDEX attribute or have the value set to zero. These elements receive focus in the
order in which they appear in the document. Note that the Macintosh user interface does
not provide for giving focus to elements other than text and password INPUT fields.

Example
<SELECT NAME="chapters" TABINDEX=5>
...
</SELECT>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<SMALL> 397

HTM
L Reference
Value

Any integer from 0 through 32767. In IE 4, setting the TABINDEX to -1 causes the element
to be skipped in tabbing order altogether.

Default None.

Object Model Reference
IE [window.]document.formName.selectName.tabIndex

[window.]document.forms[i].elements[i].tabIndex

<SERVER> NN 2 IE n/a HTML n/a

<SERVER>...</SERVER> End Tag: Required

The SERVER element is a Navigator-specific element that instructs a Netscape web server
(FastTrack or Enterprise server) to execute server-side JavaScript routines. Such routines
may include retrieving or setting database records as well as assembling content that is
written to the current page. Server-side scripting is outside the scope of this book.

Example
<BODY>
<P>Today's closing numbers:</P>
<SERVER>displayClose()</SERVER>
</BODY>

<SMALL> NN 2 IE 3 HTML 3.2

<SMALL>...</SMALL> End Tag: Required

The SMALL element renders its content in a relative size one level smaller than the text
preceding the element. Given the FONT element’s way of specifying sizes in a range of 1
through 7, the SMALL element displays its content one size smaller than the text that comes
before it. This attribute is the same as specifying .

Example <P>Let's get really <SMALL>small</SMALL>.</P>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

398 <SPACER>
<SPACER> NN 3 IE n/a HTML n/a

<SPACER> End Tag: Forbidden

As a solution to the need for creating blank space without forcing entities, inces-
sant <P> tags, or transparent images, Navigator 3 introduced the SPACER element. This
element creates empty space within a line of text, between lines, or as a rectangular space.
Some of this functionality can be re-created in a cross-browser implementation with style
sheets.

Example
<P>This is one line of a paragraph.
<SPACER TYPE="vertical" SIZE=36>
And this completes the paragraph with a three-line gap from the first
line.</P>

Attributes

ALIGN NN 3 IE n/a HTML n/a

ALIGN="alignmentConstant" Optional

Determines how the rectangle of the SPACER element aligns within the context of
surrounding content. See the section “Alignment Constants” earlier in this chapter for a
description of the possibilities.

Example <SPACER TYPE="block" HEIGHT=90 WIDTH=40 ALIGN="absmiddle">

Value

Case-insensitive constant value. All constant values are available in Navigator 4.

Default bottom

HEIGHT, WIDTH NN 3 IE n/a HTML n/a

HEIGHT="pixelCount" Required

WIDTH="pixelCount"

The size that a block type SPACER element occupies in a document is governed by the
HEIGHT and WIDTH attribute settings. These attributes apply only when the TYPE attribute is
block.

Example <SPACER TYPE="block" HEIGHT=150 WIDTH=250>

onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a

ALIGN HEIGHT SIZE TYPE WIDTH

Handler NN IE HTML
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 399

HTM
L Reference
Value Positive integer values (optionally quoted).

Default 0

SIZE NN 3 IE n/a HTML n/a

SIZE="pixelCount" Optional

The number of pixels of whitespace to insert either horizontally or vertically, depending on
whether the TYPE attribute is set to horizontal or vertical. If the TYPE attribute is set to
block, the SIZE attribute is ignored.

Example <SPACER TYPE="horizontal" SIZE=40>

Value Any positive integer.

Default 0

TYPE NN 3 IE n/a HTML n/a

TYPE="spacerType" Required

Defines which of the three spacer geometries is being specified for the SPACER element. A
type of horizontal adds empty space in the same line of text as the preceding content; a
type of vertical adds empty space between lines of text; and a type of block defines a
rectangular space that extends in two dimensions. For the horizontal and vertical
types, the SIZE attribute must be assigned; for the block type, the HEIGHT and WIDTH
attributes must be assigned.

Example <SPACER TYPE="horizontal" SIZE=40>

Value

Any of three case-insensitive constant values: block | horizontal | vertical.

Default horizontal

WIDTH
See HEIGHT.

 NN 4 IE 3 HTML 4

... End Tag: Required

The SPAN element gives structure and context to any inline content in a document. Unlike
some other structural elements that have very specific connotations attached to them (the P
element, for instance), the author is free to give meaning to each particular SPAN element
by virtue of the element’s attribute settings and nested content. Each SPAN element becomes
a generic container for all content within the required start and end tags.

It is convenient to use the SPAN element as a wrapper for a small inline chunk of content
that is to be governed by a style sheet rule. For example, if you want to differentiate a few
words in a paragraph with the equivalent of a small caps look, you would wrap the affected
words with a SPAN element whose style sheet defines the requested font and text styles.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

400
Such a style sheet could be defined as an inline STYLE attribute of the SPAN element or
assigned via the CLASS or ID attribute depending on the structure of the rest of the
document.

If you need an arbitrary container for block-level content, use the DIV element.

HTML 4.0 defines many more attributes for the SPAN element than are implemented in
Version 4 browsers. The breadth of HTML attributes indicates the potential powers of this
generic element to include links to related resources and many advisory attributes about
those links. The same set of attributes apply to the DIV element in the HTML 4.0
specification.

Example

30-day special offer

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

CHARSET NN n/a IE n/a HTML 4

CHARSET="characterSet" Optional

Character encoding of the content at the other end of the link.

Example CyrillicTextHere

CHARSET DATASRC ID REL TARGET
CLASS DIR LANG REV TITLE
DATAFLD HREF LANGUAGE STYLE TYPE
DATAFORMATAS HREFLANG MEDIA

Handler NN IE HTML
onClick n/a 3 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 3 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 401

HTM
L Reference
Value

Case-insensitive alias from the character set registry (ftp://ftp.isi.edu/in-notes/iana/
assignments/character-sets).

Default Determined by browser.

DATAFLD NN n/a IE 4 HTML n/a

DATAFLD="columnName" Optional

Used with IE 4 data binding to associate a remote data source column name with the HTML
content of a SPAN element. The data source column must be HTML (see DATAFORMATAS).
DATASRC and DATAFORMATAS attributes must also be set for the SPAN element.

Example
 ...

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.all.elementID.dataFld

DATAFORMATAS NN n/a IE 4 HTML n/a

DATAFORMATAS="dataType" Optional

Used with IE 4 data binding, this attribute advises the browser whether the source material
arriving from the data source is to be treated as plain text or as tagged HTML. A SPAN
element should receive data only in HTML format.

Example
...

Value HTML

Default text

Object Model Reference
IE [window.]document.all.elementID.dataFormatAs

DATASRC NN n/a IE 4 HTML n/a

DATASRC="dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example
...

Value Case-sensitive identifier.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

402
Default None.

Object Model Reference
IE [window.]document.all.elementID.dataSrc

HREF NN n/a IE n/a HTML 4

HREF="URI" Optional

According to the HTML 4.0 specification, the HREF attribute is meant to offer a URL to a
resource that can supply “more information” about the SPAN element’s content. No recom-
mendation is provided as to whether this URL should be rendered in any way (like the
HREF attribute of an A element). Perhaps a future browser could use this URL to generate a
margin note or footnote in the form of a link. Several other attributes clearly intend for the
HREF attribute’s URL to be accessible in some way by the user.

Example
Chapter 3

Value

Any valid URL, including complete and relative URLs, anchors on the same page (anchor
names prefaced with the # symbol), and the javascript: pseudo-URL in scriptable
browsers to trigger a script statement rather than navigate to a destination.

Default None.

HREFLANG NN n/a IE n/a HTML 4

HREFLANG="languageCode" Optional

The language code of the content at the destination of a link. Requires that the HREF
attribute also be set. This attribute is primarily an advisory attribute to help a browser
prepare itself for a new language set if the browser is so enabled.

Example

Chapter 3 (Hindi)

Value Case-insensitive language code.

Default Browser default.

MEDIA NN n/a IE n/a HTML 4

MEDIA="descriptorList" Optional

Sets the intended output device for the content of the SPAN element. The MEDIA attribute
looks forward to the day when browsers are able to tailor content to specific kinds of
devices such as pocket computers, text-to-speech digitizers, or fuzzy television sets. The
HTML 4.0 specification defines a number of constant values for anticipated devices, but the
list is open-ended, allowing future browsers to tailor output to other media and devices.

Example ...
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 403

HTM
L Reference
Value

Case-sensitive constant values. Multiple values can be grouped together in a comma-
delimited list within a quoted string. Values defined in HTML 4.0 are all | aura |
braille | handheld | print | projection | screen | tty | tv .

Default screen

REL NN n/a IE n/a HTML 4

REL="linkTypes" Optional

Defines the relationship between the current element and the destination of the link. Also
known as a forward link, not to be confused in any way with the destination document
whose address is defined by the HREF attribute. The HTML 4.0 recommendation defines
several link types, and it is up to the browser to determine how to employ the value. The
element must include an HREF attribute for the REL attribute to be applied.

Example ...

Value

Case-insensitive, space-delimited list of HTML 4.0 standard link types applicable to the
element. Sanctioned link types are:

Default None.

REV NN n/a IE n/a HTML 4

REV="linkTypes" Optional

A reverse link relationship. Like the REL attribute, the REV attribute’s capabilities are defined
by the browser, particularly with regard to how the browser interprets and renders the
various link types available in the HTML 4.0 specification. Given two documents (A and B)
containing links that point to each other, the REV value of B is designed to express the
same relationship between the two documents as denoted by the REL attribute in A.

Example ...

Value

Case-insensitive, space-delimited list of HTML 4.0 standard link types applicable to the
element. See the REL attribute for sanctioned link types.

Default None.

TARGET NN n/a IE n/a HTML 4

TARGET="windowOrFrameName" Optional

If the destination document associated with the HREF attribute is to be loaded into a
window or frame other than the current window or frame, you can specify where the desti-

alternate contents index start
appendix copyright next stylesheet
bookmark glossary prev subsection
chapter help section
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

404 <STRIKE>
nation document should load by assigning a window or frame name to the TARGET
attribute. Target frame names must be assigned to frames and windows as identifiers. Assign
names to frames via the NAME attribute of the FRAME element; assign names to new
windows via the second parameter of the window.open() scripting method. If you omit
this attribute, the destination document replaces the document containing the link. This
attribute is applicable only when a value is assigned to the HREF attribute of the element.

If this feature is implemented in future browsers, the SPAN element will probably have only
one destination document and one target (like the A element). If you want a link to change
the content of multiple frames, you can use a SPAN element’s onClick event handler or a
javascript: pseudo-URL to fire a script that loads multiple documents. Set the
location.href property of each frame to a desired URL.

Example ...

Value

Case-sensitive identifier when the frame or window name has been assigned via the target
element’s NAME attribute. Four reserved target names act as constants:

_blank Browser creates a new window for the destination document.

_parent Destination document replaces the current frame’s framesetting document (if
one exists; otherwise, it is treated as _self).

_self Destination document replaces the current document in its window or frame.

_top Destination document is to occupy the entire browser window, replacing any
and all framesets that may be loaded (also treated as _self if there are no
framesets defined in the window).

Default _self

TYPE NN n/a IE n/a HTML 4

TYPE="MIMEType" Optional

An advisory about the content type of the destination document or resource. A browser
might use this information to assist in preparing support for a resource requiring a multi-
media player or plugin.

Example ...

Value

Case-insensitive MIME type. A catalog of registered MIME types is available from ftp://
ftp.isi.edu/in-notes/iana/assignments/media-types/.

Default None.

<STRIKE> NN 3 IE 3 HTML 3.2

<STRIKE>...</STRIKE> End Tag: Required

The STRIKE element renders its content as strikethrough text. This element is identical to
the S element, which was adopted because it more closely resembled the one-character
element names for other type formatting (such as B, I, and U elements). In any case, both
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

 405

HTM
L Reference
STRIKE and S elements are deprecated in HTML 4.0 in favor of the text-
decoration:line-through style sheet attribute.

Example
<P>If at first you don't succeed, <STRIKE>do it over</STRIKE> try, try
again.</P>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

 NN all IE all HTML all

... End Tag: Required

The STRONG element is one of a large group of elements that the HTML 4.0 recommenda-
tion calls phrase elements. Such elements assign structural meaning to a designated portion
of the document. A STRONG element is one that contains text that indicates a stronger
emphasis than the EM element. Whereas an EM element is typically rendered as italic text, a
STRONG element is generally rendered as boldface text. This can be overridden with a style
sheet as you see fit.

Example
<P>Don't delay. Order today to get the maximum discount.
</P>

Object Model Reference
IE [window.]document.all.elementID

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

406 <STYLE>
Attributes

Event Handler Attributes

<STYLE> NN 4 IE 3 HTML 4

<STYLE>...</STYLE> End Tag: Required

The STYLE element is a container for style sheet rules. Use the STYLE element only inside
the HEAD element. You may include more than one STYLE element in a HEAD element (see
the MEDIA attribute).

Older browsers may attempt to render the content of a STYLE element. To prevent that, you
should wrap the style sheet rules inside HTML comment tags. See Chapter 3 for details on
the makeup of style sheet rules.

Example
<STYLE TYPE="text/css">
<!--
H1 {font-size:18pt; text-transform:capitalize}
P {font-size:12pt}
-->
</STYLE>

Attributes

DISABLED NN n/a IE 4 HTML n/a

DISABLED Optional

Disables the entire STYLE element, as if it didn’t exist in the document. This attribute does
not work on the Macintosh version of Internet Explorer 4.

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a

DIR LANG MEDIA TITLE TYPE
DISABLED
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<STYLE> 407

HTM
L Reference
The DISABLED attribute is a Boolean type, which means that its presence in the attribute
sets its value to true. Its value can also be adjusted after the fact by scripting (see the
button object in Chapter 9).

Example <STYLE TYPE="text/css" DISABLED>...</STYLE>

Value The presence of the attribute disables the element.

Default false

Object Model Reference
IE [window.]document.all.tags("STYLE")[i].disabled

MEDIA NN n/a IE 4 HTML 4

MEDIA="descriptorList" Optional

Sets the intended output device for the content of the element. The MEDIA attribute looks
forward to the day when browsers are able to tailor content to specific kinds of devices
such as pocket computers, text-to-speech digitizers, or fuzzy television sets. The HTML 4.0
specification defines a number of constant values for anticipated devices, but the list is
open-ended, allowing future browsers to tailor output to yet other kinds of media and
devices.

Example <STYLE TYPE="text/css" MEDIA="print">...</STYLE>

Value

Case-sensitive constant values. Multiple values can be grouped together in a comma-
delimited list within a quoted string. Values defined in HTML 4.0 are all | aura |
braille | handheld | print | projection | screen | tty | tv. Internet Explorer
values are all | print |screen.

Default screen

Object Model Reference
IE [window.]document.all.tags("STYLE")[i].media

TYPE NN 4 IE 4 HTML 4

TYPE="MIMEType" Required

The TYPE attribute tells the browser which style sheet syntax to use to interpret the style
rules defined in the current element.

Example <STYLE TYPE="text/css">...</STYLE>

Value

Case-insensitive MIME type. A type accepted by both Navigator 4 and Internet Explorer 4 is
"text/css". Navigator 4 also recognizes "text/javascript" when using JavaScript
syntax style sheets.

Default text/css
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

408 <SUP>
Object Model Reference
IE [window.]document.all.tags("STYLE")[i].type

<SUB> NN 2 IE 3 HTML 3.2

_{...} End Tag: Required

The SUB element is a typographical element that instructs the browser to render its content
as a subscript in a font size consistent with the surrounding content. Browsers tend to
render this content in a smaller size than surrounding content.

Example
<P>"Heavy water" (H₃O) has one more hydrogen atom
than regular water.</P>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

<SUP> NN 2 IE 3 HTML 3.2

^{...} End Tag: Required

The SUP element is a typographical element that instructs the browser to render its content
as a superscript in a font size consistent with the surrounding content. Browsers tend to
render this content in a smaller size than surrounding content.

Example <P>This book is published by O'Reilly^{™}.</P>

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TABLE> 409

HTM
L Reference
Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

<TABLE> NN all IE all HTML 3.2

<TABLE>...</TABLE> End Tag: Required

The TABLE element is a container for additional elements that specify the content for a
table. A table consists of rows and columns of content. Other elements related to the TABLE
element are CAPTION, COL, COLGROUP, TBODY, TD, TFOOT, TH, THEAD, and TR. The purpose
of the TABLE element is to define a number of visible attributes that apply to the entire
table, regardless of the number of rows or columns within it. Many of these attributes can
be overridden for a given row, column, or cell. The number of rows and columns is strictly
a factor of the structure of TR and TD elements within the table.

Tables have been used for a relatively long time not only to organize rows and columns of
content but also to position content. With no visible borders, table rows and columns can
be set to empty space. With the advent of positionable content, the tables-for-positioning
practice is not encouraged.

Example
<TABLE COLS=3>
<THEAD>
<TR>
<TH>Time<TH>Event<TH>Location
</TR>
</THEAD>
<TBODY>
<TR>

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

410 <TABLE>
<TD>7:30am-5:00pm<TD>Registration Open<TD>Main Lobby
</TR>
<TR>
<TD>9:00am-12:00pm<TD>Keynote Speakers<TD>Cypress Room
</TR>
</TBODY>
</TABLE>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

ALIGN NN all IE all HTML 3.2

ALIGN="where" Optional

Determines how the table is aligned relative to the next outermost container (usually the
document BODY). The ALIGN attribute is deprecated in HTML 4.0 in favor of style sheet
attributes.

ALIGN BORDERCOLORDARK COLS HEIGHT STYLE
BACKGROUND BORDERCOLORLIGHT DATAPAGESIZE ID SUMMARY
BGCOLOR CELLPADDING DATASRC LANG TITLE
BORDER CELLSPACING DIR LANGUAGE WIDTH
BORDERCOLOR CLASS FRAME RULES

Handler NN IE HTML
onAfterUpdate n/a 4 n/a
onBeforeUpdate n/a 4 n/a
onBlur n/a 4 n/a
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onFocus n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onResize n/a 4 n/a
onRowEnter n/a 4 n/a
onRowExit n/a 4 n/a
onScroll n/a 4 n/a
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TABLE> 411

HTM
L Reference
Example <TABLE ALIGN="center"> </TABLE>

Value Case-insensitive alignment constant: center | left | right.

Default left

Object Model Reference
IE [window.]document.all.elementID.align

BACKGROUND NN 4 IE 3 HTML n/a

BACKGROUND="URL" Optional

Specifies an image file that is used as a backdrop to the table. Unlike normal images that
get loaded into browser content, a background image loads in its original size (without
scaling) and tiles to fill the available table space. Smaller images download faster but are
obviously repeated more often in the background. Animated GIFs are also allowable, but
very distracting to the reader. When selecting a background image, be sure it is very muted
in comparison to the main content so that the content stands out clearly. Background
images, if used at all, should be extremely subtle.

Example <TABLE BACKGROUND="watermark.jpg">...</TABLE>

Value Any valid URL to an image file, including complete and relative URLs.

Default None.

Object Model Reference
IE [window.]document.all.elementID.background

BGCOLOR NN 3 IE 3 HTML 3.2

BGCOLOR="colorTripletOrName" Optional

Establishes a fill color (behind the text and other content) for the entire table. If you
combine a BGCOLOR and BACKGROUND, any transparent areas of the background image let
the background color show through. This attribute is deprecated in HTML 4.0 in favor of
the background-color style attribute.

Example <TABLE BGCOLOR="tan">...</TABLE>

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with browser, browser version, and operating system.

Object Model Reference
IE [window.]document.all.elementID.bgColor
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

412 <TABLE>
BORDER NN all IE all HTML 3.2

BORDER="pixelCount" Optional

The thickness (in pixels) of the border drawn around a TABLE element. If you set the
BORDER attribute to any value, browsers by default render narrow borders around each of
the cells inside the table. The thickness of internal borders between cells are defined by the
CELLSPACING attribute of the TABLE element.

If you include only the BORDER attribute without assigning any value to it, the browser
renders default-sized borders around the entire table and between cells, unless overridden
by other attributes.

Browsers render the border in a 3-D style, with the border appearing to be raised around
the flat content in the cells. Numerous other attributes affect the look of the border,
including: BORDERCOLOR, BORDERCOLORDARK, BORDERCOLORLIGHT, FRAME, and RULES. The
type of border rendered for tables is different from the borders defined by style sheet rules.
You get better control of the border look by using the dedicated attributes of the TABLE
element.

Example <TABLE BORDER=1>...</TABLE>

Value A positive integer value.

Default 0

Object Model Reference
IE [window.]document.all.elementID.border

BORDERCOLOR NN 4 IE 3 HTML 4

BORDERCOLOR="colorTripletOrName" Optional

The colors used to render some of the pixels that create the illusion of borders around cells
and the entire table. The BORDER attribute must have a nonzero value assigned for the color
to appear. The 3-D effect of borders in Navigator and Internet Explorer is created by careful
positioning of light (or white) and dark lines around the page’s background or default color
(see Figure 8-4). Standard colors are usually shades of gray and white, depending on the
browser.

Applying color to a table border has a different effect in Navigator and Internet Explorer. In
Navigator, the color is applied to what is normally the darker of the two shades used to
create the border. Moreover, Navigator automatically adjusts the darkness of some of the
lines to enhance the 3-D effect of the border. In contrast, Internet Explorer applies the color
to all lines that make up the border. The net effect is to flatten the 3-D effect (refer to the
BORDERCOLORDARK and BORDERCOLORLIGHT attributes to color borders and maintain the
3-D effect).

Example <TABLE BORDERCOLOR="green" BORDER=2>...</TABLE>

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TABLE> 413

HTM
L Reference
Default Varies with browser and operating system.

Object Model Reference
IE [window.]document.all.elementID.borderColor

BORDERCOLORDARK,
BORDERCOLORLIGHT NN n/a IE 3 HTML n/a

BORDERCOLORDARK="colorTripletOrName" Optional

BORDERCOLORLIGHT="colorTripletOrName"

The 3-D effect of table borders in Internet Explorer is created by careful positioning of light
and dark lines around the page’s background or default color (see Figure 8-4). You can
independently control the colors used for the dark and light lines by assigning values to the
BORDERCOLORDARK and BORDERCOLORLIGHT attributes. The BORDER attribute must have a
nonzero value assigned for the colors to appear.

Typically, you should assign complementary colors to the pair of attributes. There is also no
rule that says you must assign a dark color to BORDERCOLORDARK. The attributes merely
control a well-defined set of lines so you can predict which lines of the border change with
each attribute.

Example
<TABLE BORDERCOLORDARK="darkred" BORDERCOLORLIGHT="salmon" BORDER=3>...
</TABLE>

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with operating system.

Figure 8-4. Components of table border color

BORDERCOLORDARKBORDERCOLORLIGHT
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

414 <TABLE>
Object Model Reference
IE [window.]document.all.elementID.borderColorDark

[window.]document.all.elementID.borderColorLight

CELLPADDING NN all IE 3 HTML 3.2

CELLPADDING="length" Optional

The amount of empty space between the border of a table cell and the content of the cell.
Note that this attribute applies to space inside a cell. Without setting this attribute, most
browsers render text content so that its leftmost pixels abut the left edge of the cell. If the
table displays borders, adding a few pixels of breathing space between the border edge and
the content makes the content more readable. Large padding may also be desirable in some
design instances. This attribute is not as noticeable when the table does not display borders
(in which case the CELLSPACING attribute can assist in adjusting the space between cells).

Example <TABLE BORDER=2 CELLPADDING=3>...</TABLE>

Value Any length value in pixels or percentage of available space.

Default 0

Object Model Reference
IE [window.]document.all.elementID.cellPadding

CELLSPACING NN all IE 3 HTML 3.2

CELLSPACING="length" Optional

The amount of empty space between the outer edges of each table cell. If you set the
BORDER attribute of the TABLE element to any positive integer value, the effect of setting
CELLSPACING is to define the thickness of borders rendered between cells. Even without a
visible border, the readability of a table often benefits from cell spacing.

Example <TABLE BORDER=2 CELLSPACING=10>...</TABLE>

Value Any positive integer.

Default 0 (no table border); 2 (with table border).

Object Model Reference
IE [window.]document.all.elementID.cellSpacing

COLS NN 4 IE 3 HTML n/a

COLS="columnCount" Optional

The number of columns of the table. The HTML specification never adopted this attribute.
In HTML 4.0, the functionality of this attribute is covered by the COLGROUP and COL
elements. In the meantime, the COLS attribute is recognized by current browsers. The
attribute assists the browser in preparation for rendering the table. Without this attribute, the
browser relies on its interpretation of all downloaded TR and TD elements to determine how
the table is to be divided.

Example <TABLE COLS=4>...</TABLE>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TABLE> 415

HTM
L Reference
Value Any positive integer.

Default None.

Object Model Reference
IE [window.]document.all.elementID.cols

DATAPAGESIZE NN n/a IE 4 HTML n/a

DATAPAGESIZE="recordCount" Optional

Used with IE 4 data binding, this attribute advises the browser how many instances of a
table row must be rendered to accommodate the number of data source records set by this
attribute. A common application is setting a table cell to display a text INPUT element
whose DATAFLD attribute is bound to a particular column of the data source (the DATASRC
is set in the TABLE element). If the DATAPAGESIZE attribute is set to 5, the browser must
display five rows of the table (but the row is specified in the HTML only once).

Example
<TABLE DATASRC="#DBSRC3" DATAPAGESIZE=5">
<TR>
 <TD><INPUT TYPE="text" DATAFLD="stockNum">
 <TD><INPUT TYPE="text" DATAFLD="qtyOnHand">
</TR>
</TABLE>

Value Any positive integer.

Default None.

Object Model Reference
IE [window.]document.all.elementID.dataPageSize

DATASRC NN n/a IE 4 HTML n/a

DATASRC="dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute in individual TD elements. A block of contig-
uous records can be rendered in the table when you also set the DATAPAGESIZE attribute of
the table.

Example <TABLE DATASRC="#DBSRC3" DATAPAGESIZE=5">...</TABLE>

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.all.elementID.dataSrc
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

416 <TABLE>
DIR NN n/a IE n/a HTML 4

DIR="direction" Optional

The direction of character rendering and table cell rendering for the element. Character and
cell rendering is either left-to-right or right-to-left. This attribute is usually set in concert with
the LANG attribute and must be used to specify a character rendering direction that over-
rides the current direction.

Example <TABLE LANG="ar" dir="rtl">SomeArabicTableCellItemsHere</TABLE>

Value ltr | rtl (case insensitive).

Default ltr

FRAME NN n/a IE 3 HTML 4

FRAME="frameConstant" Optional

Defines which (if any) sides of a table’s outer border (set with the BORDER attribute) are
rendered. This attribute does not affect the interior borders between cells. Including the
BORDER attribute without assigning any value to it is the same as setting the FRAME attribute
to border.

Example <TABLE BORDER=3 FRAME="void">...</TABLE>

Value Any one case-insensitive frame constant:

above Renders border along top edge of table only

below Renders border along bottom edge of table only

border Renders all four sides of the border (default in IE)

box Renders all four sides of the border (same as border)

hsides Renders borders on top and bottom edges of table only (a nice look)

lhs Renders border on left edge of table only

rhs Renders border on right edge of table only

void Hides all borders (default in HTML 4.0)

vsides Renders borders on left and right edges of table only

Default

Navigator: void (when BORDER=0); border (when BORDER is any other value). Internet
Explorer: border.

Object Model Reference
IE [window.]document.all.elementID.frame

HEIGHT, WIDTH NN all IE 3 HTML 3.2

HEIGHT="length" Optional

WIDTH="length"

The rectangular dimensions of a table that may be different from the default size as calcu-
lated by the browser. When the values for these attributes are less than the minimum space
required to render the table cell content, the browser overrides the attribute settings to
make sure that all content appears, even if it means that text lines word-wrap. You can also
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TABLE> 417

HTM
L Reference
stretch the dimensions of a table beyond the browser-calculated dimensions. Extra
whitespace appears inside table cells to make up the difference. If you specify just one
attribute, the browser performs the necessary calculations to automatically adjust the dimen-
sion along the other axis.

Note that the HEIGHT attribute is not in the HTML specification. The assumption there is
that the table height is calculated by the browser to best show all cell content given either
the default or attribute-established width. Because different browsers on different operating
systems can render text content in varying relative font sizes, it is not unusual to let the
height of a table be calculated by the browser.

Example <TABLE WIDTH="80%">...</TABLE>

Value Any length value in pixels or percentage of available space.

Default Navigator: a width of 100% of the next outermost container; height governed by
content. Internet Explorer: calculates the height and width based on content size.

Object Model Reference
IE [window.]document.all.elementID.height

[window.]document.all.elementID.width

RULES NN n/a IE 3 HTML 4

RULES="rulesConstant" Optional

Defines where (if at all) interior borders between cells are rendered by the browser. In
addition to setting the table to draw borders to turn the cells into a matrix, you can also set
borders to be drawn only to separate rows, columns, or any sanctioned cell grouping
(THEAD, TBODY, TFOOT, COLGROUP, or COL). The BORDER attribute must be present—either
as a Boolean or set to a specific border size—for any cell borders to be drawn.

Example <TABLE BORDER RULES="groups">...</TABLE>

Value Any one case-insensitive rules constant:

all Renders borders around each cell

cols Renders borders between columns only

groups Renders borders between cell groups as defined by THEAD, TFOOT, TBODY,
COLGROUP, or COL elements

none Hides all interior borders

rows Renders borders between rows only

Default none (when BORDER=0); all (when BORDER is any other value).

Object Model Reference
IE [window.]document.all.elementID.rules

SUMMARY NN n/a IE n/a HTML 4

SUMMARY="text" Optional

A textual description of the table, including, but not limited to, instructions that nonvisual
browsers might follow to describe the purpose and organization of the table data.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

418 <TBODY>
Example
<TABLE SUMMARY="Order form for entry of up to five products.">...</TABLE>

Value Any quoted string of characters.

Default None.

WIDTH
See HEIGHT.

<TBODY> NN n/a IE 3 HTML 4

<TBODY>...</TBODY> End Tag: Optional

A TBODY element is an arbitrary container of one or more rows of table cells. More than one
TBODY element may be defined within a single TABLE element. Use the TBODY element to
define structural segments of a table that may require their own styles or border treatments
(see the RULES attribute). A TBODY element is the row-oriented equivalent of the COLGROUP
element for columns. Other types of row groupings available are the TFOOT and THEAD
elements, neither of which overlaps with a TBODY element.

Example
<TABLE COLS=3>
<THEAD>
<TR>
<TH>Time<TH>Event<TH>Location
</TR>
</THEAD>
<TBODY>
<TR>
<TD>7:30am-5:00pm<TD>Registration Open<TD>Main Lobby
</TR>
<TR>
<TD>9:00am-12:00pm<TD>Keynote Speakers<TD>Cypress Room
</TR>
</TBODY>
</TABLE>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

ALIGN CHAROFF ID LANGUAGE TITLE
BGCOLOR CLASS LANG STYLE VALIGN
CHAR DIR

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TBODY> 419

HTM
L Reference
ALIGN NN n/a IE 4 HTML 4

ALIGN="alignConstant" Optional

Establishes the horizontal alignment characteristics of content within the row(s) covered by
the TBODY element. The HTML 4.0 specification defines settings for the ALIGN attribute that
are not yet reflected in the CSS specification. Therefore, this ALIGN attribute is not fully
deprecated as it is for many other elements. As a rule, alignment should be specified by
style sheet wherever possible.

Example <TBODY ALIGN="center">

Value HTML 4.0 and IE 4 have two sets of attribute values:

The values center, left, and right are self-explanatory. The value justify is intended
to space content so that text is justified down both left and right edges. For the value char,
the CHAR attribute must also be set to specify the character on which alignment revolves. In
the HTML 4.0 specification example, content that does not contain the character appears to
be right-aligned to the location of the character in other rows of the same column.

It is important to bear in mind that the ALIGN attribute applies to every cell of every row
within the TBODY, including any TH element you specify for the table. If you want a
different alignment for the row header, override the setting with a separate ALIGN attribute
or text-align style sheet attribute for the THEAD or individual TH elements.

Default left

Object Model Reference
IE [window.]document.all.elementID.align

onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a

Value IE 4 HTML 4.0
center • •
char - •
justify - •
left • •
right • •

Handler NN IE HTML
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

420 <TBODY>
BGCOLOR NN n/a IE 4 HTML n/a

BGCOLOR="colorTripletOrName" Optional

Establishes a fill color (behind the text and other content) for the cells contained by the
TBODY element.

Example <TBODY BGCOLOR="tan">

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with browser, browser version, and operating system.

Object Model Reference
IE [window.]document.all.elementID.bgColor

CHAR NN n/a IE n/a HTML 4

CHAR="character" Optional

The text character used as an alignment point for text within a cell. This attribute is of value
only for the ALIGN attribute set to "char".

Example <TBODY ALIGN="char" CHAR=".">

Value Any single text character.

Default None.

CHAROFF NN n/a IE n/a HTML 4

CHAROFF="length" Optional

Sets a specific offset point at which the character specified by the CHAR attribute is to
appear within a cell. This attribute is provided in case the browser default positioning does
not meet with the design goals of the table.

Example <TBODY ALIGN="char" CHAR="." CHAROFF="80%">

Value Any length value in pixels or percentage of cell space.

Default None.

VALIGN NN n/a IE 4 HTML 4

VALIGN="alignmentConstant" Optional

Determines the vertical alignment of content within cells of the column(s) covered by the
TBODY element. You can override the vertical alignment for a particular cell anywhere in the
column.

Example <TBODY VALIGN="bottom">
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TD> 421

HTM
L Reference
Value

Four constant values are recognized by both IE 4 and HTML 4.0: top | middle | bottom |
baseline. With top and bottom, the content is rendered flush (or very close to it) to the
top and bottom of the table cell. Set to middle (the default), the content floats perfectly
centered vertically in the cell. When one cell’s contents might wrap to multiple lines at
common window widths (assuming a variable table width), it is advisable to set the VALIGN
attribute to baseline. This assures that the character baseline of the first (or only) line of a
cell’s text aligns with the other cells in the row—usually the most aesthetically pleasing
arrangement.

Default middle

Object Model Reference
IE [window.]document.all.elementID.vAlign

<TD> NN all IE all HTML 3.2

<TD>...</TD> End Tag: Optional

The TD element is a container for content that is rendered inside one cell of a TABLE
element. One cell is the intersection of a column and row. Other elements related to the TD
element are CAPTION, COL, COLGROUP, TABLE, TBODY, TFOOT, TH, THEAD, and TR. In addi-
tion to providing a wrapper for a cell’s content, the TD element defines a number of visible
attributes that apply to a single cell, often overriding similar attributes set in lesser-nested
elements in the table.

Four attributes—ABBR, AXIS, HEADERS, and SCOPE—have been added to the HTML 4.0
specification in anticipation of nonvisual browsers that will use text-to-speech technology to
describe content of an HTML page—a kind of “verbal rendering.” Although these attributes
are briefly described here for the sake of completeness, there is much more to their applica-
tion in nonvisual browsers than is relevant in this book on Dynamic HTML. Consult the
HTML 4.0 recommendation for more details.

Example
<TABLE COLS=3>
<THEAD>
<TR>
<TH>Time<TH>Event<TH>Location
</TR>
</THEAD>
<TBODY>
<TR>
<TD>7:30am-5:00pm<TD>Registration Open<TD>Main Lobby
</TR>
<TR>
<TD>9:00am-12:00pm<TD>Keynote Speakers<TD>Cypress Room
</TR>
</TBODY>
</TABLE>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

422 <TD>
Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

ABBR NN n/a IE n/a HTML 4

ABBR="text" Optional

Provides an abbreviated string that describes the cell’s content. This is usually a brief label
that a nonvisual browser would speak to describe what the value of the cell represents.

Example <TD ABBR="Main Event"> Keynote Speakers

Value Any quoted string.

Default None.

ABBR BORDERCOLORDARK COLSPAN ID SCOPE
ALIGN BORDERCOLORLIGHT DATAFLD LANG STYLE
AXIS CHAR DIR LANGUAGE TITLE
BACKGROUND CHAROFF HEADERS NOWRAP VALIGN
BGCOLOR CLASS HEIGHT ROWSPAN WIDTH
BORDERCOLOR

Handler NN IE HTML
onAfterUpdate n/a 4 n/a
onBeforeUpdate n/a 4 n/a
onBlur n/a 4 n/a
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onFocus n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onResize n/a 4 n/a
onRowEnter n/a 4 n/a
onRowExit n/a 4 n/a
onScroll n/a 4 n/a
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TD> 423

HTM
L Reference
ALIGN NN all IE all HTML 3.2

ALIGN="alignConstant" Optional

Establishes the horizontal alignment characteristics of content within the cell covered by the
TD element. The HTML 4.0 specification defines settings for the ALIGN attribute that are not
yet reflected in the CSS specification. Therefore, this ALIGN attribute is not fully deprecated
as it is for many other elements. As a rule, alignment should be specified by style sheet
wherever possible.

Example <TD ALIGN="center">

Value

Navigator 4 and Internet Explorer 4 share the same attribute values, whereas HTML 4.0 has
a couple more:

The values center, left, and right are self-explanatory. The value justify is intended
to space content so that text is justified down both left and right edges. For the value char,
the CHAR attribute must also be set to specify the character on which alignment revolves. In
the HTML 4.0 specification example, content that does not contain the character appears to
be right-aligned to the location of the character in other rows of the same column.

Default left

Object Model Reference
IE [window.]document.all.elementID.align

AXIS NN n/a IE n/a HTML 4

AXIS="text" Optional

Provides an abbreviated string that describes the cell’s category. This is usually a brief label
that a nonvisual browser would speak to describe what the value of the cell represents.

Example <TD AXIS="event"> Keynote Speakers

Value Any quoted string.

Default None.

BACKGROUND NN n/a IE 3 HTML n/a

BACKGROUND="URL" Optional

Specifies an image file that is used as a backdrop to the cell. Unlike normal images that get
loaded into browser content, a background image loads in its original size (without scaling)
and tiles to fill the available cell space. Smaller images download faster but are obviously

Value NN 4 IE 4 HTML 4.0
center • • •
char - - •
justify - - •
left • • •
right • • •
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

424 <TD>
repeated more often in the background. Animated GIFs are also allowable, but very
distracting to the reader. When selecting a background image, be sure it is very muted in
comparison to the main content so that the content stands out clearly. Background images,
if used at all, should be extremely subtle.

Example <TD BACKGROUND="watermark.jpg">

Value Any valid URL to an image file, including complete and relative URLs.

Default None.

Object Model Reference
IE [window.]document.all.elementID.background

BGCOLOR NN 3 IE 3 HTML 3.2

BGCOLOR="colorTripletOrName" Optional

Establishes a fill color (behind the text and other content) for the cell defined by the TD
element.

Example <TD BGCOLOR="yellow">

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with browser, browser version, and operating system.

Object Model Reference
IE [window.]document.all.elementID.bgColor

BORDERCOLOR NN n/a IE 3 HTML n/a

BORDERCOLOR="colorTripletOrName" Optional

The colors used to render some of the pixels that create the illusion of borders around cells
and the entire table. Internet Explorer applies the color to all four lines that make up the
interior border of a cell. Therefore, colors of adjacent cells do not collide.

Example <TD BORDERCOLOR="green">

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with browser and operating system.

Object Model Reference
IE [window.]document.all.elementID.borderColor
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TD> 425

HTM
L Reference
BORDERCOLORDARK,
BORDERCOLORLIGHT NN n/a IE 3 HTML n/a

BORDERCOLORDARK="colorTripletOrName" Optional

BORDERCOLORLIGHT="colorTripletOrName"

The 3-D effect of table borders in Internet Explorer is created by careful positioning of light
and dark lines around the page’s background or default color (see Figure 8-4 in the TABLE
element discussion). You can independently control the colors used for the dark and light
lines by assigning values to the BORDERCOLORDARK (left and top edges of the cell) and
BORDERCOLORLIGHT (right and bottom edges) attributes.

Typically, you should assign complementary colors to the pair of attributes. There is also no
rule that says you must assign a dark color to BORDERCOLORDARK. The attributes merely
control a well-defined set of lines so you can predict which lines of the border change with
each attribute.

Example <TD BORDERCOLORDARK="darkred" BORDERCOLORLIGHT="salmon">

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with operating system.

Object Model Reference
IE [window.]document.all.elementID.borderColorDark

[window.]document.all.elementID.borderColorLight

CHAR NN n/a IE n/a HTML 4

CHAR="character" Optional

The text character used as an alignment point for text within a cell. This attribute is of value
only for the ALIGN attribute set to "char".

Example <TD ALIGN="char" CHAR=".">

Value Any single text character.

Default None.

CHAROFF NN n/a IE n/a HTML 4

CHAROFF="length" Optional

Sets a specific offset point at which the character specified by the CHAR attribute is to
appear within a cell. This attribute is provided in case the browser default positioning does
not meet with the design goals of the table.

Example <TD ALIGN="char" CHAR="." CHAROFF="80%">

Value Any length value in pixels or percentage of cell space.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

426 <TD>
COLSPAN NN all IE all HTML 3.2

COLSPAN="columnCount" Optional

The number of columns across which the current table cell should extend itself. For each
additional column included in the COLSPAN count, one less TD element is required for the
table row. If you set the ALIGN attribute to center or right, the alignment is calculated on
the full width of the TD element across the specified number of columns. Unless the current
cell also specifies a ROWSPAN attribute, the next table row returns to the original column
count.

Example <TD COLSPAN=2 ALIGN="center">

Value Any positive integer, usually 2 or larger.

Default 1

Object Model Reference
IE [window.]document.all.elementID.colSpan

DATAFLD NN n/a IE 4 HTML n/a

DATAFLD="columnName" Optional

Used with IE 4 data binding to associate a remote data source column name with the
content of a table cell. A DATASRC (and optionally a DATAPAGESIZE) attribute must also be
set for the enclosing TABLE element.

Example
<TABLE DATASRC="#DBSRC3" DATAPAGESIZE=5">
<TR>
 <TD><INPUT TYPE="text" DATAFLD="stockNum">
 <TD><INPUT TYPE="text" DATAFLD="qtyOnHand">
</TR>
</TABLE>

Value Case-sensitive identifier.

Default None.

HEADERS NN n/a IE n/a HTML 4

HEADERS="cellIDList" Optional

Points to one or more TH or TD elements that act as column or row headers for the current
table cell. The assigned value is a space-delimited list of ID attribute values that are
assigned to the relevant TH elements. A nonvisual browser could read the cell’s header
before the content of the cell to help listeners identify the nature of the cell content.

Example
<TR>
<TH ID="hdr1">Product Number
<TH ID="hdr2">Description
</TR>
<TR>
<TD HEADERS="hdr1">0392
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TD> 427

HTM
L Reference
<TD HEADERS="hdr2">Round widget
</TR>

Value

A space-delimited list of case-sensitive IDs assigned to cells that act as headers to the
current cell.

Default None.

HEIGHT, WIDTH NN all IE all HTML 3.2

HEIGHT="length" Optional

WIDTH="length"

The rectangular dimensions of a cell that may be different from the default size as calcu-
lated by the browser. When the values for these attributes are less than the minimum space
required to render the table cell content, the browser overrides the attribute settings to
make sure that all content appears, even if it means that text lines word-wrap. You can also
stretch the dimensions of a table beyond the browser-calculated dimensions. Extra
whitespace appears inside table cells to make up the difference. If you specify just one of
these attributes, the browser performs all necessary calculations to automatically adjust the
dimension along the other axis. The cell must have some content assigned to it, or it may
close up to minimum size.

Due to the regular nature of tables, if you set a custom height for one cell in a row, the
entire row is set to that height; similarly, setting the width of a cell causes the width of all
cells in the column to be the same size.

Both the HEIGHT and WIDTH attributes are deprecated in HTML 4.0 in favor of height and
width style sheet attributes (which are not available for table cells in Navigator 4).

Example <TD WIDTH="80%" HEIGHT=30>

Value Any length value in pixels or percentage of available space.

Default Based on content size.

Object Model Reference
IE [window.]document.all.elementID.height

[window.]document.all.elementID.width

NOWRAP NN all IE all HTML 3.2

NOWRAP Optional

The presence of the NOWRAP attribute instructs the browser to render the cell as wide as is
necessary to display a line of nonbreaking text on one line. Abuse of this attribute can force
the user into a great deal of inconvenient horizontal scrolling of the page to view all of the
content. The NOWRAP attribute is deprecated in HTML 4.0.

Example <TD NOWRAP>

Value The presence of this attribute sets its value to true.

Default false
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

428 <TD>
Object Model Reference
IE [window.]document.all.elementID.noWrap

ROWSPAN NN all IE all HTML 3.2

ROWSPAN="rowCount" Optional

The number of rows through which the current table cell should extend itself downward.
For each additional row included in the ROWSPAN count, one less TD element is required for
the next table row in that cell’s position along the row.

Example <TD ROWSPAN=2>

Value Any positive integer, usually 2 or larger.

Default 1

Object Model Reference
IE [window.]document.all.elementID.rowSpan

SCOPE NN n/a IE n/a HTML 4

SCOPE="scopeConstant" Optional

Used more with a TH element than with a TD element, the SCOPE attribute sets the range of
cells (relative to the current cell) that behave as though the current cell is the header for
those cells. For tables whose structure is quite regular, the SCOPE attribute is a simpler way
of achieving what the HEADERS attribute does, without having to define ID attributes for the
header cells.

Example
<TR>
<TH SCOPE="col">Product Number
<TH SCOPE="col">Description
</TR>
<TR>
<TD>0392
<TD>Round widget
</TR>

Value One of four recognized scope constants:

col Current cell text becomes header text for every cell in the rest of the column.

colgroup Current cell text becomes header text for every cell in the rest of the COLGROUP
element.

row Current cell text becomes header text for every cell in the rest of the TR element.

rowgroup Current cell text becomes header text for every cell in the rest of the TBODY
element.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TEXTAREA> 429

HTM
L Reference
VALIGN NN all IE all HTML 3.2

VALIGN="alignmentConstant" Optional

Determines the vertical alignment of content within the TD element. A value you set for an
individual cell overrides the same attribute setting for outer containers, such as TR and
TBODY.

Example <TD VALIGN="bottom">

Value

Four constant values are recognized by both IE 4 and HTML 4.0: top | middle | bottom |
baseline. With top and bottom, the content is rendered flush (or very close to it) to the
top and bottom of the table cell. Set to middle (the default), the content floats perfectly
centered vertically in the cell. When one cell’s contents might wrap to multiple lines at
common window widths (assuming a variable table width), it is advisable to set the VALIGN
attribute to baseline. This assures that the character baseline of the first (or only) line of a
cell’s text aligns with the other cells in the row—usually the most aesthetically pleasing
arrangement.

Default middle

Object Model Reference
IE [window.]document.all.elementID.vAlign

WIDTH
See HEIGHT.

<TEXTAREA> NN all IE all HTML all

<TEXTAREA>...</TEXTAREA> End Tag: Required

The TEXTAREA element is a multiline text input control primarily for usage inside FORM
elements (required in Navigator). Unlike the text type INPUT element, a TEXTAREA element
can be sized to accept more than one line of text. Word-wrapping is available on more
recent browsers, and users may enter carriage return characters (a combination of charac-
ters ASCII decimal 13 and 10) inside the text box. When a TEXTAREA element is inside a
submitted form, the name/value pair is submitted, with the value being the content of the
text box (and the NAME attribute must be assigned). The CGI program on the server must be
able to handle the possibility of carriage returns in the text data.

If you wish to display text in the TEXTAREA element when it loads, that text goes between
the start and end tags; otherwise, there are no intervening characters in the source code
between start and end tags. A label for the TEXTAREA element must be placed before or
after the element, and may, optionally in newer browsers, be encased in a LABEL element
for structural purposes.

Example
<TEXTAREA ROWS=5 COLS=60 NAME="notes">Use this area for extra notes.
</TEXTAREA>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

430 <TEXTAREA>
Object Model Reference
NN [window.]document.formName.elementName

[window.]document.forms[i].elements[i]

IE [window.]document.formName.elementName
[window.]document.forms[i].elements[i]
[window.]document.all.elementID

Attributes

Event Handler Attributes

ACCESSKEY NN n/a IE 4 HTML n/a

ACCESSKEY="character" Optional

A single character key that brings focus to the element. The browser and operating system
determine if the user must press a modifier key (e.g., Ctrl, Alt, or Command) with the
access key to bring focus to the element. In IE 4/Windows, the Alt key is required, and the
key is not case sensitive. This attribute does not work in IE 4/Mac. That this attribute is
missing from the HTML 4.0 specification appears to be an oversight.

ACCESSKEY DATAFLD ID READONLY TABINDEX
ALIGN DATASRC LANG ROWS TITLE
CLASS DIR LANGUAGE STYLE WRAP
COLS DISABLED NAME

Handler NN IE HTML
onAfterUpdate n/a 4 n/a
onBeforeUpdate n/a 4 n/a
onBlur 2 3 4
onChange 2 3 4
onClick n/a 3 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onFocus 2 3 4
onHelp n/a 4 n/a
onKeyDown 4 4 4
onKeyPress 4 4 4
onKeyUp 4 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 3 4
onMouseUp n/a 4 4
onResize n/a 4 n/a
onRowEnter n/a 4 n/a
onRowExit n/a 4 n/a
onScroll n/a 3 4
onSelect 2 3 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TEXTAREA> 431

HTM
L Reference
Example <TEXTAREA NAME="notes" ACCESSKEY="n"></TEXTAREA>

Value Single character of the document set.

Default None.

Object Model Reference
IE [window.]document.formName.elementName.accessKey

[window.]document.forms[i].elements[i].accessKey
[window.]document.all.elementID.accessKey

ALIGN NN n/a IE 4 HTML n/a

ALIGN="alignmentConstant" Optional

Determines how the rectangle of the element aligns within the context of surrounding
content. See the section “Alignment Constants” earlier in this chapter for a description of the
possibilities defined in both Navigator and Internet Explorer for this attribute. Despite
Microsoft’s advertised extensive support for this attribute, only some values work on
Internet Explorer 4 for the Macintosh; none work on the Windows version. Use style sheets
to position this element if you need to. Default alignment also varies with operating system.

Object Model Reference
IE [window.]document.formName.elementName.align

[window.]document.forms[i].elements[i].align
[window.]document.all.elementID.align

COLS NN all IE all HTML all

COLS="columnCount" Optional

The width of the editable space of the TEXTAREA element. The value represents the number
of monofont characters that are to be displayed within the width. When the font size can be
influenced by style sheets, the actual width changes accordingly.

Example <TEXTAREA COLS=40></TEXTAREA>

Value Any positive integer.

Default Varies with browser and operating system.

Object Model Reference
IE [window.]document.formName.elementName.cols

[window.]document.forms[i].elements[i].cols
[window.]document.all.elementID.cols

DATAFLD NN n/a IE 4 HTML n/a

DATAFLD="columnName" Optional

Used with IE 4 data binding to associate a remote data source column name with the
content of the TEXTAREA element. A DATASRC attribute must also be set for the element.

Example <TEXTAREA NAME="summary" DATASRC="#DBSRC3" DATAFLD="summary">

Value Case-sensitive identifier.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

432 <TEXTAREA>
Default None.

Object Model Reference
IE [window.]document.formName.elementName.dataFld

[window.]document.forms[i].elements[i].dataFld
[window.]document.all.elementID.dataFld

DATASRC NN n/a IE 4 HTML n/a

DATASRC="dataSourceName" Optional

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute.

Example <TEXTAREA NAME="summary" DATASRC="#DBSRC3" DATAFLD="summary">

Value Case-sensitive identifier.

Default None.

Object Model Reference
IE [window.]document.formName.elementName.dataSrc

[window.]document.forms[i].elements[i].dataSrc
[window.]document.all.elementID.dataSrc

DISABLED NN n/a IE 4 HTML 4

DISABLED Optional

A disabled TEXTAREA element cannot be activated by the user. In Windows, a disabled
TEXTAREA cannot receive focus and does not become active within the tabbing order rota-
tion. HTML 4.0 also specifies that the name/value pair of a disabled element should not be
sent when the form is submitted.

The DISABLED attribute is a Boolean type, which means that its presence in the attribute
sets its value to true. Its value can also be adjusted after the fact by scripting (see the
textarea object in Chapter 9).

Example <TEXTAREA DISABLED></TEXTAREA>

Value The presence of the attribute disables the element.

Default false

Object Model Reference
IE [window.]document.formName.elementName.disabled

[window.]document.forms[i].elements[i].disabled
[window.]document.all.elementID.disabled

NAME NN all IE all HTML all

NAME="elementIdentifier" Optional

If the TEXTAREA element is part of a form being submitted to a server, the NAME attribute is
required if the value of the element is to be submitted with the form. For forms that are in
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TEXTAREA> 433

HTM
L Reference
documents for the convenience of scripted form elements, TEXTAREA element names are
not required but are helpful just the same in creating scripted references to these objects
and their properties or methods.

Example <TEXTAREA NAME="comments"></TEXTAREA>

Value Case-sensitive identifier.

Default None.

Object Model Reference
NN [window.]document.formName.elementName.name

[window.]document.forms[i].elements[i].name

IE [window.]document.formName.elementName.name
[window.]document.forms[i].elements[i].name
[window.]document.all.elementID.name

READONLY NN n/a IE 4 HTML 4

READONLY Optional

When the READONLY attribute is present, the TEXTAREA element cannot be edited on the
page by the user (although scripts can modify the content). A TEXTAREA marked as
READONLY should not receive focus within the tabbing order (although IE 4 for the Macin-
tosh allows the field to receive focus).

Example <TEXTAREA NAME="instructions" READONLY></TEXTAREA>

Value The presence of the attribute sets its value to true.

Default false

Object Model Reference
IE [window.]document.formName.elementName.readOnly

[window.]document.forms[i].elements[i].readOnly
[window.]document.all.elementID.readOnly

ROWS NN all IE all HTML all

ROWS="rowCount" Optional

The height of the TEXTAREA element based on the number of lines of text that are to be
displayed without scrolling. The value represents the number of monofont character lines
that are to be displayed within the height before the scrollbar becomes active. When the
font size can be influenced by style sheets, the actual height changes accordingly.

Example <TEXTAREA ROWS=5 COLS=40></TEXTAREA>

Value Any positive integer.

Default Varies with browser and operating system.

Object Model Reference
IE [window.]document.formName.elementName.rows

[window.]document.forms[i].elements[i].rows
[window.]document.all.elementID.rows
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

434 <TEXTAREA>
STYLE NN n/a IE 4 HTML 4

STYLE="styleSheetProperties" Optional

This attribute lets you set one or more style sheet rule property assignments for the current
element. The format of the property assignments depends on the browser’s default style,
but both Navigator and Internet Explorer accept the CSS syntax. Style sheet rules influence
this element in Internet Explorer 4 for the Macintosh more than they do the Windows
version. You may wish to wait for improved (and cross-browser) implementation before
setting styles of TEXTAREA elements.

Example <TEXTAREA STYLE="text-size:14pt"></TEXTAREA>

Value

An entire CSS-syntax style sheet rule is enclosed in quotes. Multiple style attribute settings
are separated by semicolons. Style sheet attributes are detailed in Chapter 10.

Default None.

Object Model Reference
IE [window.]document.formName.elementName.style

[window.]document.forms[i].elements[i].style
[window.]document.all.elementID.style

TABINDEX NN n/a IE 4 HTML 4

TABINDEX=integer Optional

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their TABINDEX attributes are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest TABINDEX value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same TABINDEX values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the TABINDEX attribute or have the value set to zero. These elements receive focus in the
order in which they appear in the document.

Example <TEXTAREA NAME="comments" TABINDEX=3></TEXTAREA>

Value

Any integer from 0 through 32767. In IE 4, setting the TABINDEX to -1 causes the element
to be skipped in tabbing order altogether.

Default None.

Object Model Reference
IE [window.]document.formName.elementName.tabIndex

[window.]document.forms[i].elements[i].tabIndex
[window.]document.all.elementID.tabIndex
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TFOOT> 435

HTM
L Reference
WRAP NN 2 IE 4 HTML n/a

WRAP="wrapType" Required

The WRAP attribute tells the browser whether it should wrap text in a TEXTAREA element
and whether wrapped text should be submitted to the server with soft returns converted to
hard carriage returns. Navigator and Internet Explorer don’t agree fully on the possible
values, and the HTML specification is silent on the subject. Even so, there are cross-browser
solutions.

If WRAP is turned off (the default), the TEXTAREA element activates the horizontal scrollbar
as characters exceed the original column width. A press of the Return/Enter key causes the
cursor to advance to the next line back at the left margin. To submit the content without the
word-wrapped soft returns converted to hard carriage returns (in other words, submitted as
typed), set the WRAP attribute by including the attribute like a Boolean value. To convert the
soft returns to hard carriage returns (and thus preserving the word-wrapped formatting in
the submitted content), set the value of WRAP to hard. Both Navigator and Internet Explorer
recognize this setting, whereas Navigator does not recognize IE’s value of physical.

Example <TEXTAREA NAME="comments" WRAP></TEXTAREA>

Value

The presence of the WRAP attribute (without any assigned value) engages word wrapping
(and filters soft returns before being submitted). A value of hard also engages word wrap-
ping and converts soft returns to CR-LF characters in the value submitted to the server. A
value of off or no attribute turns word wrapping off. Recognized values are as follows:

Default off

Object Model Reference
IE [window.]document.formName.elementName.wrap

[window.]document.forms[i].elements[i].wrap
[window.]document.all.elementID.wrap

<TFOOT> NN n/a IE 3 HTML 4

<TFOOT>...</TFOOT> End Tag: Optional

A TFOOT element is a special-purpose container of one or more rows of table cells rendered
at the bottom of the table. Typically, the TFOOT element mirrors the THEAD element content
for users who have scrolled down the page (or for future browsers that scroll inner table
content). No more than one TFOOT element may be defined within a single TABLE element,
and the TFOOT element should be located in the source code before any TBODY elements
defined for the table. A TFOOT element is a row grouping, like the TBODY and THEAD

Value NN IE
hard • •
off • •
physical - •
soft • -
virtual - •
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

436 <TFOOT>
elements. Navigator 4 ignores the TFOOT tag and therefore renders the nested TR element(s)
as regular TR elements in source code order.

Example
<TABLE COLS=3>
<THEAD>
<TR>
<TH>Time<TH>Event<TH>Location
</TR>
</THEAD>
<TFOOT>
<TR>
<TH>Time<TH>Event<TH>Location
</TR>
</TFOOT>
<TBODY>
<TR>
<TD>7:30am-5:00pm<TD>Registration Open<TD>Main Lobby
</TR>
<TR>
<TD>9:00am-12:00pm<TD>Keynote Speakers<TD>Cypress Room
</TR>
</TBODY>
</TABLE>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

ALIGN CHAROFF ID LANGUAGE TITLE
BGCOLOR CLASS LANG STYLE VALIGN
CHAR DIR

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TFOOT> 437

HTM
L Reference
ALIGN NN n/a IE 4 HTML 4

ALIGN="alignConstant" Optional

Establishes the horizontal alignment characteristics of content within the row(s) covered by
the TFOOT element. The HTML 4.0 specification defines settings for the ALIGN attribute that
are not yet reflected in the CSS specification. Therefore, this ALIGN attribute is not fully
deprecated as it is for many other elements. As a rule, alignment should be specified by
style sheet wherever possible.

Example <TFOOT ALIGN="center">

Value HTML 4.0 and IE 4 have two sets of attribute values:

The values center, left, and right are self-explanatory. The value justify is intended
to space content so that text is justified down both left and right edges. For the value char,
the CHAR attribute must also be set to specify the character on which alignment revolves. In
the HTML 4.0 specification example, content that does not contain the character appears to
be right-aligned to the location of the character in other rows of the same column.

It is important to bear in mind that the ALIGN attribute applies to every cell of every row
within the TFOOT, including any TH element you specify for the table. If you want a
different alignment for the row header, override the setting with a separate ALIGN attribute
or text-align style sheet attribute for the individual TH elements.

Default left

Object Model Reference
IE [window.]document.all.elementID.align

BGCOLOR NN n/a IE 4 HTML n/a

BGCOLOR="colorTripletOrName" Optional

Establishes a fill color (behind the text and other content) for the cells contained by the
TFOOT element.

Example <TFOOT BGCOLOR="tan">

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with browser, browser version, and operating system.

Object Model Reference
IE [window.]document.all.elementID.bgColor

Value IE 4 HTML 4.0
center • •
char - •
justify - •
left • •
right • •
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

438 <TFOOT>
CHAR NN n/a IE n/a HTML 4

CHAR="character" Optional

The text character used as an alignment point for text within a cell. This attribute is of value
only for the ALIGN attribute set to "char".

Example <TFOOT ALIGN="char" CHAR=".">

Value Any single text character.

Default None.

CHAROFF NN n/a IE n/a HTML 4

CHAROFF="length" Optional

Sets a specific offset point at which the character specified by the CHAR attribute is to
appear within a cell. This attribute is provided in case the browser default positioning does
not meet with the design goals of the table.

Example <TFOOT ALIGN="char" CHAR="." CHAROFF="80%">

Value Any length value in pixels or percentage of cell space.

Default None.

VALIGN NN n/a IE 4 HTML 4

VALIGN="alignmentConstant" Optional

Determines the vertical alignment of content within cells of the column(s) covered by the
TFOOT element. You can override the vertical alignment for a particular cell anywhere in the
column.

Example <TFOOT VALIGN="bottom">

Value

Four constant values are recognized by both IE 4 and HTML 4.0: top | middle | bottom |
baseline. With top and bottom, the content is rendered flush (or very close to it) to the
top and bottom of the table cell. Set to middle (the default), the content floats perfectly
centered vertically in the cell. When one cell’s contents might wrap to multiple lines at
common window widths (assuming a variable table width), it is advisable to set the VALIGN
attribute to baseline. This assures that the character baseline of the first (or only) line of a
cell’s text aligns with the other cells in the row—usually the most aesthetically pleasing
arrangement.

Default middle

Object Model Reference
IE [window.]document.all.elementID.vAlign
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TH> 439

HTM
L Reference
<TH> NN all IE all HTML 3.2

<TH>...</TH> End Tag: Optional

The TH element is a container for content that is rendered inside one cell of a TABLE
element in a format that distinguishes it as a header. Most browsers render the content as
boldface. A cell is the intersection of a column and row. Other elements related to the TH
element are CAPTION, COL, COLGROUP, TABLE, TBODY, TD, TFOOT, THEAD, and TR. In addi-
tion to providing a wrapper for a cell’s content, the TH element defines a number of visible
attributes that apply to a single cell, often overriding similar attributes set in lesser-nested
elements in the table.

Four attributes—ABBR, AXIS, HEADERS, and SCOPE—have been added to the HTML 4.0
specification in anticipation of nonvisual browsers that will use text-to-speech technology to
describe content of an HTML page—a kind of “verbal rendering.” Although these attributes
are briefly described here for the sake of completeness, there is much more to their applica-
tion in nonvisual browsers than is relevant in this book on Dynamic HTML. Consult the
HTML 4.0 recommendation for more details.

Example
<TABLE COLS=3>
<THEAD>
<TR>
<TH>Time<TH>Event<TH>Location
</TR>
</THEAD>
<TBODY>
<TR>
<TD>7:30am-5:00pm<TD>Registration Open<TD>Main Lobby
</TR>
<TR>
<TD>9:00am-12:00pm<TD>Keynote Speakers<TD>Cypress Room
</TR>
</TBODY>
</TABLE>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

ABBR BORDERCOLORDARK COLSPAN ID SCOPE
ALIGN BORDERCOLORLIGHT DATAFLD LANG STYLE
AXIS CHAR DIR LANGUAGE TITLE
BACKGROUND CHAROFF HEADERS NOWRAP VALIGN
BGCOLOR CLASS HEIGHT ROWSPAN WIDTH
BORDERCOLOR

Handler NN IE HTML
onAfterUpdate n/a 4 n/a
onBeforeUpdate n/a 4 n/a
onBlur n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

440 <TH>
ABBR NN n/a IE n/a HTML 4

ABBR="text" Optional

Provides an abbreviated string that describes the cell’s content. This is usually a brief label
that a nonvisual browser would speak to describe what the value of the cell represents.

Example <TH ABBR="What"> Event

Value Any quoted string.

Default None.

ALIGN NN all IE all HTML 3.2

ALIGN="alignConstant" Optional

Establishes the horizontal alignment characteristics of content within the cell covered by the
TH element. The HTML 4.0 specification defines settings for the ALIGN attribute that are not
yet reflected in the CSS specification. Therefore, this ALIGN attribute is not fully deprecated
as it is for many other elements. As a rule, alignment should be specified by style sheet
wherever possible.

Example <TH ALIGN="center">

onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onFocus n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onResize n/a 4 n/a
onRowEnter n/a 4 n/a
onRowExit n/a 4 n/a
onScroll n/a 4 n/a
onSelectStart n/a 4 n/a

Handler NN IE HTML
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TH> 441

HTM
L Reference
Value

Navigator 4 and Internet Explorer 4 share the same attribute values, whereas HTML 4.0 has
a couple more:

The values center, left, and right are self-explanatory. The value justify is intended
to space content so that text is justified down both left and right edges. For the value char,
the CHAR attribute must also be set to specify the character on which alignment revolves. In
the HTML 4.0 specification example, content that does not contain the character appears to
be right-aligned to the location of the character in other rows of the same column.

Default left

Object Model Reference
IE [window.]document.all.elementID.align

AXIS NN n/a IE n/a HTML 4

AXIS="text" Optional

Provides an abbreviated string that describes the cell’s category. This is usually a brief label
that a nonvisual browser would speak to describe what the value of the cell represents.

Example <TH AXIS="event">Events

Value Any quoted string.

Default None.

BACKGROUND NN n/a IE 3 HTML n/a

BACKGROUND="URL" Optional

Specifies an image file that is used as a backdrop to the cell. Unlike normal images that get
loaded into browser content, a background image loads in its original size (without scaling)
and tiles to fill the available cell space. Smaller images download faster but are obviously
repeated more often in the background. Animated GIFs are also allowable, but very
distracting to the reader. When selecting a background image, be sure it is very muted in
comparison to the main content so that the content stands out clearly. Background images,
if used at all, should be extremely subtle.

Example <TH BACKGROUND="watermark.jpg">

Value Any valid URL to an image file, including complete and relative URLs.

Default None.

Object Model Reference
IE [window.]document.all.elementID.background

Value NN 4 IE 4 HTML 4.0
center • • •
char - - •
justify - - •
left • • •
right • • •
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

442 <TH>
BGCOLOR NN 3 IE 3 HTML 3.2

BGCOLOR="colorTripletOrName" Optional

Establishes a fill color (behind the text and other content) for the cell defined by the TH
element.

Example <TH BGCOLOR="yellow">

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with browser, browser version, and operating system.

Object Model Reference
IE [window.]document.all.elementID.bgColor

BORDERCOLOR NN n/a IE 3 HTML n/a

BORDERCOLOR="colorTripletOrName" Optional

The colors used to render some of the pixels used to create the illusion of borders around
cells and the entire table. Internet Explorer applies the color to all four lines that make up
the interior border of a cell. Therefore, colors of adjacent cells do not collide.

Example <TH BORDERCOLOR="green">

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with browser and operating system.

Object Model Reference
IE [window.]document.all.elementID.borderColor

BORDERCOLORDARK,
BORDERCOLORLIGHT NN n/a IE 3 HTML n/a

BORDERCOLORDARK="colorTripletOrName" Optional

BORDERCOLORLIGHT="colorTripletOrName"

The 3-D effect of table borders in Internet Explorer is created by careful positioning of light
and dark lines around the page’s background or default color (see Figure 8-4 in the TABLE
element discussion). You can independently control the colors used for the dark and light
lines by assigning values to the BORDERCOLORDARK (left and top edges of the cell) and
BORDERCOLORLIGHT (right and bottom edges) attributes. Typically, you should assign
complementary colors to the pair of attributes. There is also no rule that says you must
assign a dark color to BORDERCOLORDARK. The attributes merely control a well-defined set
of lines so you can predict which lines of the border change with each attribute.

Example <TH BORDERCOLORDARK="darkred" BORDERCOLORLIGHT="salmon">
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TH> 443

HTM
L Reference
Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with operating system.

Object Model Reference
IE [window.]document.all.elementID.borderColorDark

[window.]document.all.elementID.borderColorLight

CHAR NN n/a IE n/a HTML 4

CHAR="character" Optional

The text character used as an alignment point for text within a cell. This attribute is of value
only for the ALIGN attribute set to "char".

Example <TH ALIGN="char" CHAR=".">

Value Any single text character.

Default None.

CHAROFF NN n/a IE n/a HTML 4

CHAROFF="length" Optional

Sets a specific offset point at which the character specified by the CHAR attribute is to
appear within a cell. This attribute is provided in case the browser default positioning does
not meet with the design goals of the table.

Example <TH ALIGN="char" CHAR="." CHAROFF="80%">

Value Any length value in pixels or percentage of cell space.

Default None.

COLSPAN NN all IE all HTML 3.2

COLSPAN="columnCount" Optional

The COLSPAN attribute specifies the number of columns across which the current table cell
should extend itself. For each additional column included in the COLSPAN count, one less
TH or TD element is required for the table row. If you set the ALIGN attribute to center or
right, the alignment is calculated on the full width of the TH element across the specified
number of columns. Unless the current cell is also specifies a ROWSPAN attribute, the next
table row returns to the original column count.

Example <TH COLSPAN=2 ALIGN="right">

Value Any positive integer, usually 2 or larger.

Default 1

Object Model Reference
IE [window.]document.all.elementID.colSpan
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

444 <TH>
DATAFLD NN n/a IE 4 HTML n/a

DATAFLD="columnName" Optional

Used with IE 4 data binding to associate a remote data source column name with the
content of a table header cell. A DATASRC (and optionally, a DATAPAGESIZE) attribute must
also be set for the enclosing TABLE element.

Example
<TABLE DATASRC="#DBSRC3" DATAPAGESIZE=5">
<TR>
 <TH><INPUT TYPE="text" DATAFLD="stockNum">
 <TH><INPUT TYPE="text" DATAFLD="qtyOnHand">
</TR>
</TABLE>

Value Case-sensitive identifier.

Default None.

HEADERS NN n/a IE n/a HTML 4

HEADERS="cellIDList" Optional

Points to one or more TH or TD elements that act as column or row headers for the current
table cell. The assigned value is a space-delimited list of ID attribute values that are
assigned to the relevant TH elements. A nonvisual browser could read the cell’s header
before the content of the cell to help listeners identify the nature of the cell content.

Example
<TR>
<TH id="hdr1">Product Number
<TH id="hdr2">Description
</TR>
<TR>
<TH headers="hdr1">0392
<TH headers="hdr2">Round widget
</TR>

Value

A space-delimited list of case-sensitive IDs assigned to cells that act as headers to the
current cell.

Default None.

HEIGHT, WIDTH NN all IE all HTML 3.2

HEIGHT="length" Optional

WIDTH="length"

The rectangular dimensions of a cell that may be different from the default size as calcu-
lated by the browser. When the values for these attributes are less than the minimum space
required to render the table cell content, the browser overrides the attribute settings to
make sure that all content appears, even if it means that text lines word-wrap. You can also
stretch the dimensions of a table beyond the browser-calculated dimensions. Extra
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TH> 445

HTM
L Reference
whitespace appears inside table cells to make up the difference. If you specify just one of
these attributes, the browser performs all necessary calculations to automatically adjust the
dimension along the other axis.

Due to the regular nature of tables, if you set a custom height for one cell in a row, the
entire row is set to that height; similarly, setting the width of a cell causes the width of all
cells in the column to be the same size.

Both the HEIGHT and WIDTH attributes are deprecated in HTML 4.0 in favor of height and
width style sheet attributes (which are not available for table cells in Navigator 4).

Example <TH WIDTH="80%" HEIGHT=30>

Value Any length value in pixels or percentage of available space.

Default Based on content size.

Object Model Reference
IE [window.]document.all.elementID.height

[window.]document.all.elementID.width

NOWRAP NN all IE all HTML 3.2

NOWRAP Optional

The presence of the NOWRAP attribute instructs the browser to render the cell as wide as is
necessary to display a line of nonbreaking text on one line. Abuse of this attribute can force
the user into a great deal of inconvenient horizontal scrolling of the page to view all of the
content. The NOWRAP attribute is deprecated in HTML 4.0.

Example <TH NOWRAP>

Value The presence of this attribute sets its value to true.

Default false

Object Model Reference
IE [window.]document.all.elementID.noWrap

ROWSPAN NN all IE all HTML 3.2

ROWSPAN="rowCount" Optional

The number of rows through which the current table cell should extend itself downward.
For each additional row included in the ROWSPAN count, one less TH or TD element is
required for the next table row in that cell’s position along the row.

Example <TH ROWSPAN=2>

Value Any positive integer, usually 2 or larger.

Default 1
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

446 <TH>
Object Model Reference
IE [window.]document.all.elementID.rowSpan

SCOPE NN n/a IE n/a HTML 4

SCOPE="scopeConstant" Optional

The range of cells (relative to the current cell) that behave as though the current cell is the
header for those cells. For tables whose structure is quite regular, the SCOPE attribute is a
simpler way of achieving what the HEADERS attribute does, without having to define ID
attributes for the header cells.

Example
<TR>
<TH SCOPE="col">Product Number
<TH SCOPE="col">Description
</TR>
<TR>
<TD>0392
<TD>Round widget
</TR>

Value One of four recognized scope constants:

col Current cell text becomes header text for every cell in the rest of the column.

colgroup Current cell text becomes header text for every cell in the rest of the COLGROUP
element.

row Current cell text becomes header text for every cell in the rest of the TR element.

rowgroup Current cell text becomes header text for every cell in the rest of the TBODY
element.

Default None.

VALIGN NN all IE all HTML 3.2

VALIGN="alignmentConstant" Optional

Determines the vertical alignment of content within the TD element. A value you set for an
individual cell overrides the same attribute setting for outer containers, such as TR and
TBODY.

Example <TH VALIGN="bottom">

Value

Four constant values are recognized by both IE 4 and HTML 4.0: top | middle | bottom |
baseline. With top and bottom, the content is rendered flush (or very close to it) to the
top and bottom of the table cell. Set to middle (the default), the content floats perfectly
centered vertically in the cell. When one cell’s contents might wrap to multiple lines at
common window widths (assuming a variable table width), it is advisable to set the VALIGN
attribute to baseline. This assures that the character baseline of the first (or only) line of a
cell’s text aligns with the other cells in the row—usually the most aesthetically pleasing
arrangement.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<THEAD> 447

HTM
L Reference
Default middle

Object Model Reference
IE [window.]document.all.elementID.vAlign

WIDTH
See HEIGHT.

<THEAD> NN n/a IE 3 HTML 4

<THEAD>...</THEAD> End Tag: Optional

A THEAD element is a special-purpose container of one or more rows of table cells rendered
at the top of the table. No more than one THEAD element may be defined within a single
TABLE element, and the THEAD element should be located in the source code immediately
after the TABLE element’s start tag. You are free to use any combination of TD and TH
elements you like within the THEAD element. A THEAD element is a row grouping, like the
TBODY and TFOOT elements. Navigator 4 ignores the THEAD tag and therefore renders the
nested TR element(s) as regular TR elements in source code order.

Example
<TABLE COLS=3>
<THEAD>
<TR>
<TH>Time<TH>Event<TH>Location
</TR>
</THEAD>
<TFOOT>
<TR>
<TH>Time<TH>Event<TH>Location
</TR>
</TFOOT>
<TBODY>
<TR>
<TD>7:30am-5:00pm<TD>Registration Open<TD>Main Lobby
</TR>
<TR>
<TD>9:00am-12:00pm<TD>Keynote Speakers<TD>Cypress Room
</TR>
</TBODY>
</TABLE>

Object Model Reference
IE [window.]document.all.elementID

Attributes
ALIGN CHAROFF ID LANGUAGE TITLE
BGCOLOR CLASS LANG STYLE VALIGN
CHAR DIR
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

448 <THEAD>
Event Handler Attributes

ALIGN NN n/a IE 4 HTML 4

ALIGN="alignConstant" Optional

Establishes the horizontal alignment characteristics of content within the row(s) covered by
the THEAD element. The HTML 4.0 specification defines settings for the ALIGN attribute that
are not yet reflected in the CSS specification. Therefore, this ALIGN attribute is not fully
deprecated as it is for many other elements. As a rule, alignment should be specified by
style sheet wherever possible.

Example <THEAD ALIGN="center">

Value HTML 4.0 and IE 4 have two sets of attribute values:

The values center, left, and right are self-explanatory. The value justify is intended
to space content so that text is justified down both left and right edges. For the value char,
the CHAR attribute must also be set to specify the character on which alignment revolves. In
the HTML 4.0 specification example, content that does not contain the character appears to
be right-aligned to the location of the character in other rows of the same column.

It is important to bear in mind that the ALIGN attribute applies to every cell of every row
within the THEAD, including any TH element you specify for the table. If you want a
different alignment for the row header, override the setting with a separate ALIGN attribute
or text-align style sheet attribute for the individual TH elements.

Default left

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a

Value IE 4 HTML 4.0
center • •
char - •
justify - •
left • •
right • •
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<THEAD> 449

HTM
L Reference
Object Model Reference
IE [window.]document.all.elementID.align

BGCOLOR NN n/a IE 4 HTML n/a

BGCOLOR="colorTripletOrName" Optional

Establishes a fill color (behind the text and other content) for the cells contained by the
THEAD element.

Example <THEAD BGCOLOR="tan">

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with browser, browser version, and operating system.

Object Model Reference
IE [window.]document.all.elementID.bgColor

CHAR NN n/a IE n/a HTML 4

CHAR="character" Optional

The text character used as an alignment point for text within a cell. This attribute is of value
only for the ALIGN attribute set to "char".

Example <THEAD ALIGN="char" CHAR=".">

Value Any single text character.

Default None.

CHAROFF NN n/a IE n/a HTML 4

CHAROFF="length" Optional

Sets a specific offset point at which the character specified by the CHAR attribute is to
appear within a cell. This attribute is provided in case the browser default positioning does
not meet with the design goals of the table.

Example <THEAD ALIGN="char" CHAR="." CHAROFF="80%">

Value Any length value in pixels or percentage of cell space.

Default None.

VALIGN NN n/a IE 4 HTML 4

VALIGN="alignmentConstant" Optional

Determines the vertical alignment of content within cells of the column(s) covered by the
THEAD element. You can override the vertical alignment for a particular cell anywhere in the
column.

Example <THEAD VALIGN="bottom">
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

450 <TR>
Value

Four constant values are recognized by both IE 4 and HTML 4.0: top | middle | bottom |
baseline. With top and bottom, the content is rendered flush (or very close to it) to the
top and bottom of the table cell. Set to middle (the default), the content floats perfectly
centered vertically in the cell. When one cell’s contents might wrap to multiple lines at
common window widths (assuming a variable table width), it is advisable to set the VALIGN
attribute to baseline. This assures that the character baseline of the first (or only) line of a
cell’s text aligns with the other cells in the row—usually the most aesthetically pleasing
arrangement.

Default middle

Object Model Reference
IE [window.]document.all.elementID.vAlign

<TITLE> NN all IE all HTML all

<TITLE>...</TITLE> End Tag: Required

The TITLE element identifies the overall content of a document. The element content is not
displayed as part of the document, but browsers display the title in the browser applica-
tion’s window titlebar. Only one TITLE element is permitted per document and it must be
located inside the HEAD element. It is alright to be somewhat verbose in assigning a docu-
ment title because not everyone will access the document in sequence through your web
site. Give the document some context as well.

Example <TITLE>Declaration of Independence</TITLE>

Object Model Reference
IE [window.]document.all.elementID

Attributes

<TR> NN all IE all HTML all

<TR>...</TR> End Tag: Optional

A TR element is a container for one row of cells. Each cell within a row may be a TH or TD
element. Every row requires at least a start tag to instruct the browser to begin rendering
succeeding cell elements on the next line of the table. Other special-purpose row group-
ings available are the TFOOT and THEAD, as well as the more generic TBODY grouping
element.

Example
<TABLE COLS=3>
<THEAD>
<TR>
<TH>Time<TH>Event<TH>Location
</TR>
</THEAD>
<TBODY>

DIR ID LANG TITLE
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TR> 451

HTM
L Reference
<TR>
<TD>7:30am-5:00pm<TD>Registration Open<TD>Main Lobby
</TR>
<TR>
<TD>9:00am-12:00pm<TD>Keynote Speakers<TD>Cypress Room
</TR>
</TBODY>
</TABLE>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

ALIGN NN n/a IE 4 HTML 4

ALIGN="alignConstant" Optional

Establishes the horizontal alignment characteristics of content within the row. The HTML 4.0
specification defines settings for the ALIGN attribute that are not yet reflected in the CSS
specification. Therefore, this ALIGN attribute is not fully deprecated as it is for many other
elements. As a rule, alignment should be specified by style sheet wherever possible.

Example <TR ALIGN="center">

ALIGN BORDERCOLORDARK CHAROFF ID STYLE
BGCOLOR BORDERCOLORLIGHT CLASS LANG TITLE
BORDERCOLOR CHAR DIR LANGUAGE VALIGN

Handler NN IE HTML
onAfterUpdate n/a 4 n/a
onBeforeUpdate n/a 4 n/a
onBlur n/a 4 n/a
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onFocus n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onResize n/a 4 n/a
onRowEnter n/a 4 n/a
onRowExit n/a 4 n/a
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

452 <TR>
Value

Navigator and Internet Explorer share the same set of attribute values, whereas HTML 4.0
specifies two additional values:

The values center, left, and right are self-explanatory. The value justify is intended
to space content so that text is justified down both left and right edges. For the value char,
the CHAR attribute must also be set to specify the character on which alignment revolves. In
the HTML 4.0 specification example, content that does not contain the character appears to
be right-aligned to the location of the character in other rows of the same column.

It is important to bear in mind that the ALIGN attribute applies to every cell within the TR
element, including any TH element you specify for the table. If you want a different align-
ment for the row header, override the setting with a separate ALIGN attribute or text-
align style sheet attribute for the TR or individual TH elements.

Default center

Object Model Reference
IE [window.]document.all.elementID.align

BGCOLOR NN 3 IE 4 HTML 4

BGCOLOR="colorTripletOrName" Optional

Establishes a fill color (behind the text and other content) for the cells contained by the TR
element.

Example <TR BGCOLOR="lavender">

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with browser, browser version, and operating system.

Object Model Reference
IE [window.]document.all.elementID.bgColor

Value NN 4 IE 4 HTML 4.0
center • • •
char - - •
justify - - •
left • • •
right • • •
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<TR> 453

HTM
L Reference
BORDERCOLOR NN n/a IE 3 HTML n/a

BORDERCOLOR="colorTripletOrName" Optional

The color used to render some of the pixels used to create the illusion of borders around
cells and the entire table. Internet Explorer applies the color to all four lines that make up
the interior border of a cell. Therefore, colors of adjacent cells do not collide.

Example <TR BORDERCOLOR="green">

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with browser and operating system.

Object Model Reference
IE [window.]document.all.elementID.borderColor

BORDERCOLORDARK,
BORDERCOLORLIGHT NN n/a IE 3 HTML n/a

BORDERCOLORDARK="colorTripletOrName" Optional

BORDERCOLORLIGHT="colorTripletOrName"

The 3-D effect of table borders in Internet Explorer is created by careful positioning of light
and dark lines around the page’s background or default color (see Figure 8-4 in the TABLE
element discussion). You can independently control the colors used for the dark and light
lines by assigning values to the BORDERCOLORDARK (left and top edges of the cell) and
BORDERCOLORLIGHT (right and bottom edges) attributes.

Typically, you should assign complementary colors to the pair of attributes. There is also no
rule that says you must assign a dark color to BORDERCOLORDARK. The attributes merely
control a well-defined set of lines so you can predict which lines of the border change with
each attribute.

Example <TR BORDERCOLORDARK="darkred" BORDERCOLORLIGHT="salmon">

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with operating system.

Object Model Reference
IE [window.]document.all.elementID.borderColorDark

[window.]document.all.elementID.borderColorLight
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

454 <TR>
CHAR NN n/a IE n/a HTML 4

CHAR="character" Optional

The text character used as an alignment point for text within a cell. This attribute is of value
only for the ALIGN attribute set to "char".

Example <TR ALIGN="char" CHAR=".">

Value Any single text character.

Default None.

CHAROFF NN n/a IE n/a HTML 4

CHAROFF="length" Optional

Sets a specific offset point at which the character specified by the CHAR attribute is to
appear within a cell. This attribute is provided in case the browser default positioning does
not meet with the design goals of the table.

Example <TR ALIGN="char" CHAR="." CHAROFF="80%">

Value Any length value in pixels or percentage of cell space.

Default None.

VALIGN NN n/a IE 4 HTML 4

VALIGN="alignmentConstant" Optional

Determines the vertical alignment of content within cells of the column(s) covered by the
TR element. You can override the vertical alignment for a particular cell anywhere in the
row.

Example <TR VALIGN="bottom">

Value

Four constant values are recognized by both IE 4 and HTML 4.0: top | middle | bottom |
baseline. With top and bottom, the content is rendered flush (or very close to it) to the
top and bottom of the table cell. Set to middle (the default), the content floats perfectly
centered vertically in the cell. When one cell’s contents might wrap to multiple lines at
common window widths (assuming a variable table width), it is advisable to set the VALIGN
attribute to baseline. This assures that the character baseline of the first (or only) line of a
cell’s text aligns with the other cells in the row—usually the most aesthetically pleasing
arrangement.

Default middle

Object Model Reference
IE [window.]document.all.elementID.vAlign
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<U> 455

HTM
L Reference
<TT> NN all IE all HTML all

<TT>...</TT> End Tag: Required

The TT element renders its content as monospaced text (indicating a teletype output). The
element is intended to be strictly a formatting—as opposed to a contextual—element. If you
are looking for a contextual setting for computer program code or input, see the CODE, KBD,
and SAMP elements. As with most font-related elements, the use of style sheets is preferred.

Example <P>The computer said, <TT>"That does not compute."</TT></P>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

<U> NN 3 IE 3 HTML 3.2

<U>...</U> End Tag: Required

The U element renders its content as underlined text. This element is deprecated in HTML
4.0 in favor of the text-decoration:underline style sheet attribute.

Example <P>You may already be a <U>winner</U>!</P>

Object Model Reference
IE [window.]document.all.elementID

Attributes

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a

CLASS ID LANGUAGE STYLE TITLE
DIR LANG
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

456
Event Handler Attributes

 NN all IE all HTML all

... End Tag: Required

The UL element is a container for an unordered list of items. An “unordered list” means that
the items are rendered with a leading symbol (depending on the TYPE attribute setting or
list-style-type style sheet attribute setting) that implies no specific order of items other
than by virtue of location within the list. Content for each list item is defined by a nested LI
element. If you apply a style sheet rule to a UL element, the style is inherited by the nested
LI elements.

Example

 Africa
 Antarctica
 Asia
 Australia
 Europe
 North America
 South America

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a

CLASS DIR LANG STYLE TYPE
COMPACT ID LANGUAGE TITLE

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<VAR> 457

HTM
L Reference
COMPACT NN n/a IE n/a HTML 3.2

COMPACT Optional

A Boolean attribute originally designed to let browsers render the list in a more compact
style than normal (smaller line spacing between items). This attribute is not implemented in
current browsers.

Example <UL COMPACT>...

Value The presence of this attribute makes its value true.

Default false

TYPE NN all IE all HTML 3.2

TYPE="labelType" Optional

The TYPE attribute provides some flexibility in how the leading symbol or sequence
number is displayed in the browser. You can specify whether the leading symbol should be
a disc, circle, or square. A disc is a filled circle (also known as a bullet in some circles). The
square type is rendered as an outline in Macintosh browsers; as a filled square in Windows.
The TYPE attribute is deprecated in HTML 4.0 in favor of the list-style-type style sheet
attribute.

Example <UL TYPE="disc">...

Value Possible values are circle | disc | square.

Default disc

Object Model Reference
IE [window.]document.all.elementID.type

<VAR> NN all IE all HTML all

<VAR>...</VAR> End Tag: Required

The VAR element is one of a large group of elements that the HTML 4.0 recommendation
calls phrase elements. Such elements assign structural meaning to a designated portion of
the document. A VAR element is one that is used predominantly to display one or more
inline characters representing a computer program variable name.

onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a

Handler NN IE HTML
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

458 <WBR>
Browsers have free rein to determine how (or whether) to distinguish VAR element content
from the rest of the BODY element. Both Navigator and Internet Explorer elect to render VAR
element content in an italic font. This rendering can be overridden with a style sheet as you
see fit.

Example <P>The value of <VAR>offsetWidth</VAR> becomes 20.</P>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

<WBR> NN all IE all HTML n/a

<WBR> End Tag: Forbidden

If you use the NOBR element to define content that should have no word wrapping or line
breaks, you can use the WBR element to advise the browser that it can break up the content
if the width of the browser window requires it. The locations of these provisional breaks
are marked in the source code with the WBR element. In a sense, the NOBR and WBR
elements give the author control over word wrapping of running content. Neither element
is included in the HTML specification but have been long a part of both browsers’ HTML
vocabulary.

Example
<NOBR>This is a long line of text that could run on and on, <WBR>forcing
the browser to display the horizontal scrollbar after awhile.</NOBR>

Object Model Reference
IE [window.]document.all.elementID

CLASS ID LANGUAGE STYLE TITLE
DIR LANG

Handler NN IE HTML
onClick n/a 4 4
onDblClick n/a 4 4
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 4
onKeyPress n/a 4 4
onKeyUp n/a 4 4
onMouseDown n/a 4 4
onMouseMove n/a 4 4
onMouseOut n/a 4 4
onMouseOver n/a 4 4
onMouseUp n/a 4 4
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

<XMP> 459

HTM
L Reference
Attributes

<XMP> NN all IE all HTML <4

<XMP>...</XMP> End Tag: Required

The XMP element displays its content in a monospace font as a block element, as in
computer code listings rendered 80 columns wide. In most browsers, the font size is also
reduced from the default size. Browsers observe carriage returns and other whitespace in
element content. This element has been long deprecated in HTML and has even been
removed from the HTML 4.0 specification. You are encouraged to use the PRE element
instead.

Example
<XMP>
<SCRIPT LANGUAGE="JavaScript">
 document.write("Hello, world.")
</SCRIPT>
</XMP>

Object Model Reference
IE [window.]document.all.elementID

Attributes

Event Handler Attributes

CLASS ID LANG STYLE TITLE

CLASS LANG LANGUAGE STYLE TITLE
ID

Handler NN IE HTML
onClick n/a 4 n/a
onDblClick n/a 4 n/a
onDragStart n/a 4 n/a
onHelp n/a 4 n/a
onKeyDown n/a 4 n/a
onKeyPress n/a 4 n/a
onKeyUp n/a 4 n/a
onMouseDown n/a 4 n/a
onMouseMove n/a 4 n/a
onMouseOut n/a 4 n/a
onMouseOver n/a 4 n/a
onMouseUp n/a 4 n/a
onSelectStart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

460
Dynamic HTML: The Definitive Reference
Copyright © 1999 Danny Goodman. Al
Chapter 9DOM Refer-
ence

9.

tities that are maintained in a
. An object is described by its
ed items, and event handlers.
ic HTML authors these days is
ocument into objects that can
ing group covering the Docu-
g what may someday become
will follow. In the meantime,
9

Document Object
Reference
This chapter focuses on objects—the scriptable en
browser’s memory whenever a document is loaded
properties, methods, collections (or arrays) of nest
One of the most formidable problems facing Dynam
the way each browser brand turns the HTML of a d
be accessed and modified by scripts. The W3C work
ment Object Model (DOM) specification is developin
a common denominator that all scriptable browsers
there is a bewildering array of objects with varying levels of support in the differ-
ent browsers by brand, operating system, and version.

To help you choose the right object, property, method, and event handler for the
type of page development you’re doing, this chapter lists every object defined by
Netscape, Microsoft, and the W3C (at least through the working draft stage of the
DOM standard). From these listings, you should be able to judge whether a partic-
ular object or terminology will work for your application. If cross-browser support
is essential for your application, pay close attention to the browser support and
version information for each entry. Be aware that some items may not be avail-
able on all operating system platforms for a particular browser brand and version.
These distinctions are noted wherever the anomalous behavior could be substanti-
ated by actual testing on the Win32 and Macintosh platforms.

In the reference material, some objects are listed in all uppercase letters, while
others are listed in mixed case or all lowercase. The uppercase objects reflect
HTML elements and are found predominantly in Internet Explorer 4 and the DOM
specification. You never use HTML element object names like these as is in script
references, except when you are using their string representations as parameters
(e.g., document.all.tags("H1")). Therefore, the case sensitivity of JavaScript
, eMatter Edition
l rights reserved.

Property Value Types 461

DOM
 Reference
does not affect this uppercase display of object names. They are shown here in
uppercase to be consistent with the uppercase representation of HTML elements in
Chapter 8, HTML Reference. In the lowercase and mixed case names, however,
case is important, as you do use those names in script references.

Property Value Types
Many properties share similar data requirements. For the sake of brevity in the ref-
erence listings, this section describes a few common property value types in more
detail than is possible within the listings. Whenever you see one of these property
value types associated with a property, consult this section for a description of the
type.

Length

A length value defines a linear measure of document real estate. The unit of mea-
surement can be any applicable unit that helps identify a position or space on the
screen. For properties that reflect HTML attributes, length units are uniformly pix-
els, but in other content, such as that specified in Cascading Style Sheets (see
Chapter 10, Style Sheet Attribute Reference), measurements can be in inches, picas,
ems, or other relevant units. A single numeric value may represent a length when
it defines the offset from an edge of an element. For example, a coordinate point
(10,20) consists of two length values, denoting pixel measurements from the left
and top edges of an element, respectively.

Identifier

An identifier is a name that adheres to some strict syntactical rules. Most impor-
tant is that an identifier is one word with no whitespace allowed. If you need to
use multiple words to describe an item, you can use the intercapitalized format (in
which internal letters are capitalized) or an underscore character between the
words. Most punctuation symbols are not permitted, but all numerals and alpha-
betical characters are. Scripting languages do not allow the use of a numeral for
the first character of an identifier.

URI and URL

The term Universal Resource Identifier (URI) is a broad term for an address of con-
tent on the Web. A Universal Resource Locator (URL) is a type of URI. For most
web authoring, you can think of them as being one and the same, since most web
browsers restrict their focus to URLs. A URL may be complete (including the proto-
col, host, domain, and the rest) or may be relative to the URL of the current docu-
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

462 Property Value Types
ment. In the latter case, this means the URL may consist of an anchor, file, or path-
name. An object property that refers to a URL requires that the text of the URL be
represented as a quoted string.

Language Code

There is an extensive list of standard codes that identify the spoken and written
languages of the world. A language code always contains a primary language
code, such as “en” for English or “zh” for Chinese. Common two-letter primary
codes are cataloged in ISO 639. An optional subcode (separated from the primary
code by a hyphen) may be used to identify a specific implementation of the pri-
mary language, usually according to usage within a specific country. Therefore,
while “en” means all of English, “en-US” means a U.S.-specific version of English.
The browser must support a particular language code for its meaning to be of any
value to an element attribute.

Colors

A color value can be assigned either via a hexadecimal triplet or with a plain-lan-
guage equivalent. A hexadecimal triplet consists of three pairs of hexadecimal
(base 16) numbers that range between the values 00 and FF, corresponding to the
red, green, and blue components of the color. The three pairs of numbers are
bunched together and preceded by a pound sign (#). Therefore, the reddest of
reds has all red (FF) and none (00) of the other two colors: #FF0000; pure blue is
#0000FF. The letters A through F can also be lowercase.

This numbering scheme obviously leads to a potentially huge number of combina-
tions (over 16 million), but not all video monitors are set to distinguish among mil-
lions of colors. Therefore, you may wish to limit yourself to a more modest pal-
ette of colors known as the web palette. A fine reference of colors that work well
on all browsers at popular bit-depth settings can be found at <http://
www.lynda.com/hexh.html>.

The HTML recommendation also specifies a basic library of 16 colors that can be
assigned by plain-language names. Note that the color names are case insensitive.
The names and their equivalent hexadecimal triplets are as follows:

In other words, the attribute settings BGCOLOR="Aqua" and BGCOLOR="#00FFFF"
yield the same results.

Black #000000 Maroon #800000 Green #008000 Navy #000080
Silver #C0C0C0 Red #FF0000 Lime #00FF00 Blue #0000FF
Gray #808080 Purple #800080 Olive #808000 Teal #008080
White #FFFFFF Fuchsia #FF00FF Yellow #FFFF00 Aqua #00FFFF
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

About client- and offset- Properties 463

DOM
 Reference
Netscape has developed a much longer list of plain-language color equivalents.
These are detailed in Appendix A, Color Names and RGB Values, and are recog-
nized by recent versions of both Navigator and Internet Explorer.

About client- and offset- Properties
Internet Explorer 4 introduces a set of properties that have great potential for
scripting the position and size of elements. The properties, which apply only to
unpositioned elements, are:

The sad news is that it is impossible to know how to use these properties effec-
tively. Microsoft’s developer documentation provides one set of definitions for the
purposes of these properties, but, in practice, both the Windows 95/NT and Mac-
intosh versions of Internet Explorer 4 not only disagree with much of the docu-
mentation, they disagree with each other.

The primary discrepancies have to do with whether an element’s margins, bor-
ders, and padding are included in the element’s various dimension and location
measurements. In order to use these properties effectively in scripting the posi-
tions of elements, you need a stable measurement system. Unfortunately, except
perhaps for the BODY element, these properties cannot be relied on without exten-
sive testing in a specific application.

As an example of the mess that has developed, consider the values for client-
Height and clientWidth. The developer documentation asserts that these prop-
erties measure the element content only, exclusive of any margins, borders, or
padding tacked onto the element. In IE 4 for Windows 95/NT, this assertion holds
true for margins and borders, but not padding. Padding is not only added to the
clientHeight and clientWidth values, but the padding size is doubled in the
calculation. Thus, for an element whose true content width is 100 pixels and
whose padding is set to 5 pixels (that’s 5 pixels on the left and right edges, for a
total of 10 pixels), the clientWidth property for the element returns 120 pixels.
Over on the Macintosh side of IE 4, both the margins and padding, but not the
borders, are added to the element dimensions to arrive at clientWidth and
clientHeight values.

The offset properties are supposedly measured within the context of the next
outermost container. For example, according to most accounts, the offsetTop
value for an element contained by the BODY is the distance between the top of the
BODY’s content area and the element’s content area. But if margins, borders, or
padding are involved in either or both of these elements, the calculations go astray
(and they go completely wild in IE 4 for the Macintosh).

clientHeight clientLeft offsetHeight offsetLeft
clientWidth clientTop offsetWidth offsetTop
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

464 Event Handler Properties
Even if the implementations were consistent across operating system versions of
the browser, the terminology used for these eight properties is extremely confus-
ing. Until such time as all these terms and implementations are on the same page,
it’s nigh impossible to recommend their use for precise positioning and calcula-
tion. That’s not to say you should abandon these values entirely. You might get
lucky with your design such that the strange behavior is consistently strange, so
that your desired effects actually work under both the Win32 and Mac versions of
IE. Such is the case for the example in Chapter 4, Adding Dynamic Positioning to
Documents, of centering flying objects on the page.

Event Handler Properties
Objects that can receive events have event handlers listed in their main entries.
Because this chapter focuses on the scriptable aspects of HTML elements, the
event handlers are listed in their lowercase property form—the form used to assign
function references to event handlers in script statements. See “Binding Event Han-
dlers to Elements” in Chapter 6, Scripting Events, for details on this event handler
format.

The selection of event handler properties listed for each object is based on a cou-
ple of factors. First, just as most HTML 4.0 elements have “intrinsic events” associ-
ated with them, those same events are listed in this chapter with the objects that
reflect the HTML element. As such, it may seem odd that an element that has
almost no visual presence on a page has keyboard and mouse events. Those
events are listed just the same, even though the likelihood of your scripting them
is next to nil.

Second, the Internet Explorer 4 event bubbling model (see Chapter 6) dictates that
it is possible for an event from one element to bubble up through the element
containment hierarchy all the way to the HTML element. This means that essen-
tially every event that can appear in the most nested element (such as the events
related to Microsoft’s data binding facilities in Win32) is also available in all ele-
ments higher up the containment chain. In other words, virtually every element
that acts as a container can have virtually every event type associated with it under
IE 4. Other than the intrinsic events mentioned earlier, the lists of event handler
properties in this chapter are restricted to events that can be directed initially at the
given object. For example, if an IMG object can use the data binding events, those
events are listed with the IMG object. They are not, however, listed for the DIV
object that might contain an IMG object but, itself, cannot be databound.

The bottom line is to use common sense in thinking about the event handlers that
are appropriate for any given object. Despite what may appear to be long lists of
event handler properties for some objects, the need to script more than two or
three for any object is very rare.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Common Object Properties, Methods, and Collections 465

DOM
 Reference
Common Object Properties, Methods,
and Collections
The document object model implemented in Internet Explorer 4 and, to a lesser
extent, the DOM working draft, exposes a wide range of properties, methods, and
collections almost universally across objects that reflect HTML elements. Rather
than repeat the descriptions of these items ad nauseam in the reference listing, I
am listing their details here only once. Throughout the rest of the chapter, the
property, method, and collection lists for each object point to these common items
when the item name is in italic. When you see an item name listed in italic, it
means you should look to this section for specific details about the item. If you
recognize a term from the list of items in common, but it is not shown in italic, it
means there is some object-specific information about the item, so the description
is provided with the object.

In the following item descriptions, the example code uses the term elementID to
refer to the identifier assigned to the ID attribute of the element. In your scripts,
substitute the object’s true ID for the placeholder used here. Here is a list of the
common items:

Properties

Methods

Collections/Arrays

className NN n/a IE 4 DOM 1

Read/Write

An identifier generally used to associate an element with a style sheet rule defined for a
class selector. You can alter the class association for an element by script. If the document
includes an alternate class selector and style rule, adjusting the element’s className prop-
erty can provide a shortcut for adjusting many style properties at once.

Example document.all.elementID.className = "altHighlighted"

Value Case-sensitive string. Multiple class names are space-delimited within the string.

className isTextEdit offsetLeft outerHTML sourceIndex
document lang offsetParent outerText style
id language offsetTop parentElement tagName
innerHTML offsetHeight offsetWidth parentTextEdit title
innerText

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

466 Common Object Properties, Methods, and Collections
Default None (or class set via the element’s CLASS attribute).

document NN n/a IE 4 DOM n/a

Read-only

Returns a reference to the document object that contains the current element. In some ways
this is a redundant property, because any reference you build to an element is likely to
contain the document as part of the reference.

Example var currDoc = document.all.elementID.document

Value Object reference.

Default The current document object.

id NN n/a IE 4 DOM 1

Read-only

A unique identifier that distinguishes this element from all the rest in the document. The
value of this property is most often used to assemble references to elements, but you can
loop through all elements to see if there is a match of an id value. If the author assigned
the same value to the ID attribute of multiple elements, the browser creates an array
(collection) of objects with that name (document.all.elementID[i]).

Example var someID = document.all.tags("ACRONYM")[2].id

Value String.

Default None.

innerHTML NN n/a IE 4 DOM n/a

Read/Write

The rendered text and HTML tags (i.e., all source code) between the start and end tags of
the current element. If you want only the rendered text, see innerText. For the source
code that includes the element’s tags, see outerHTML. A change to this property that
includes HTML tags is rendered through the HTML parser, as if the new value were part of
the original source code. You may change this property only after the document has fully
loaded. Changes to the innerHTML property are not reflected in the source code when you
view the source in the browser. This property is not supported in many objects in the
Macintosh version of Internet Explorer 4.

Example document.all.elementID.innerHTML = "How <I>now</I> brown cow?"

Value String that may or may not include HTML tags.

Default None.

innerText NN n/a IE 4 DOM n/a

Read/Write

The rendered text (but not any tags) of the current element. If you want the rendered text
as well as any nested HTML tags, see innerHTML. Any changes to this property are not
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Common Object Properties, Methods, and Collections 467

DOM
 Reference
rendered through the HTML parser, meaning that any HTML tags you include are treated as
displayable text content only. You may change this property only after the document has
fully loaded. Changes to the innerText property are not reflected in the source code when
you view the source in the browser. This property is not supported in many objects in the
Macintosh version of Internet Explorer 4.

Example document.all.elementID.innerText = "How now brown cow?"

Value String.

Default None.

isTextEdit NN n/a IE 4 DOM n/a

Read-only

Whether the element can be used to create a TextRange object (via the
createTextRange() method). Only BODY, BUTTON, text type INPUT, and TEXTAREA
elements are permitted to have text ranges created for their content.

Example
if (document.all.elementID.isTextEdit) {
 document.all.elementID.createTextRange()
}

Value Boolean value: true | false.

Default false

lang NN n/a IE 4 DOM 1

Read/Write

The written language being used for the element’s attribute and property values. Other
applications and search engines might use this information to aid selection of spellchecking
dictionaries and creating indices.

Example document.all.elementID.lang = "de"

Value Case-insensitive language code.

Default Browser default.

language NN n/a IE 4 DOM n/a

Read/Write

The scripting language for script statements defined in the element.

Example document.all.elementID.language = "vbscript"

Value

Case-insensitive scripting language name as string: javascript | jscript | vbs |
vbscript.

Default jscript
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

468 Common Object Properties, Methods, and Collections
offsetHeight, offsetWidth NN n/a IE 4 DOM n/a

Read-only

These properties should represent the height and width of the element’s content, exclusive
of padding, borders, or margins. In practice, Internet Explorer 4 for the Macintosh works
that way, while the Windows version not only includes padding (if any), but doubles the
padding amount in calculating the height and width values. If you don’t use padding in
your element, these are accurate measures on both operating systems. Despite these prop-
erties being part of the “offset” series, there is no relationship to the containing element for
these two properties: an element’s height and width are the same regardless of how they
are nested in other containers.

Example var midpoint = document.all.elementID.offsetWidth/2

Value Integer pixel count.

Default None.

offsetLeft, offsetTop NN n/a IE 4 DOM n/a

Read-only

These properties should represent the left and top coordinates of the element’s content rela-
tive to the containing element, exclusive of padding, borders, or margins. You can
determine the containing element via the offsetParent property. Unfortunately, Internet
Explorer 4 implements these two properties very unevenly across operating systems. See
the section “About client- and offset- Properties” earlier in this chapter.

Example
if (document.all.elementID.offsetLeft <= 20 &&
document.all.elementID.offsetTop <=40) {
 ...
}

Value Integer pixel count.

Default None.

offsetParent NN n/a IE 4 DOM n/a

Read-only

Returns a reference to the object that is the current element’s containing box. For most
elements, this is the BODY object. But elements that are wrapped in DIV elements or are
cells of a table have other parents. You can use the returned value in a reference to obtain
property information about the containing element, as shown in the following example.

Example var containerLeft = document.all.elementID.offsetParent.offsetLeft

Value Object reference.

Default BODY object.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Common Object Properties, Methods, and Collections 469

DOM
 Reference
outerHTML NN n/a IE 4 DOM n/a

Read/Write

The rendered text and HTML tags (i.e., all source code), including the start and end tags, of
the current element. If you want only the rendered text, see outerText. For the source
code that excludes the element’s tags, see innerHTML. A change to this property that
includes HTML tags is rendered through the HTML parser, as if the new value were part of
the original source code. You may change this property only after the document has fully
loaded, and, in the process, you can even change the type of element it is or replace the
element with straight text content. Changes to the outerHTML property are not reflected in
the source code when you view the source in the browser. To add to existing HTML, see
the insertAdjacentHTML() method. This property is not supported in many objects in the
Macintosh version of Internet Explorer 4.

Example
document.all.elementID.outerHTML =
 "<ACRONYM ID="quotes">NI<I>M</I>BY</ACRONYM>"

Value String that may or may not include HTML tags.

Default None.

outerText NN n/a IE 4 DOM n/a

Read/Write

The rendered text (but not any tags) of the current element. If you want the rendered text
as well as the element’s HTML tags, see outerHTML. Any changes to this property are not
rendered through the HTML parser, meaning that any HTML tags you include are treated as
displayable text content only. You may change this property only after the document has
fully loaded. Changes to the outerText property are not reflected in the source code when
you view the source in the browser. This property is not supported in many objects in the
Macintosh version of Internet Explorer 4.

Example document.all.elementID.outerText = "UNESCO"

Value String.

Default None.

parentElement NN n/a IE 4 DOM n/a

Read-only

Returns a reference to the next outermost element in the HTML containment hierarchy. An
element’s HTML parent is not necessarily the same as the object returned by the offset-
Parent property. The parentElement concerns itself strictly with source code
containment, while the offsetParent property looks to the next outermost element that is
used as the coordinate system for measuring the location of the current element. For
example, if the main document contains a P element with an EM element nested inside, the
EM element has two parents. The P element is the returned parentElement value (due to
the HTML source code containment), while the BODY element is the returned offset-
Parent value (due to coordinate space containment).
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

470 Common Object Properties, Methods, and Collections
You can jump multiple parent levels by cascading parentElement properties, as in:

document.all.elementID.parentElement.parentElement

You can then use references to access a parent element’s properties or methods.

Example document.all.elementID.parentElement.style.font-size = "14pt"

Value Element object reference.

Default None.

parentTextEdit NN n/a IE 4 DOM n/a

Read-only

Returns a reference to the next highest element up the HTML containment hierarchy that is
of a type that allows a TextRange object to be created with it. This property may have to
reach through many levels to find a suitable object. This property always returns null in
Internet Explorer 4 for the Macintosh because that operating system version does not
support text ranges.

Example
var rangeElement = document.all.elementID.parentTextEdit
var rng = rangeElement.createTextRange()

Value Element object reference.

Default BODY object.

sourceIndex NN n/a IE 4 DOM n/a

Read-only

Returns the zero-based index of the element among all elements in the document. Elements
are numbered according to their source code order, with the first element given a source-
Index of zero.

Example var whichElement = document.all.elementID.sourceIndex

Value Positive integer or zero.

Default None.

style NN n/a IE 4 DOM n/a

Read/Write

The style object associated with the element. This property is the gateway to reading and
writing individual style sheet property settings for an element.

Example document.all.elementID.style.font-size = "14pt"

Value style object.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Common Object Properties, Methods, and Collections 471

DOM
 Reference
tagName NN n/a IE 4 DOM n/a

Read-only

Returns the name of the tag used to create the current element. Tag names are always
returned in all uppercase letters for purposes of easy string comparisons.

Example var theTag = document.all.elementID.tagName

Value String.

Default None.

title NN n/a IE 4 DOM 1

Read/Write

An advisory description of the element. When the element is one that has a physical pres-
ence on the page, Internet Explorer 4 renders the value of this property when the cursor
rests atop the element for a moment.

Example document.all.elementID.title = "Hot stuff!"

Value String.

Default None.

click() NN n/a IE 4 DOM n/a

Simulates the click action of a user on the element. Fires an onClick event in Internet
Explorer 4.

Returned Value

None.

Parameters

None.

contains() NN n/a IE 4 DOM n/a

contains(element)

Whether the current element contains the specified element.

Returned Value

Boolean value: true | false.

Parameters
element A fully formed element object reference (e.g., document.all.myDIV).

getAttribute() NN n/a IE 4 DOM n/a

getAttribute(attributeName[, caseSensitivity])

Returns the value of the named attribute within the current element. If the attribute is
reflected in the object model as a property, this method returns the same value as when
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

472 Common Object Properties, Methods, and Collections
reading the object’s property. If the tag includes multiple attributes with the same name
(and caseSensitivity is not turned on), the last one in order is used to retrieve the
value.

Returned Value

Attribute value as a string, number, or Boolean, as dictated by the attribute’s data type.

Parameters
attributeName

The attribute name used in the HTML tag (not including the = symbol).

caseSensitivity
An optional Boolean value. If true, the attribute in the HTML tag must match
the case of the attributeName parameter exactly for its value to be returned.

insertAdjacentHTML() NN n/a IE 4 DOM n/a

insertAdjacentHTML(where, HTMLText)

Inserts text into the designated position relative to the element’s existing HTML. If HTML
tags are part of the text to be inserted, the browser interprets the tags and performs the
desired rendering. This method is not supported in many objects in the Macintosh version
of Internet Explorer 4.

Returned Value

None.

Parameters
where String value of one of the following constants: BeforeBegin | AfterBegin |

BeforeEnd | AfterEnd. The first and last locations are outside the HTML tags
of the current element; the middle two locations are between the tags and
element content.

HTMLText String value of the text and/or HTML to be inserted in the desired location.

insertAdjacentText() NN n/a IE 4 DOM n/a

insertAdjacentText(where, text)

Inserts text into the designated position relative to the element’s existing HTML. If HTML
tags are part of the text to be inserted, the tags are shown literally on the page. This method
is not supported in many objects in the Macintosh version of Internet Explorer 4.

Returned Value

None.

Parameters
where String value of one of the following constants: BeforeBegin | AfterBegin |

BeforeEnd | AfterEnd. The first and last locations are outside the HTML tags
of the current element; the middle two locations are between the tags and
element content.

HTMLText String value of the text to be inserted in the desired location.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Common Object Properties, Methods, and Collections 473

DOM
 Reference
removeAttribute() NN n/a IE 4 DOM n/a

removeAttribute(attributeName[, caseSensitivity])

Removes the named attribute from the current element. You may remove only attributes
added with the setAttribute() method. Removing an attribute does not change the
source code when viewed through the browser, but does affect how the browser renders
the element.

Returned Value

true if successful; false if the attribute doesn’t exist or its value was not set with
setAttribute().

Parameters
attributeName

The attribute name used in the HTML tag (not including the = symbol).

caseSensitivity
An optional Boolean value. If true, the attribute in the HTML tag must match
the case of the attributeName parameter exactly for its value to be returned.

scrollIntoView() NN n/a IE 4 DOM n/a

scrollIntoView([showAtTop])

Scrolls the content holding the current element so that the element is brought into view.
The default behavior is to display the element so that its top is at the top of the scroll space.
But you may also align the element at the bottom of the scroll space, if you prefer.

Returned Value

None.

Parameters
showAtTop

An optional Boolean value. If true (the default), the top of the content is posi-
tioned at the top of the scroll space; if false, the bottom of the content is
positioned at the bottom of the scroll space.

setAttribute() NN n/a IE 4 DOM n/a

setAttribute(attributeName, value[, caseSensitivity])

Sets the value of the named attribute within the current element. If the attribute is reflected
in the object model as a property, this method acts the same as assigning a value to the
object’s property.

Returned Value

None.

Parameters
attributeName

The attribute name used in the HTML tag (not including the = symbol).
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

474 Common Object Properties, Methods, and Collections
value Attribute value as a string, number, or Boolean, as dictated by the attribute’s
data type. Most settings are strings or stringed versions of other data types.

caseSensitivity
An optional Boolean value. If true, the attribute in the HTML tag must match
the case of the attributeName parameter exactly for its value to be set.

all[] NN n/a IE 4 DOM n/a

Returns an array of all HTML element objects contained by the current element. Items in
this array are indexed (zero based) in source code order. The collection transcends genera-
tions of nested elements such that document.all[] exposes every element in the entire
document.

As with all collections in Internet Explorer 4, you may use the traditional JavaScript array
syntax (with square brackets around the index value) or IE’s JScript alternative (with paren-
theses around the index value). If you are aiming for cross-browser deployment for
collections that are available on both platforms, use the square brackets.

Syntax
object.all(index).objectPropertyOrMethod
object.all[index].objectPropertyOrMethod
object.all.elementID.objectPropertyOrMethod

children[] NN n/a IE 4 DOM n/a

Returns an array of all first-level HTML element objects contained by the current element.
This collection differs from the all[] collection in that it contains references only to the
immediate children of the current element (whereas the all[] collection transcends gener-
ations). For example, document.body.children[] might contain a form, but no reference
to form elements nested inside the form. Items in this array are indexed (zero based) in
source code order.

Syntax
object.children(index).objectPropertyOrMethod
object.children[index].objectPropertyOrMethod
object.children.elementID.objectPropertyOrMethod

filters[] NN n/a IE 4 DOM n/a

Returns an array of all filter objects contained by the current element.

Syntax
object.filters(index).objectPropertyOrMethod
object.filters[index].objectPropertyOrMethod
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

A 475

DOM
 Reference
Alphabetical Object Reference

A NN n/a IE 4 DOM 1

The A object reflects the A element, regardless of whether the element is set up to be an
anchor, link, or both. Navigator and Internet Explorer both treat this object as a member of
the links[] and/or anchors[] arrays of a document. Internet Explorer 4 also lets you
reference the object as a member of the document.all[] collection (array of all HTML
elements).

HTML Equivalent
<A>

Object Model Reference
NN [window.]document.links[i]

[window.]document.anchors[i]

IE [window.]document.links[i]
[window.]document.anchors[i]
[window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

accessKey id nameProp parentTextEdit search
className innerHTML offsetHeight pathname sourceIndex
dataFld innerText offsetLeft port style
dataSrc isTextEdit offsetParent protocol tabIndex
document lang offsetTop protocolLong tagName
hash language offsetWidth recordNumber target
host Methods outerHTML rel title
hostname mimeType outerText rev urn
href name parentElement

blur() getAttribute() removeAttribute()
click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
focus()

all[] children[] filters[]

Handler NN IE DOM
onblur n/a 4 n/a
onclick 2 3 n/a
ondblclick 4 4 n/a
onfocus n/a 4 n/a
onhelp n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

476 A
Anchor-only A objects have no event handlers in Navigator through Version 4.

accessKey NN n/a IE 4 DOM 1

Read/Write

A single character key that either brings focus to an element or, in the case of an A element
(as a link), follows the link. The browser and operating system determine whether the user
must press a modifier key (e.g., Ctrl, Alt, or Command) with the access key to activate the
link. In IE 4/Windows, the Alt key is required, and the key is not case sensitive. Not
working in IE 4/Mac.

Example document.links[3].accessKey = "n"

Value Single alphanumeric (and punctuation) keyboard character.

Default None.

dataFld NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to associate a remote data source column value in lieu of an
HREF attribute for a link. The DATASRC attribute must also be set for the element. Setting
both the dataFld and dataSrc properties to empty strings breaks the binding between
element and data source.

Example document.all.hotlink.dataFld = "linkURL"

Value Case-sensitive identifier of the data source column.

Default None.

dataSrc NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Setting both the
dataFld and dataSrc properties to empty strings breaks the binding between element and
data source.

Example document.all.hotlink.dataSrc = "#DBSRC3"

onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown 4 4 n/a
onmousemove n/a 4 n/a
onmouseout 3 4 n/a
onmouseover 2 3 n/a
onmouseup 4 4 n/a
onselectstart n/a 4 n/a

Handler NN IE DOM
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

A 477

DOM
 Reference
Value Case-sensitive identifier of the data source.

Default None.

hash NN 2 IE 3 DOM 1

Read/Write

That portion of the HREF attribute’s URL following the # symbol, referring to an anchor
location in a document. Do not include the # symbol when setting the property.

Example
document.all.myLink.hash = "section3"
document.links[2].hash = "section3"

Value String.

Default None.

host NN 2 IE 3 DOM 1

Read/Write

The combination of the hostname and port (if any) of the server of the destination docu-
ment for the link. If the port is explicitly part of the URL, the hostname and port are
separated by a colon, just as they are in the URL. If the port number is not specified in an
HTTP URL for IE 4, it automatically returns the default, port 80.

Example
document.all.myLink.host = "www.megacorp.com:80"
document.links[2].host = "www.megacorp.com:80"

Value String of hostname optionally followed by a colon and port number.

Default Depends on server.

hostname NN 2 IE 3 DOM 1

Read/Write

The hostname of the server (i.e., a “two-dot” address consisting of server name and
domain) of the destination document for the link. The hostname property does not include
the port number.

Example
document.all.myLink.hostname = "www.megacorp.com"
document.links[2].hostname = "www.megacorp.com"

Value String of host name (server and domain).

Default Depends on server.

href NN 2 IE 3 DOM 1

Read/Write

The URL specified by the element’s HREF attribute.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

478 A
Example
document.all.myLink.href = "http://www.megacorp.com"
document.links[2].href = "http://www.megacorp.com"

Value String of complete or relative URL.

Default None.

Methods NN n/a IE 4 DOM n/a

Read/Write

An advisory attribute about the functionality of the destination of a link. A browser could
use this information to display special colors or images for the element content based on
what the destination does for the user, but Internet Explorer 4 does not appear to do
anything with this information.

Example document.links[1].Methods = "post"

Value Any valid HTTP method as a string.

Default None.

mimeType NN n/a IE 4 DOM n/a

Read-only

Returns a plain-language version of the MIME type of the destination document at the other
end of the link specified by the HREF or SRC attribute. You could use this information to set
the cursor type during a mouse rollover. Do not confuse this property with the navi-
gator.mimeTypes[] array and individual mimeType objects that Netscape Navigator refers
to. Not available in IE 4/Macintosh.

Example
if (document.all.myLink.mimeType == "GIF Image") {
 ...
}

Value A plain-language reference to the MIME type as a string.

Default None.

name NN 2 IE 3 DOM 1

Read/Write

The identifier associated with an element that turns it into an anchor. You can also use the
name as part of the object reference.

Example
if (document.links[3].name == "section3") {
 ...
}

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

A 479

DOM
 Reference
Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

nameProp NN n/a IE 4 DOM n/a

Read-only

Returns just the filename, rather than the full URL, of the HREF attribute set for the element.
Not available in IE 4/Macintosh.

Example
if (document.all.myElement.nameProp == "logo2.gif") {
 ...
}

Value String.

Default None.

pathname NN 2 IE 3 DOM 1

Read/Write

The pathname component of the URL assigned to the element’s HREF attribute. This consists
of all URL information following the last character of the domain name, including the initial
forward slash symbol.

Example
document.all.myLink.pathname = "/images/logoHiRes.gif"
document.links[2].pathname = "/images/logoHiRes.gif"

Value String.

Default None.

port NN 2 IE 3 DOM 1

Read/Write

The port component of the URL assigned to the element’s HREF attribute. This consists of all
URL information following the colon after the last character of the domain name. The colon
is not part of the port property value.

Example
document.all.myLink.port = "80"
document.links[2].port = "80"

Value String (a numeric value as string).

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

480 A
protocol NN 2 IE 3 DOM 1

Read/Write

The protocol component of the URL assigned to the element’s HREF attribute. This consists
of all URL information up to and including the first colon of a URL. Typical values are:
"http:", "file:", "ftp:", and "mailto:".

Example
document.all.secureLink.protocol = "https"
document.secureLink.protocol = "https"

Value String.

Default None.

protocolLong NN n/a IE 4 DOM n/a

Read-only

A verbose description of the protocol implied by the URL of the HREF attribute or href
property. Not supported in IE 4/Macintosh.

Example
if (document.all.myLink.protocolLong == "HyperText Transfer Protocol") {

statements for treating document as server file
}

Value String.

Default None

recordNumber NN n/a IE 4 DOM n/a

Read-only

Used with data binding, returns an integer representing the record within the data set that
generated the element). Values of this property can be used to extract a specific record
from an Active Data Objects (ADO) record set (see recordset property).

Example
<SCRIPT FOR="tableTemplate" EVENT="onclick">
 myDataCollection.recordset.absoluteposition = this.recordNumber
 ...
</SCRIPT>

Value Integer.

Default None.

rel NN n/a IE 4 DOM 1

Read/Write

Defines the relationship between the current element and the destination of the link. Also
known as a forward link, not to be confused in any way with the destination document
whose address is defined by the HREF attribute. This property is not used yet in Internet
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

A 481

DOM
 Reference
Explorer 4, but you can treat the attribute as a kind of parameter to be checked and/or
modified under script control. See the discussion of the A element’s REL attribute in
Chapter 8 for a glimpse of how this property may be used in the future.

Value

Case-insensitive, space-delimited list of HTML 4.0 standard link types (as a single string)
applicable to the element. Sanctioned link types are:

Default None.

rev NN n/a IE 4 DOM 1

Read/Write

Defines the relationship between the current element and the destination of the link. Also
known as a reverse link. This property is not used yet in Internet Explorer 4, but you can
treat the attribute as a kind of parameter to be checked and/or modified under script
control. See the discussion of the A element’s REV attribute in Chapter 8 for a glimpse of
how this property may be used in the future.

Value

Case-insensitive, space-delimited list of HTML 4.0 standard link types (as a single string)
applicable to the element. See the rel property for sanctioned link types.

Default None.

search NN 2 IE 3 DOM 1

Read/Write

The URL-encoded portion of a URL assigned to the HREF attribute that begins with the ?
symbol. A document that is served up as the result of the search also may have the search
portion available as part of the window.location property. You can modify this property
with a script. Doing so sends the URL and search criteria to the server. You must know the
format of data (usually name/value pairs) expected by the server to perform this properly.

Example
document.all.searchLink.search="?p=Tony+Blair&d=y&g=0&s=a&w=s&m=25"
document.links[1].search="?p=Tony+Blair&d=y&g=0&s=a&w=s&m=25"

Value String starting with the ? symbol.

Default None.

alternate contents index start
appendix copyright next stylesheet
bookmark glossary prev subsection
chapter help section
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

482 A
tabIndex NN n/a IE 4 DOM 1

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their tabIndex properties are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest tabIndex value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same tabIndex values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the tabIndex property or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A value of -1 removes the element from
tabbing order altogether.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text and password INPUT fields.

Example document.all.link3.tabIndex = 6

Value Integer.

Default None.

target NN 2 IE 3 DOM 1

Read/Write

The name of the window or frame that is to receive content as the result of navigating to a
link. Such names are assigned to frames by the FRAME element’s NAME attribute; for subwin-
dows, the name is assigned via the second parameter of the window.open() method. If
you are scripting the navigation of another window or frame, use the window or frame
name in a statement that assigns a new URL to the location.href property (frame-
Name.location.href = "newURL").

Example
document.all.homeLink.target = "_top"
document.links[3].target = "_top"

Value

String value of the window or frame name, or any of the following constants (as a string):
_parent | _self | _top | _blank. The _parent value targets the frameset to which the
current document belongs; the _self value targets the current window; the _top value
targets the main browser window, thereby eliminating all frames; and the _blank value
creates a new window of default size.

Default None.

urn NN n/a IE 4 DOM n/a

Read/Write

A Uniform Resource Name (URN) version of the destination document specified in the HREF
attribute. This attribute is intended to offer support in the future for the URN format of URI,
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

ACRONYM, CITE, CODE, DFN, EM, KBD, SAMP, STRONG, VAR 483

DOM
 Reference
an evolving recommendation under discussion at the IETF (see RFC 2141). Although
supported in IE 4, this attribute does not take the place of the HREF attribute.

Example document.all.link3.urn = "http://www.megacorp.com"

Value Complete or relative URN as a string.

Default None.

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.

Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.

ACRONYM, CITE, CODE, DFN,
EM, KBD, SAMP, STRONG, VAR NN n/a IE 4 DOM 1

All these objects reflect the corresponding HTML phrase elements of the same name. Each
of these phrase elements provides a context for an inline sequence of content. Some of
these elements are rendered in ways to distinguish themselves from running text. See the
HTML element descriptions in Chapter 8 for details. From a scripted standpoint, all phrase
element objects share the same set of properties, methods, event handlers, and collections.

HTML Equivalent
<ACRONYM>
<CITE>
<CODE>
<DFN>

<KBD>
<SAMP>

<VAR>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

484 ADDRESS
Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

ADDRESS NN n/a IE 4 DOM 1

The ADDRESS object reflects the ADDRESS element.

HTML Equivalent
<ADDRESS>

Object Model Reference
IE [window.]document.all.elementID

className isTextEdit offsetLeft outerHTML sourceIndex
document lang offsetParent outerText style
id language offsetTop parentElement tagName
innerHTML offsetHeight offsetWidth parentTextEdit title
innerText

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

all 485

DOM
 Reference
Properties

Methods

Collections/Arrays

Event Handler Properties

all NN n/a IE 4 DOM n/a

A collection of elements nested within the current element. A reference to document.all,
for example, returns a collection (array) of all element objects contained by the document,
including elements that may be deeply nested inside the document’s first level of elements.
The collection is sorted in source code order of the element tags.

Object Model Reference
IE elementReference.all

Properties

Methods

className isTextEdit offsetLeft outerHTML sourceIndex
document lang offsetParent outerText style
id language offsetTop parentElement tagName
innerHTML offsetHeight offsetWidth parentTextEdit title
innerText

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a

length

item() tags()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

486 anchors
length NN n/a IE 4 DOM n/a

Read-only

Returns the number of elements in the collection.

Example var howMany = document.all.length

Value Integer.

item() NN n/a IE 4 DOM n/a

item(index[, subindex])

Returns a single object or collection of objects corresponding to the element matching the
index value (or, optionally, the index and subindex values).

Returned Value

One object or collection (array) of objects. If there are no matches to the parameters, the
returned value is null.

Parameters
index When the parameter is a zero-based integer, the returned value is a single

element corresponding to the specified item in source code order (nested
within the current element); when the parameter is a string, the returned value
is a collection of elements whose id or name properties match that string.

subindex If you specify a string value for the first parameter, you can use the second
parameter to specify a zero-based index that retrieves the specified element
from the collection whose id or name properties match the first parameter’s
string value.

tags() NN n/a IE 4 DOM n/a

tags(tagName)

Returns a collection of objects (among all objects nested within the current element) whose
tags match the tagName parameter.

Returned Value

A collection (array) of objects. If there are no matches to the parameters, the returned value
is an array of zero length.

Parameters
tagName A string that contains the all-uppercase version of the element tag, as in

document.all.tags("P").

anchors NN 2 IE 3 DOM n/a

A collection of all A elements whose assigned NAME attributes make them behave as anchors
(instead of links). Collection members are sorted in source code order. Navigator and
Internet Explorer let you use array notation to access a single anchor in the collection (e.g.,
document.anchors[0], document.anchors["section3"]). Internet Explorer 4 also
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

APPLET 487

DOM
 Reference
allows the index value to be placed inside parentheses instead of brackets (e.g., docu-
ment.anchors(0)). If you want to use the anchor’s name as an index value (always as a
string identifier), be sure to use the value of the NAME attribute, rather than the ID attribute.
To use the ID attribute in a reference to an anchor, access the object via a docu-
ment.all.elementID reference.

Object Model Reference
NN document.anchors[i]

IE document.anchors(i)
document.anchors[i]

Properties

length NN 2 IE 3 DOM n/a

Read-only

Returns the number of elements in the collection.

Example var howMany = document.anchors.length

Value Integer.

APPLET NN 3 IE 4 DOM n/a

The APPLET object reflects the APPLET element.

HTML Equivalent
<APPLET>

Object Model Reference
NN [window.]document.appletName

IE [window.]document.appletName
[window.]document.all.elementID

Properties

Methods

length

accessKey dataSrc language outerHTML style
align document name outerText tabIndex
altHTML height offsetHeight parentElement tagName
className hspace offsetLeft parentTextEdit title
code id offsetParent sourceIndex vspace
codeBase isTextEdit offsetTop src width
dataFld lang offsetWidth

blur() getAttribute() removeAttribute()
click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
focus()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

488 APPLET
Collections/Arrays

Event Handler Properties

accessKey NN n/a IE 4 DOM n/a

Read/Write

A single character key that brings focus to an element. The browser and operating system
determine whether the user must press a modifier key (e.g., Ctrl, Alt, or Command) with
the access key to bring focus to the element. In IE 4/Windows, the Alt key is required, and
the key is not case sensitive. Not working in IE 4/Mac.

Example document.all.appletID.accessKey = "n"

Value Single alphanumeric (and punctuation) keyboard character.

Default None.

all[] children[]

Handler NN IE DOM
onafterupdate n/a 4 n/a
onbeforeupdate n/a 4 n/a
onblur n/a 4 n/a
onclick n/a 3 n/a
ondataavailable n/a 4 n/a
ondatasetchanged n/a 4 n/a
ondatasetcomplete n/a 4 n/a
ondblclick n/a 4 n/a
onerrorupdate n/a 4 n/a
onfocus n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onload n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 3 n/a
onmouseup n/a 4 n/a
onreadystatechange n/a 4 n/a
onresize n/a 4 n/a
onrowenter n/a 4 n/a
onrowexit n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

APPLET 489

DOM
 Reference
align NN n/a IE 4 DOM n/a

Read/Write

Defines the alignment of the element within its surrounding container. See the section
“Alignment Constants” at the beginning of Chapter 8 for the various meanings that different
values bring to this property.

Example document.all.myApplet.align = "center"

Value

Any of the alignment constants: absbottom | absmiddle | baseline | bottom | left |
middle | right | texttop | top.

Default bottom

altHTML NN n/a IE 4 DOM n/a

Read/Write

HTML content to be displayed if the object or applet fails to load. This can be a message,
static image, or any other HTML that best fits the scenario. There is little indication that
setting this property on an existing APPLET object has any visual effect.

Example document.myApplet.altHTML = ""

Value Any quoted string of characters, including HTML tags.

Default None.

code NN n/a IE 4 DOM n/a

Read-only

The name of the Java applet class file set to the CODE attribute.

Example
if (document.all.clock.code == "Y2Kcounter.class") {

process for the found class file
}

Value Case-sensitive applet class filename as a string.

Default None.

codeBase NN n/a IE 4 DOM n/a

Read-only

Path to the directory holding the class file designated in the CODE attribute. The CODEBASE
attribute does not name the class file, just the path.

Example
if (document.all.clock.codeBase == "classes") {

process for the found class file directory
}

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

490 APPLET
Value

Case-sensitive pathname, usually relative to the directory storing the current HTML
document.

Default None.

dataFld NN n/a IE 4 DOM n/a

Read/Write

It is unclear how you would use this property with an APPLET object because the dataFld
and dataSrc properties (as set in element attributes) are applied to individual PARAM
elements. But PARAM elements are not reflected (yet) in the IE object model.

Value Case-sensitive identifier of the data source column.

Default None.

dataSrc NN n/a IE 4 DOM n/a

Read/Write

It is unclear how you would use this property with an APPLET object because the dataFld
and dataSrc properties (as set in element attributes) are applied to individual PARAM
elements. But PARAM elements are not reflected (yet) in the IE object model.

Value Case-sensitive identifier of the data source.

Default None.

height, width NN n/a IE 4 DOM n/a

Read-only

The height and width in pixels of the element as set by the tag attributes.

Example var appletHeight = document.myApplet.height

Value Integer.

Default None.

hspace, vspace NN n/a IE 4 DOM n/a

Read/Write

The pixel measure of horizontal and vertical margins surrounding an applet. The hspace
property affects the left and right edges of the element equally; the vspace affects the top
and bottom edges of the element equally. These margins are not the same as margins set by
style sheets, but they have the same visual effect. To change these property values, you
must access the element via its element ID rather than its name.

Example
document.all.myApplet.hspace = 5
document.all.myApplet.vspace = 8
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

APPLET 491

DOM
 Reference
Value Integer of pixel count.

Default 0

name NN n/a IE 4 DOM n/a

Read-only

The identifier associated with the applet. Use the name when referring to the object in the
form document.appletName.

Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

src NN n/a IE 4 DOM n/a

Read-only

Internet Explorer 4 defines this attribute as the URL for an “associated file.” The src prop-
erty is not a substitute for the code and/or codebase properties.

Value Complete or relative URL as a string.

Default None.

tabIndex NN n/a IE 4 DOM n/a

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their tabIndex properties are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest tabIndex value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same tabIndex values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the tabIndex property or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A value of -1 removes the element from
tabbing order altogether.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text and password INPUT fields.

Example document.all.myApplet.tabIndex = 6

Value Integer.

Default None.

vspace
See hspace.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

492 applets
width
See height.

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.

Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.

applets NN 2 IE 3 DOM n/a

A collection of all the Java applets in the current element, sorted in source code order.
Navigator and Internet Explorer let you use array notation to access a single applet in the
collection (e.g., document.applets[0], document.applets["clockApplet"]). Internet
Explorer 4 also allows the index value to be placed inside parentheses instead of brackets
(e.g., document.applets(0)). If you wish to use the applet’s name as an index value
(always as a string identifier), be sure to use the value of the NAME attribute rather than the
ID attribute. To use the ID attribute in a reference to an applet, access the object via a
document.all.elementID reference.

Object Model Reference
NN document.applets[i]

IE document.applets(i)
document.applets[i]

Properties
length
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

AREA 493

DOM
 Reference
length NN 2 IE 3 DOM n/a

Read-only

Returns the number of elements in the collection.

Example var howMany = document.applets.length

Value Integer.

AREA NN 3 IE 4 DOM 1

The AREA object reflects the AREA element, which defines the shape, coordinates, and desti-
nation of a clickable region of a client-side image map. Navigator and Internet Explorer (for
compatibility with Navigator) treat an AREA object as a member of the links collection, since
an AREA object behaves much like a link, but for a segment of an image.

HTML Equivalent
<AREA>

Object Model Reference
NN [window.]document.links[i]

IE [window.]document.links[i]
[window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

alt href offsetLeft parentTextEdit sourceIndex
className id offsetParent pathname style
coords isTextEdit offsetTop port tabIndex
document lang offsetWidth protocol tagName
hash language outerHTML search target
host noHref outerText shape title
hostname offsetHeight parentElement

blur() getAttribute() removeAttribute()
click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
focus()

all[] children[] filters[]

Handler NN IE DOM
onafterupdate n/a 4 n/a
onbeforeupdate n/a 4 n/a
onblur n/a 4 n/a
onclick 4 3 n/a
ondataavailable n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

494 AREA
alt NN n/a IE 4 DOM 1

Read/Write

Future nongraphical browsers may use the alt property setting to display a brief descrip-
tion of the meaning of the (invisible) image’s hotspots.

Example document.all.elementID.alt = "To Next Page"

Value Any quoted string of characters.

Default None.

coords NN n/a IE 4 DOM 1

Read/Write

Defines the outline of the area to be associated with a particular link or scripted action.
Coordinate values are entered as a comma-delimited list. If hotspots of two areas should
overlap, the area that is defined earlier in the code takes precedence.

Example document.all.mapArea2.coords = "25, 5, 50, 70"

Value

Each coordinate is a length value, but the number of coordinates and their order depend on
the shape specified by the SHAPE attribute, which may optionally be associated with the
element. For SHAPE="rect", there are four coordinates (left, top, right, bottom); for
SHAPE="circle" there are three coordinates (center-x, center-y, radius); for
SHAPE="poly" there are two coordinate values for each point that defines the shape of the
polygon.

ondatasetchanged n/a 4 n/a
ondatasetcomplete n/a 4 n/a
ondblclick n/a 4 n/a
onerrorupdate n/a 4 n/a
onfocus n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onload n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout 3 4 n/a
onmouseover 3 3 n/a
onmouseup n/a 4 n/a
onreadystatechange n/a 4 n/a
onresize n/a 4 n/a
onrowenter n/a 4 n/a
onrowexit n/a 4 n/a

Handler NN IE DOM
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

AREA 495

DOM
 Reference
Default None.

hash NN 2 IE 3 DOM 1

Read/Write

That portion of the HREF attribute’s URL following the # symbol, referring to an anchor
location in a document. Do not include the # symbol when setting the property.

Example document.all.mapArea2.hash = "section3"

Value String.

Default None.

host NN 2 IE 3 DOM 1

Read/Write

The combination of the hostname and port (if any) of the server of the destination docu-
ment for the area link. If the port is explicitly part of the URL, the hostname and port are
separated by a colon, just as they are in the URL. If the port number is not specified in an
HTTP URL for IE 4, it automatically returns the default, port 80.

Example document.all.mapArea2.host = "www.megacorp.com:80"

Value String of hostname optionally followed by a colon and port number.

Default Depends on server.

hostname NN 2 IE 3 DOM 1

Read/Write

The hostname of the server (i.e., a “two-dot” address consisting of server name and
domain) of the destination document for the area link. The hostname property does not
include the port number.

Example document.links[2].hostname = "www.megacorp.com"

Value String of hostname (server and domain).

Default Depends on server.

href NN 2 IE 3 DOM 1

Read/Write

The URL specified by the element’s HREF attribute.

Example document.links[2].href = "http://www.megacorp.com"

Value String of complete or relative URL.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

496 AREA
noHref NN n/a IE 4 DOM 1

Read/Write

Whether the area defined by the coordinates has a link associated with it. When you set this
property to true, scriptable browsers no longer treat the element as a link.

Example document.links[4].noHref = "true"

Value Boolean value: true | false.

Default false

pathname NN 2 IE 3 DOM 1

Read/Write

The pathname component of the URL assigned to the element’s HREF attribute. This consists
of all URL information following the last character of the domain name, including the initial
forward slash symbol.

Example document.all.myLink.pathname = "/images/logoHiRes.gif"

Value String.

Default None.

port NN 2 IE 3 DOM 1

Read/Write

The port component of the URL assigned to the element’s HREF attribute. This consists of all
URL information following the colon after the last character of the domain name. The colon
is not part of the port property value.

Example document.all.myLink.port = "80"

Value String (a numeric value as string).

Default None.

protocol NN 2 IE 3 DOM 1

Read/Write

The protocol component of the URL assigned to the element’s HREF attribute. This consists
of all URL information up to and including the first colon of a URL. Typical values are:
"http:", "file:", "ftp:", "mailto:".

Example document.all.secureLink.protocol = "https"

Value String.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

AREA 497

DOM
 Reference
search NN 2 IE 3 DOM 1

Read/Write

The URL-encoded portion of a URL assigned to the HREF attribute that begins with the ?
symbol. A document that is served up as the result of the search also may have the search
portion available as part of the window.location property. You can modify this property
with a script. Doing so sends the URL and search criteria to the server. You must know the
format of data (usually name/value pairs) expected by the server to perform this properly.

Example
document.all.searchLink.search="?p=Tony+Blair&d=y&g=0&s=a&w=s&m=25"

Value String starting with the ? symbol.

Default None.

shape NN n/a IE 4 DOM 1

Read/Write

The shape of a server-side image map area whose coordinates are specified with the
COORDS attribute.

Example document.all.area51.shape = "circle"

Value

Case-insensitive shape constant as string: default | rect | rectangle | circle | poly
| polygon

Default rect

tabIndex NN n/a IE 4 DOM 1

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their tabIndex properties are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest tabIndex value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same tabIndex values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the tabIndex property or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A value of -1 removes the element from
tabbing order altogether.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text and password INPUT fields.

Example document.all.mapArea2.tabIndex = 6

Value Integer.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

498 areas
target NN 2 IE 3 DOM 1

Read/Write

The name of the window or frame that is to receive content as the result of navigating to an
area link. Such names are assigned to frames by the FRAME element’s NAME attribute; for
subwindows, the name is assigned via the second parameter of the window.open()
method. If you are scripting the navigation of another window or frame, use the window or
frame name in a statement that assigns a new URL to the location.href property
(frameName.location.href = "newURL").

Example document.all.homeArea.target = "_top"

Value

String value of the window or frame name, or any of the following constants (as a string):
_parent | _self | _top | _blank. The _parent value targets the frameset to which the
current document belongs; the _self value targets the current window; the _top value
targets the main browser window, thereby eliminating all frames; and the _blank value
creates a new window of default size.

Default None.

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.

Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.

areas NN n/a IE 4 DOM n/a

A collection of all AREA elements. Collection members are sorted in source code order.
Internet Explorer lets you use array notation or parentheses to access a single anchor in the
collection (e.g., document.anchors[0], document.anchors(0)). To use the ID attribute
in a reference to an anchor, access the object via a document.all.elementID reference.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

B, BIG, I, S, SMALL, STRIKE, TT, U 499

DOM
 Reference
Object Model Reference
IE document.areas(i)

document.areas[i]

Properties

length NN n/a IE 4 DOM n/a

Read-only

Returns the number of elements in the collection.

Example var howMany = document.areas.length

Value Integer.

B, BIG, I, S, SMALL, STRIKE, TT, U NN n/a IE 4 DOM 1

All these objects reflect the HTML font style elements of the same name. Each of these
elements specifies a rendering style for an inline sequence of content. All the elements are
deprecated in HTML 4.0 in favor of style sheet attributes. See the HTML element descrip-
tions in Chapter 8 for details. From a scripted standpoint, all font style element objects share
the same set of properties, methods, event handlers, and collections.

HTML Equivalent

<BIG>
<I>
<S>
<SMALL>
<STRIKE>
<TT>
<U>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

length

className isTextEdit offsetLeft outerHTML sourceIndex
document lang offsetParent outerText style
id language offsetTop parentElement tagName
innerHTML offsetHeight offsetWidth parentTextEdit title
innerText

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

500 BASE
Collections/Arrays

Event Handler Properties

BASE NN n/a IE 4 DOM 1

A BASE object instructs the browser about the URL path to the current document. This path
is then used as the basis for all relative URLs that are used to specify various SRC and HREF
attributes throughout the document.

HTML Equivalent
<BASE>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

all[] children[] filters[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a

className id outerHTML parentTextEdit target
document isTextEdit outerText sourceIndex title
href lang parentElement tagName

contains() removeAttribute() setAttribute()
getAttribute()

all[] children[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

BASEFONT 501

DOM
 Reference
href NN n/a IE 4 DOM 1

Read/Write

The URL of a document whose server path is to be used as the base URL for all relative
references in the document. This is typically the URL of the current document, but it can be
set to another path if it makes sense to your document organization and directory structure.

Example document.all.myBase.href = "http://www.megacorp.com"

Value String of complete or relative URL.

Default Current document pathname.

target NN n/a IE 4 DOM n/a

Read/Write

The name of the window or frame that is to receive content as the result of navigating to a
link or any other action on the page that loads a new document. Such names are assigned
to frames by the FRAME element’s NAME attribute; for subwindows, the name is assigned via
the second parameter of the window.open() method. If you are scripting the navigation of
another window or frame, use the window or frame name in a statement that assigns a new
URL to the location.href property (frameName.location.href = "newURL").

Example document.all.myBase.target = "_top"

Value

String value of the window or frame name, or any of the following constants (as a string):
_parent | _self | _top | _blank. The _parent value targets the frameset to which the
current document belongs; the _self value targets the current window; the _top value
targets the main browser window, thereby eliminating all frames; and the _blank value
creates a new window of default size.

Default _self

BASEFONT NN n/a IE 4 DOM 1

A BASEFONT element advises the browser of some font information to be used as the basis
for text rendering of the current page below the BASEFONT element. The BASEFONT element
overrides the default font settings in the browser’s user preferences settings.

Be careful with the outerText and outerHTML properties (and the undocumented inner-
Text and innerHTML properties in the Windows version). Because this element does not
have an end tag, virtually the entire document becomes part of these property values.
Altering them can easily result in a lost document. All four of these properties are best
utilized in elements that act as HTML containers by virtue of the position of their start and
end tags.

HTML Equivalent
<BASEFONT>

Object Model Reference
IE [window.]document.all.elementID
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

502 BASEFONT
Properties

Methods

Collections/Arrays

color NN n/a IE 4 DOM 1

Read/Write

Sets the font color of all text below the BASEFONT element.

Example document.all.tags("basefont")[0].color = "#c0c0c0"

Value

Case-insensitive hexadecimal triplet or plain-language color name as a string. See
Appendix A for acceptable plain-language color names.

Default Browser default.

face NN n/a IE 4 DOM 1

Read/Write

A hierarchy of font faces to use for the default font of a section headed by a BASEFONT
element. The browser looks for the first font face in the comma-delimited list of font face
names until it either finds a match in the client system or runs out of choices, at which
point the browser default font face is used. Font face names must match the system font
face names exactly.

Example
document.all.tags("basefont")[i].face = "Bookman, Times Roman, serif"

Value

One or more font face names in a comma-delimited list within a string. You may use real
font names or the recognized generic faces: serif | sans-serif | cursive | fantasy |
monospace.

Default Browser default.

size NN n/a IE 4 DOM 1

Read/Write

The size of the font in the 1-7 browser relative scale.

Example document.all.myBaseFont.size = "+1"

className face lang parentElement sourceIndex
color id outerHTML parentTextEdit tagName
document isTextEdit outerText size title

contains() removeAttribute() setAttribute()
getAttribute()

all[] children[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

BGSOUND 503

DOM
 Reference
Value

Either an integer (as a quoted string) or a quoted relative value consisting of a + or -
symbol and an integer value.

Default 3

BDO NN n/a IE n/a DOM 1

The BDO element is designed to assist in instances when, due to various conversions during
text processing, the normal bidirectional algorithms must be explicitly overridden.

HTML Equivalent
<BDO>

Properties

dir NN n/a IE n/a DOM 1

Read/Write

The direction of character rendering for the element’s text whose characters are not
governed by inherent directionality according to the Unicode standard. Character rendering
is either left to right or right to left.

Value ltr | rtl (case insensitive)

Default ltr

BGSOUND NN n/a IE 4 DOM n/a

A BGSOUND element defines a sound file that is to play in the background while the user
visits the page. Set properties to control the volume and how many times the sound track
plays even after the sound file has loaded. A few properties, such as innerHTML and
innerText, are exposed in the Windows version, but they don’t apply to an element that
does not have an end tag.

HTML Equivalent
<BGSOUND>

Object Model Reference
IE [window.]document.all.elementID

Properties

className id lang style title
dir

balance loop offsetTop parentElement style
className offsetHeight offsetWidth parentTextEdit tagName
document offsetLeft outerHTML sourceIndex title
id offsetParent outerText src volume
isTextEdit
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

504 BGSOUND
Methods

Collections/Arrays

balance NN n/a IE 4 DOM n/a

Read-only

How the audio is divided between the left and right speakers. Once this attribute value is
set in the element, its value cannot be changed by script control.

Example var currBal = document.all.tags("bgsound")[0].balance

Value

A signed integer between -10,000 and +10,000. A value of 0 is equally balanced on both
sides. A negative value means the left side is dominant; a positive value means the right
side is dominant.

Default 0

loop NN n/a IE 4 DOM n/a

Read/Write

The number of times the sound plays. Assigning a value of -1 means the sound plays
continuously until the page is unloaded.

Example document.all.mySound.loop = 3

Value Integer.

Default -1

src NN n/a IE 4 DOM n/a

Read/Write

URL of the sound file to be played. Change tunes by assigning a new URL to the property.

Example document.all.tune.src = "sounds/blues.aif"

Value Complete or relative URL as a string.

Default None.

volume NN n/a IE 4 DOM n/a

Read-only

How loud the background sound plays relative to the maximum sound output level as
adjusted by user preferences in the client computer. Maximum volume—a setting of zero—
is only as loud as the user has set the Sound control panel. Attribute adjustments are nega-

contains() removeAttribute() setAttribute()
getAttribute()

all[] children[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

BLOCKQUOTE 505

DOM
 Reference
tive values as low as -10,000 (although most users lose the sound at values much higher
than that value).

Example var currVolume = document.all.themeSong.volume

Value Integer.

Default Varies with operating system and sound settings.

BIG
See B.

BLOCKQUOTE NN n/a IE 4 DOM 1

The BLOCKQUOTE object reflects the BLOCKQUOTE element, which is intended to set off a
long, block-level quote inside a document.

HTML Equivalent
<BLOCKQUOTE>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

cite innerText offsetLeft outerHTML sourceIndex
className isTextEdit offsetParent outerText style
document lang offsetTop parentElement tagName
id language offsetWidth parentTextEdit title
innerHTML offsetHeight

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

506 BODY
cite NN n/a IE n/a DOM 1

Read/Write

A URL pointing to an online source document from which the quotation is taken. This is
not in any way a mechanism for copying or extracting content from another document.

Value

Any valid URL to a document on the World Wide Web, including absolute or relative URLs.

Default None.

BODY NN n/a IE 4 DOM 1

The BODY object reflects the BODY element, which is distinct from the document object. The
BODY object refers to just the element and its nested content. The BODY object is special in
IE 4 in that it is the gateway to many important visual aspects of content on the page, such
as background, margins, and scrolling. There is a shortcut reference to the object, docu-
ment.body, so you don’t have to build a reference via the document.all.elementID
hierarchy.

HTML Equivalent
<BODY>

Object Model Reference
IE [window.]document.body

Properties

onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a

accessKey clientTop leftMargin outerText scrollWidth
alink clientWidth link parentElement sourceIndex
background document noWrap parentTextEdit style
bgColor id offsetHeight recordNumber tabIndex
bgProperties innerHTML offsetLeft rightMargin tagName
bottomMargin innerText offsetParent scroll text
className isTextEdit offsetTop scrollHeight title
clientHeight lang offsetWidth scrollLeft topMargin
clientLeft language outerHTML scrollTop vLink

Handler NN IE DOM
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

BODY 507

DOM
 Reference
Methods

Collections/Arrays

Event Handler Properties

accessKey NN n/a IE 4 DOM n/a

Read/Write

A single character key that brings focus to an element. The browser and operating system
determine whether the user must press a modifier key (e.g., Ctrl, Alt, or Command) with
the access key to bring focus to the element. In IE 4/Windows, the Alt key is required, and
the key is not case sensitive. Not working in IE 4/Mac.

Example document.body.accessKey = "n"

click() getAttribute() removeAttribute()
contains() insertAdjacentHTML() scrollIntoView()
createTextRange() insertAdjacentText() setAttribute()

all[] children[] filters[]

Handler NN IE DOM
onafterupdate n/a 4 n/a
onbeforeunload n/a 4 n/a
onbeforeupdate n/a 4 n/a
onchange n/a 4 n/a
onclick n/a 4 n/a
ondataavailable n/a 4 n/a
ondatasetchanged n/a 4 n/a
ondatasetcomplete n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onerrorupdate n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onrowenter n/a 4 n/a
onrowexit n/a 4 n/a
onscroll n/a 4 n/a
onselectstart n/a 4 n/a
onunload n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

508 BODY
Value Single alphanumeric (and punctuation) keyboard character.

Default None.

aLink NN n/a IE 4 DOM 1

Read/Write

Color of a hypertext link as it is being clicked. The color is applied to the link text or
border around an image or object embedded within an A element. See also link and
vLink properties for unvisited and visited link colors. Navigator’s corresponding property is
alinkColor of the document object.

Example document.body.aLink = "green"

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default #0000FF

background NN n/a IE 4 DOM 1

Read/Write

URL of the background image for the entire document. If you set a bgColor to the element
as well, the color appears if the image fails to load; otherwise, the image overlays the color.

Example document.body.background = "images/watermark.jpg"

Value Complete or relative URL to the background image file.

Default None.

bgColor NN n/a IE 4 DOM 1

Read/Write

Background color of the element. Even if the BGCOLOR attribute or bgColor property is set
with a plain-language color name, the returned value is always a hexadecimal triplet.

Example document.body.bgColor = "yellow"

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default Varies with browser and operating system.

bgProperties NN n/a IE 4 DOM n/a

Read/Write

Whether the background image remains in a fixed position or scrolls as a user scrolls the
page. When the background image is set to remain in a fixed position, scrolled content
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

BODY 509

DOM
 Reference
flows past the background image very much like film credits roll past a background image
on the screen.

Example document.body.bgProperties = "fixed"

Value Case-insensitive constant string values: fixed | scroll.

Default scroll

bottomMargin NN n/a IE 4 DOM n/a

Read/Write

The amount of blank space between the very end of content and the bottom of a scrollable
page. The setting has no visual effect if the length of the content or size of the window
does not cause the window to scroll. The default value is for the end of content to be flush
with the end of the document, but in the Macintosh version of Internet Explorer 4, there is
about a 10-pixel margin visible even when the property is set to zero. Larger sizes are
reflected properly. This property offers somewhat of a shortcut or alternate to setting the
marginBottom style sheet property for the BODY element object.

Example document.body.bottomMargin = 20

Value

An integer value (zero or greater) of the number of pixels of clear space at the bottom of
the document.

Default 0

clientHeight, clientWidth NN n/a IE 4 DOM n/a

Read/Write

According to Microsoft’s developer documentation, these properties reflect the height and
width (in pixels) of the element’s content. But see the section “About client- and offset-
Properties” at the beginning of this chapter for details.

Example var midHeight = document.body.clientHeight/2

Value Integer pixel value.

Default None.

clientLeft, clientTop NN n/a IE 4 DOM n/a

Read-only

According to Microsoft’s developer documentation, these properties reflect the distance
between the “true” left and top edges of the document area and the edges of the element.
But see the section “About client- and offset- Properties” at the beginning of this chapter for
details. To get or set the pixel position of an element in the document, use the pixelLeft
and pixelTop properties.

Value A string value for a length in a variety of units or percentage.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

510 BODY
leftMargin NN n/a IE 4 DOM n/a

Read/Write

Width in pixels of the left margin of the BODY element in the browser window or frame. By
default, the browser inserts a small margin to keep content from abutting the left edge of
the window. Setting the property to an empty string is the same as setting it to zero.

Example document.body.leftMargin = 16

Value Integer of pixel count.

Default 10 (Windows); 8 (Macintosh).

link NN n/a IE 4 DOM 1

Read/Write

The color of a hypertext link that has not been visited (that is, the URL of the link is not in
the browser’s cache). This is one of three states for a link: unvisited, activated, and visited.
The color is applied to the link text or border around an image or object embedded within
an A element. This property has the same effect as setting the document object’s link-
Color property.

Example document.body.link = "#00FF00"

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default #0000FF

noWrap NN n/a IE 4 DOM 1

Read/Write

Whether the browser should render the body content as wide as is necessary to display a
line of nonbreaking text on one line. Abuse of this attribute can force the user into a great
deal of inconvenient horizontal scrolling of the page to view all of the content.

Example document.body.noWrap = "true"

Value Boolean value: true | false.

Default false

recordNumber NN n/a IE 4 DOM n/a

Read-only

Used with data binding, returns an integer representing the record within the data set that
generated the element). Values of this property can be used to extract a specific record
from an Active Data Objects (ADO) record set (see recordset property).
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

BODY 511

DOM
 Reference
Example
<SCRIPT FOR="tableTemplate" EVENT="onclick">
 myDataCollection.recordset.absoluteposition = this.recordNumber
 ...
</SCRIPT>

Value Integer.

Default None.

rightMargin NN n/a IE 4 DOM n/a

Read/Write

Width in pixels of the right margin of the BODY element in the browser window or frame.
By default, the browser inserts a small margin to keep content from abutting the right edge
of the window (except on the Macintosh). Setting the property to an empty string is the
same as setting it to zero.

Example document.body.leftMargin = 16

Value Integer of pixel count.

Default 10 (Windows); 0 (Macintosh).

scroll NN n/a IE 4 DOM n/a

Read/Write

Whether the window (or frame) displays scrollbars when the content exceeds the window
size.

Example document.body.scroll = "no"

Value

Not exactly a Boolean value. Requires one of the following string values: yes | no.

Default yes

scrollHeight, scrollWidth NN n/a IE 4 DOM n/a

Read-only

The meaning of these two properties is ambiguous based on Microsoft’s description and the
way they’re implemented in the Windows and Macintosh versions of Internet Explorer 4.
My best guess is that these properties are intended to measure the height and width (in
pixels) of the content of an element, even when some of the content cannot be seen unless
scrolled with scrollbars. The Macintosh version of the browser interprets this to mean the
amount of the content that you can see at any one time. The important point is that for key
elements, such as the BODY, the properties mean different things and can disrupt cross-plat-
form operation.

Example var midPoint = document.body.scrollHeight/2

Value Positive integer or zero.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

512 BODY
scrollLeft, scrollTop NN n/a IE 4 DOM n/a

Read/Write

The distance in pixels between the actual left or top edge of the element’s physical content
and the left or top edge of the visible portion of the content. Setting these properties allows
you to use a script to adjust the scrolling of content within a scrollable container, such as
text in a TEXTAREA element or an entire document in the browser window or frame. When
the content is not scrolled, both values are zero. Setting the scrollTop property to 15
scrolls the document upward by 15 pixels in the window; the scrollLeft property is
unaffected unless explicitly changed. The property values change as the user adjusts the
scrollbars.

Example document.body.scrollTop = 40

Value Positive integer or zero.

Default 0

tabIndex NN n/a IE 4 DOM 1

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their tabIndex properties are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest tabIndex value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same tabIndex values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the tabIndex property or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A value of -1 removes the element from
tabbing order altogether.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text and password INPUT fields.

Example document.body.tabIndex = 0

Value Integer.

Default None.

text NN n/a IE 4 DOM 1

Read/Write

The color of text for the entire document body. Equivalent to the foreground color.

Example document.body.text = "darkred"

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default Browser default (user customizable).
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

BR 513

DOM
 Reference
topMargin NN n/a IE 4 DOM n/a

Read/Write

Width in pixels of the top margin of the BODY element in the browser window or frame. By
default, the browser inserts a small margin to keep content from abutting the top edge of
the window. Setting the property to an empty string is the same as setting it to zero.

Example document.body.topMargin = 16

Value Integer of pixel count.

Default 15 (Windows); 8 (Macintosh).

vLink NN n/a IE 4 DOM 1

Read/Write

Color of a hypertext link that has been visited recently. The color is applied to the link text
or border around an image or object embedded within an A element. See also link and
aLink properties for unvisited and clicked link colors. Navigator’s corresponding property
is vlinkColor of the document object.

Example document.body.vLink = "gold"

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default

#551a8b (Navigator 4); #800080 (Internet Explorer 4 Windows); #006010 (Internet
Explorer 4 Macintosh).

createTextRange() NN n/a IE 4 DOM n/a

Creates a TextRange object from the source code of the current element. See the
TextRange object for details.

Returned Value

TextRange object.

Parameters

None.

BR NN n/a IE 4 DOM 1

The BR object reflects the BR element.

HTML Equivalent

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

514 BUTTON
Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

clear NN n/a IE 4 DOM 1

Read/Write

Tells the browser how to treat the next line of text following a BR element if the current text
is wrapping around a floating image or other object. The value you use depends on the
side of the page to which one or more inline images are pegged and how you want the
next line of text to be placed in relation to those images. The DOM working draft includes
methods to get and set the clear property of a BR object.

Example document.all.specialBreak.clear = "all"

Value Case-insensitive string of any of the following constants: all | left | right.

Default None.

BUTTON NN n/a IE 4 DOM 1

The BUTTON object reflects the BUTTON element. See the discussion of the BUTTON element
in Chapter 8 to see how it differs from the INPUT element of type button, covered next.

HTML Equivalent
<BUTTON>

Object Model Reference
IE [window.]document.all.elementID

className innerText offsetLeft outerHTML sourceIndex
clear isTextEdit offsetParent outerText style
document lang offsetTop parentElement tagName
id language offsetWidth parentTextEdit title
innerHTML offsetHeight

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

BUTTON 515

DOM
 Reference
Properties

Methods

Collections/Arrays

Event Handler Properties

accessKey dataSrc lang outerHTML sourceIndex
className disabled language outerText status
clientHeight document name parentElement style
clientLeft form offsetHeight parentTextEdit tabIndex
clientTop id offsetLeft scrollHeight tagName
clientWidth innerHTML offsetParent scrollLeft title
dataFld innerText offsetTop scrollTop type
dataFormatAs isTextEdit offsetWidth scrollWidth value

blur() focus() removeAttribute()
click() getAttribute() scrollIntoView()
contains() insertAdjacentHTML() setAttribute()
createTextRange() insertAdjacentText()

all[] children[] filters[]

Handler NN IE DOM
onafterupdate n/a 4 n/a
onbeforeupdate n/a 4 n/a
onblur n/a 4 n/a
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onfocus n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onresize n/a 4 n/a
onrowenter n/a 4 n/a
onrowexit n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

516 BUTTON
accessKey NN n/a IE 4 DOM 1

Read/Write

A single character key that “clicks” the button from the keyboard. The browser and oper-
ating system determine whether the user must press a modifier key (e.g., Ctrl, Alt, or
Command) with the access key to “click” on the button. In IE 4/Windows, the Alt key is
required, and the key is not case sensitive. Not working in IE 4/Mac.

Example document.all.myButton.accessKey = "n"

Value Single alphanumeric (and punctuation) keyboard character.

Default None.

clientHeight, clientWidth NN n/a IE 4 DOM n/a

Read/Write

According to Microsoft’s developer documentation, these properties reflect the height and
width (in pixels) of the element’s content. But see the section “About client- and offset-
Properties” at the beginning of this chapter for details.

Example var midHeight = document.all.myButton.clientHeight/2

Value Integer pixel value.

Default None.

clientLeft, clientTop NN n/a IE 4 DOM n/a

Read-only

According to Microsoft’s developer documentation, these properties reflect the distance
between the “true” left and top edges of the document area and the edges of the element.
But see the section “About client- and offset- Properties” at the beginning of this chapter for
details. To get or set the pixel position of an element in the document, use the pixelLeft
and pixelTop properties.

Value A string value for a length in a variety of units or percentage.

Default None.

dataFld NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to associate a remote data source column name to a BUTTON
object’s label. A DATASRC attribute must also be set for the element. Setting both the
dataFld and dataSrc properties to empty strings breaks the binding between element and
data source.

Example document.all.myButton.dataFld = "linkURL"

Value Case-sensitive identifier of the data source column.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

BUTTON 517

DOM
 Reference
dataFormatAs NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding, this property advises the browser whether the source material
arriving from the data source is to be treated as plain text or as tagged HTML.

Example document.all.myButton.dataFormatAs = "HTML"

Value IE 4 recognizes two possible settings: text | HTML

Default text

dataSrc NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute in the BUTTON element. Setting both the
dataFld and dataSrc properties to empty strings breaks the binding between element and
data source.

Example document.all.myButton.dataSrc = "#DBSRC3"

Value Case-sensitive identifier of the data source.

Default None.

disabled NN n/a IE 4 DOM 1

Read/Write

Whether the element is available for user interaction. When set to true, the element cannot
receive focus or be modified by the user. It is also not submitted with the form.

Example document.all.myButton.disabled = true

Value Boolean value: true | false.

Default false

form NN n/a IE 4 DOM n/a

Read-only

Returns a reference to the FORM element that contains the current element (if any). This
property is most often passed as a parameter for an event handler, using the this keyword
to refer to the current form control.

Example <BUTTON onClick="doValidate(this.form)">Click Here</BUTTON>

Value Object reference.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

518 BUTTON
name NN n/a IE 4 DOM 1

Read/Write

The identifier associated with the element when used as a form control. The value of this
property is submitted as one-half of the name/value pair when the form is submitted to the
server. Names are hidden from user view, since control labels are assigned via other means,
depending on the control type. Form control names may also be used by script references
to the objects.

Example document.all.compName.name = "company"

Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

scrollHeight, scrollWidth NN n/a IE 4 DOM n/a

Read-only

The meaning of these two properties is ambiguous based on Microsoft’s description and the
way they’re implemented in the Windows and Macintosh versions of Internet Explorer 4.
My best guess is that these properties are intended to measure the height and width (in
pixels) of the content of an element even when some of the content cannot be seen unless
scrolled with scrollbars. The Macintosh version of the browser interprets this to mean the
amount of the content that you can see at any one time. The important point is that for key
elements, such as the BODY, the properties mean different things and can disrupt cross-plat-
form operation.

Example var midPoint = document.all.myButton.scrollHeight/2

Value Positive integer or zero.

Default None.

scrollLeft, scrollTop NN n/a IE 4 DOM n/a

Read/Write

The distance in pixels between the actual left or top edge of the element’s physical content
and the left or top edge of the visible portion of the content. Setting these properties allows
you to use a script to adjust the scrolling of content within a scrollable container, such as
text in a TEXTAREA element or an entire document in the browser window or frame. When
the content is not scrolled, both values are zero. Setting the scrollTop property to 15
scrolls the document upward by 15 pixels in the window; the scrollLeft property is
unaffected unless explicitly changed. The property values change as the user adjusts the
scrollbars.

Example document.all.myButton.scrollTop = 40

Value Positive integer or zero.

Default 0
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

BUTTON 519

DOM
 Reference
status NN n/a IE 4 DOM n/a

Read/Write

Unlike the status property of other types of form controls, the property has no visual
impact on the button.

Value Boolean value: true | false.

Default null

tabIndex NN n/a IE 4 DOM 1

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their tabIndex properties are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest tabIndex value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same tabIndex values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the tabIndex property or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A value of -1 removes the element from
tabbing order altogether.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text and password INPUT fields.

Example document.all.myButton.tabIndex = 6

Value Integer.

Default None.

type NN n/a IE 4 DOM 1

Read-only

Whether the BUTTON element is specified as a button, reset, or submit style button.

Example
if (document.all.myButtonElement.type == "submit") {
 ...
}

Value One of the three constants (as a string): button | reset | submit.

Default button

value NN n/a IE 4 DOM 1

Read/Write

Current value associated with the form control that is submitted with the name/value pair
for the element. Although the property is operational in Internet Explorer 4, the Macintosh
version does not preserve values written to the property.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

520 button
Example document.all.myButton.value = "completed"

Value String.

Default None.

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.

Parameters

None.

createTextRange() NN n/a IE 4 DOM n/a

Creates a TextRange object from the source code of the current element. See the
TextRange object for details.

Returned Value

TextRange object.

Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.

button NN 2 IE 3 DOM 1

The button object is a form control generated with an INPUT element whose TYPE
attribute is set to "button". This element is similar to, but differs from, the BUTTON
element. For details on the distinctions, see the BUTTON HTML element description in
Chapter 8.

HTML Equivalent
<INPUT TYPE="button">
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

button 521

DOM
 Reference
Object Model Reference
NN [window.]document.formName.elementName

[window.]document.forms[i].elements[i]

IE [window.]document.formName.elementName
[window.]document.forms[i].elements[i]
[window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

accessKey form offsetHeight outerText tabIndex
className id offsetLeft parentElement tagName
dataFld isTextEdit offsetParent parentTextEdit title
dataSrc lang offsetTop recordNumber type
disabled language offsetWidth sourceIndex value
document name outerHTML style

blur() getAttribute() removeAttribute()
click() handleEvent() scrollIntoView()
contains() insertAdjacentHTML() setAttribute()
focus() insertAdjacentText()

all[] children[] filters[]

Handler NN IE DOM
onafterupdate n/a 4 n/a
onbeforeupdate n/a 4 n/a
onblur n/a 4 n/a
onchange n/a 4 n/a
onclick 3 4 n/a
ondblclick n/a 4 n/a
onerrorupdate n/a 4 n/a
onfilterchange n/a 4 n/a
onfocus n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown 4 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup 4 4 n/a
onselect n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

522 button
accessKey NN n/a IE 4 DOM 1

Read/Write

A single character key that “clicks” the button from the keyboard. The browser and oper-
ating system determine whether the user must press a modifier key (e.g., Ctrl, Alt, or
Command) with the access key to “click” the button. In IE 4/Windows, the Alt key is
required, and the key is not case sensitive. Not working in IE 4/Mac.

Example document.entryForm.myButton.accessKey = "n"

Value Single alphanumeric (and punctuation) keyboard character.

Default None.

dataFld NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to associate a remote data source column name to a button
object’s value property. A DATASRC attribute must also be set for the element. Setting both
the dataFld and dataSrc properties to empty strings breaks the binding between element
and data source.

Example document.myForm.myButton.dataFld = "linkURL"

Value Case-sensitive identifier of the data source column.

Default None.

dataSrc NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute. Setting both the dataFld and dataSrc prop-
erties to empty strings breaks the binding between element and data source.

Example document.myForm.myButton.dataSrc = "#DBSRC3"

Value Case-sensitive identifier of the data source.

Default None.

disabled NN n/a IE 4 DOM 1

Read/Write

Whether the element is available for user interaction. When set to true, the element cannot
receive focus or be modified by the user. It is also not submitted with the form.

Example document.forms[0].myButton.disabled = true

Value Boolean value: true | false.

Default false
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

button 523

DOM
 Reference
form NN 2 IE 3 DOM n/a

Read-only

Returns a reference to the FORM element that contains the current element (if any). This
property is most often passed as a parameter for an event handler, using the this keyword
to refer to the current form control.

Example
<INPUT TYPE="button" VALUE="Validate Form" onClick="doValidate(this.form)">

Value Object reference.

Default None.

name NN 2 IE 3 DOM 1

Read/Write

The identifier associated with the form control. The value of this property is submitted as
one-half of the name/value pair when the form is submitted to the server. Names are
hidden from user view, since control labels are assigned via other means, depending on the
control type. Form control names may also be used by script references to the objects.

Example document.orderForm.myButton.name = "Win32"

Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

recordNumber NN n/a IE 4 DOM n/a

Read-only

Used with data binding, returns an integer representing the record within the data set that
generated the element (i.e., an element whose content is filled via data binding). Values of
this property can be used to extract a specific record from an Active Data Objects (ADO)
record set (see recordset property).

Example
<SCRIPT FOR="tableTemplate" EVENT="onclick">
 myDataCollection.recordset.absoluteposition = this.recordNumber
 ...
</SCRIPT>

Value Integer.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

524 button
tabIndex NN n/a IE 4 DOM 1

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their tabIndex properties are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest tabIndex value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same tabIndex values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the tabIndex property or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A value of -1 removes the element from
tabbing order altogether.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text and password INPUT fields.

Example document.forms[0].ZIPButton.tabIndex = 6

Value Integer.

Default None.

type NN 3 IE 4 DOM 1

Read-only

Returns the type of form control element. The value is returned in all lowercase letters. It
may be necessary to cycle through all form elements in search of specific types to do some
processing on (e.g., emptying all form controls of type "text" while leaving other controls
untouched).

Example
if (document.forms[0].elements[3].type == "button") {
 ...
}

Value

Any of the following constants (as a string): button | checkbox | file | hidden | image
| password | radio | reset | select-multiple | select-one | submit | text |
textarea.

Default checkbox

value NN 2 IE 3 DOM 1

Read/Write

This is the rare time that the value property controls the label of a form control: the text
that appears on the button. A button input element is not submitted with the form.

Example document.forms[0].myButton.value = "Undo"

Value String.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

CAPTION 525

DOM
 Reference
Default None.

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.

Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
property objects had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.

handleEvent() NN 4 IE n/a DOM n/a

handleEvent(event)

Instructs the object to accept and process the event whose specifications are passed as the
parameter to the method. The object must have an event handler for the event type to
process the event.

Returned Value

None.

Parameters
event A Navigator 4 event object.

CAPTION NN n/a IE 4 DOM 1

The CAPTION object reflects the CAPTION element, which must always be nested inside a
TABLE element.

HTML Equivalent
<CAPTION>

Object Model Reference
IE [window.]document.all.elementID
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

526 CAPTION
Properties

Methods

Collections/Arrays

Event Handler Properties

align id offsetHeight outerText scrollWidth
className innerHTML offsetLeft parentElement sourceIndex
clientHeight innerText offsetParent parentTextEdit style
clientLeft isTextEdit offsetTop scrollHeight tagName
clientTop lang offsetWidth scrollLeft title
clientWidth language outerHTML scrollTop vAlign
document

blur() getAttribute() removeAttribute()
click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
focus()

all[] children[] filters[]

Handler NN IE DOM
onafterupdate n/a 4 n/a
onbeforeupdate n/a 4 n/a
onblur n/a 4 n/a
onchange n/a 4 n/a
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onerrorupdate n/a 4 n/a
onfilterchange n/a 4 n/a
onfocus n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onscroll n/a 4 n/a
onselect n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

CAPTION 527

DOM
 Reference
align NN n/a IE 4 DOM 1

Read/Write

Determines the horizontal location of the caption in the table. Whether the caption is on the
top or bottom is set via vAlign.

Example document.all.myCaption.align = "center"

Value Any of the following constants (as a string): center | left | right.

Default center

clientHeight, clientWidth NN n/a IE 4 DOM n/a

Read/Write

According to Microsoft’s developer documentation, these properties reflect the height and
width (in pixels) of the element’s content. But see the section “About client- and offset-
Properties” at the beginning of this chapter for details.

Example var midHeight = document.all.myCaption.clientHeight/2

Value Integer pixel value.

Default None.

clientLeft, clientTop NN n/a IE 4 DOM n/a

Read-only

According to Microsoft’s developer documentation, these properties reflect the distance
between the “true” left and top edges of the document area and the edges of the element.
But see the section “About client- and offset- Properties” at the beginning of this chapter for
details. To get or set the pixel position of an element in the document, use the pixelLeft
and pixelTop properties.

Value A string value for a length in a variety of units or percentage.

Default None.

scrollHeight, scrollWidth NN n/a IE 4 DOM n/a

Read-only

The meaning of these two properties is ambiguous based on Microsoft’s description and the
way they’re implemented in the Windows and Macintosh versions of Internet Explorer 4.
My best guess is that these properties are intended to measure the height and width (in
pixels) of the content of an element even when some of the content cannot be seen unless
scrolled with scrollbars. These properties are not available in IE 4/Macintosh.

Example var midPoint = document.all.myCaption.scrollHeight/2

Value Positive integer or zero.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

528 CAPTION
scrollLeft, scrollTop NN n/a IE 4 DOM n/a

Read/Write

The distance in pixels between the actual left or top edge of the element’s physical content
and the left or top edge of the visible portion of the content. Setting these properties allows
you to use scripts to adjust the scroll of content within a scrollable container, such as text in
a TEXTAREA element or an entire document in the browser window or frame. When the
content is not scrolled, both values are zero. Setting the scrollTop property to 15 scrolls
the document upward by 15 pixels in the window; the scrollLeft property is unaffected
unless explicitly changed. The property values change as the user adjusts the scrollbars.
These properties are not available in IE 4/Macintosh.

Example document.all.myCaption.scrollTop = 40

Value Positive integer or zero.

Default 0

vAlign NN n/a IE 4 DOM n/a

Read/Write

Whether the table caption appears above or below the table.

Example document.all.tabCaption.vAlign = "bottom"

Value Case-insensitive constant (as a string): bottom | top.

Default top

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.

Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

CENTER 529

DOM
 Reference
cells NN n/a IE 4 DOM n/a

A collection of all TD elements contained within a single TR element. Collection members
are sorted in source code order. Internet Explorer lets you use array notation or paren-
theses to access a single cell in the collection (e.g., document.all.myTable.
rows[0].cells[0], document.all.myTable.rows(0).cells(0)).

Object Model Reference
IE document.all.tableID.rows(i).cells(i)

document.all.tableID.rows[i].cells[i]

Properties

length NN n/a IE 4 DOM n/a

Read-only

Returns the number of elements in the collection.

Example var howMany = document.all.myTable.rows[0].cells.length

Value Integer.

CENTER NN n/a IE 4 DOM n/a

The CENTER object reflects the CENTER element.

HTML Equivalent
<CENTER>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

length

className isTextEdit offsetLeft outerHTML sourceIndex
document lang offsetParent outerText style
id language offsetTop parentElement tagName
innerHTML offsetHeight offsetWidth parentTextEdit title
innerText

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

530 checkbox
Event Handler Properties

checkbox NN 2 IE 3 DOM 1

The checkbox object is a form control generated with an INPUT element whose TYPE
attribute is set to "checkbox".

HTML Equivalent
<INPUT TYPE="checkbox">

Object Model Reference
NN [window.]document.formName.elementName

[window.]document.forms[i].elements[i]

IE [window.]document.formName.elementName
[window.]document.forms[i].elements[i]
[window.]document.all.elementID

Properties

Methods

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a

accessKey document name outerText style
checked form offsetHeight parentElement tabIndex
className id offsetLeft parentTextEdit tagName
dataFld indeterminate offsetParent recordNumber title
dataSrc isTextEdit offsetTop sourceIndex type
defaultChecked lang offsetWidth status value
disabled language outerHTML

blur() getAttribute() removeAttribute()
click() handleEvent() scrollIntoView()
contains() insertAdjacentHTML() setAttribute()
focus() insertAdjacentText()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

checkbox 531

DOM
 Reference
Collections/Arrays

Event Handler Properties

accessKey NN n/a IE 4 DOM 1

Read/Write

A single character key that “clicks” on the checkbox. The browser and operating system
determine whether the user must press a modifier key (e.g., Ctrl, Alt, or Command) with
the access key to “click” the checkbox. In IE 4/Windows, the Alt key is required, and the
key is not case sensitive. Not working in IE 4/Mac.

Example document.entryForm.myCheckbox.accessKey = "n"

Value Single alphanumeric (and punctuation) keyboard character.

Default None.

checked NN 2 IE 3 DOM 1

Read/Write

Whether the checkbox is selected or turned on by the user. Checkboxes operate indepen-
dently of each other. Only checkbox objects with the checked property set to true have
their name/value pair submitted with the form. To find out whether the form element is set
to be checked when the page loads, see the defaultChecked property.

all[] children[] filters[]

Handler NN IE DOM
onafterupdate n/a 4 n/a
onbeforeupdate n/a 4 n/a
onblur n/a 4 n/a
onchange n/a 4 n/a
onclick 3 4 n/a
ondblclick n/a 4 n/a
onerrorupdate n/a 4 n/a
onfilterchange n/a 4 n/a
onfocus n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown 4 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup 4 4 n/a
onselect n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

532 checkbox
Example
if (document.choiceForm.monitors.checked) {

process for the “monitors” checkbox being checked
}

Value Boolean: true | false.

Default false

dataFld NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to associate a remote data source column name to a checkbox
object’s VALUE attribute. A DATASRC attribute must also be set for the element. Setting both
the dataFld and dataSrc properties to empty strings breaks the binding between element
and data source.

Example document.myForm.myCheckbox.dataFld = "linkURL"

Value Case-sensitive identifier of the data source column.

Default None.

dataSrc NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute. Setting both the dataFld and dataSrc prop-
erties to empty strings breaks the binding between element and data source.

Example document.myForm.myCheckbox.dataSrc = "#DBSRC3"

Value Case-sensitive identifier of the data source.

Default None.

defaultChecked NN 2 IE 3 DOM 1

Read/Write

Whether the element has the CHECKED attribute set in the tag. You can compare the current
checked property against defaultChecked to see whether the state of the control has
changed since the document loaded. Changing this property does not affect the current
checked status.

Example
var cBox = document.forms[0].checkbox1
if (cBox.checked != cBox.defaultChecked) {

process for changed state
}

Value Boolean value: true | false.

Default Determined by HTML tag attribute.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

checkbox 533

DOM
 Reference
disabled NN n/a IE 4 DOM 1

Read/Write

Whether the element is available for user interaction. When set to true, the element cannot
receive focus or be modified by the user. It is also not submitted with the form.

Example document.forms[0].myCheckbox.disabled = true

Value Boolean value: true | false.

Default false

form NN 2 IE 3 DOM n/a

Read-only

Returns a reference to the FORM element that contains the current element (if any). This
property is most often passed as a parameter for an event handler, using the this keyword
to refer to the current form control.

Example
<INPUT TYPE="button" VALUE="Validate Form" onClick="doValidate(this.form)">

Value Object reference.

Default None.

indeterminate NN n/a IE 4 DOM n/a

Read/Write

Whether a checkbox is visually represented as being neither checked nor unchecked, yet
still active. This middle ground is rendered differently for different operating systems. In
Windows, the checkbox is grayed out (with the checkmark still visible if it was there origi-
nally) but still active. On the Macintosh, the checkbox displays a hyphen inside the box.
The indeterminate state usually means some change elsewhere on the page has likely
affected the setting of the checkbox, requiring the user to verify the checkbox’s setting for
accuracy.

Example document.orderForm.2DayAir.indeterminate = true

Value Boolean value: true | false.

Default false

name NN 2 IE 3 DOM 1

Read/Write

The identifier associated with the form control. The value of this property is submitted as
one-half of the name/value pair when the form is submitted to the server. Names are
hidden from user view, since control labels are assigned via other means, depending on the
control type. Form control names may also be used by script references to the objects.

Example document.orderForm.myCheckbox.name = "Win32"
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

534 checkbox
Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

recordNumber NN n/a IE 4 DOM n/a

Read-only

Used with data binding, returns an integer representing the record within the data set that
generated the element (i.e., an element whose content is filled via data binding). Values of
this property can be used to extract a specific record from an Active Data Objects (ADO)
record set (see recordset property).

Example
<SCRIPT FOR="tableTemplate" EVENT="onclick">
 myDataCollection.recordset.absoluteposition = this.recordNumber
 ...
</SCRIPT>

Value Integer.

Default None.

status NN n/a IE 4 DOM n/a

Read/Write

Whether the element is highlighted/checked. This property is identical to the value
property.

Example
if (document.forms[0].56KbpsBox.status) {
 ...
}

Value Boolean value: true | false.

Default None.

tabIndex NN n/a IE 4 DOM 1

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their tabIndex properties are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest tabIndex value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same tabIndex values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the tabIndex property or have the value set to zero. These elements receive focus in the
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

checkbox 535

DOM
 Reference
order in which they appear in the document. A value of -1 removes the element from
tabbing order altogether.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text and password INPUT fields.

Example document.forms[0].ZIP.tabIndex = 6

Value Integer.

Default None.

type NN 3 IE 4 DOM 1

Read-only

Returns the type of form control element. The value is returned in all lowercase letters. It
may be necessary to cycle through all form elements in search of specific types to do some
processing on (e.g., emptying all form controls of type "text" while leaving other controls
untouched).

Example
if (document.forms[0].elements[3].type == "checkbox") {
 ...
}

Value

Any of the following constants (as a string): button | checkbox | file | hidden | image
| password | radio | reset | select-multiple | select-one | submit | text |
textarea.

Default checkbox

value NN 2 IE 3 DOM 1

Read/Write

Current value associated with the form control that is submitted with the name/value pair
for the element (if the checkbox is checked). All values are strings, but they may represent
other kinds of data, including Boolean and numeric values.

Example document.forms[0].myBox.value = "*"

Value String.

Default None.

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

536 children
Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.

handleEvent() NN 4 IE n/a DOM n/a

handleEvent(event)

Instructs the object to accept and process the event whose specifications are passed as the
parameter to the method. The object must have an event handler for the event type to
process the event.

Returned Value

None.

Parameters
event A Navigator 4 event object.

children NN n/a IE 4 DOM n/a

A collection of all elements contained in the current element. Collection members are sorted
in source code order. Internet Explorer lets you use array notation or parentheses to access
a single element in the collection.

Object Model Reference
IE document.all.elementID.children(i)

document.all.elementID.children[i]

Properties

length NN n/a IE 4 DOM n/a

Read-only

Returns the number of elements in the collection.

Example var howMany = document.body.children.length

Value Integer.

length
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

COL, COLGROUP 537

DOM
 Reference
CITE
See ACRONYM.

CODE
See ACRONYM.

COL, COLGROUP NN n/a IE 4 DOM n/a

The COL object reflects the COL element; the COLGROUP object reflects the COLGROUP
element. Both elements provide ways of assigning multiple adjacent columns to groups for
convenience in assigning styles, widths, and other visual treatments.

HTML Equivalent
<COL>
<COLGROUP>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

align NN n/a IE 4 DOM n/a

Read/Write

Defines the horizontal alignment of content within cells covered by the COL or COLGROUP
element.

Example document.all.myCol.align = "center"

Value Any of the three horizontal alignment constants: center | left | right.

Default left

align lang offsetTop parentTextEdit tagName
className language offsetWidth sourceIndex title
document offsetHeight outerHTML span vAlign
id offsetLeft outerText style width
isTextEdit offsetParent parentElement

click() removeAttribute() setAttribute()
getAttribute()

all[] children[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

538 COMMENT
span NN n/a IE 4 DOM n/a

Read/Write

The number of adjacent columns for which the element’s attribute and style settings apply.

Example document.all.myColgroup.span = 2

Value Positive integer.

Default 1

vAlign NN n/a IE 4 DOM n/a

Read/Write

The manner of vertical alignment of text within the column grouping’s cells.

Example document.all.myCol.vAlign = "baseline"

Value Case-insensitive constant (as a string): baseline | bottom | middle | top.

Default middle

width NN n/a IE 4 DOM n/a

Read/Write

The width in pixels of each column of the column grouping. Changes to these values are
immediately reflected in reflowed content on the page.

Example document.all.myColgroup.width = 150

Value Integer.

Default None.

COMMENT NN n/a IE 4 DOM 1

The COMMENT object reflects the ! element. Most properties are not available or aren’t fully
functional in the Macintosh version. Despite the presence of an id property, you cannot set
an ID attribute in the HTML for a comment element.

HTML Equivalent
<!--comment text-->

Object Model Reference
IE [window.]document.all.tags("!")[i]

Properties
className isTextEdit offsetParent outerText style
document lang offsetTop parentElement tagName
id language offsetWidth parentTextEdit text
innerHTML offsetHeight outerHTML sourceIndex title
innerText offsetLeft
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

DD 539

DOM
 Reference
Methods

Collections/Arrays

text NN n/a IE 4 DOM 1

Read/Write

The text content of the element. Due to the nature of this element, the value of the text
property is identical to the values of the innerHTML and outerHTML properties. Changes to
this property do not affect the text of the comment as viewed in the browser’s source code
version of the document. This property is not available in IE 4/Macintosh.

Example
document.all.tags("!")[4].text = "Replaced comment, but no one will know."

Value String.

Default None.

DD NN n/a IE 4 DOM 1

The DD object reflects the DD element.

HTML Equivalent
<DD>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

click() removeAttribute() setAttribute()
getAttribute()

all[] children[]

className isTextEdit offsetLeft outerHTML sourceIndex
document lang offsetParent outerText style
id language offsetTop parentElement tagName
innerHTML noWrap offsetWidth parentTextEdit title
innerText offsetHeight

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

540 DEL
Event Handler Properties

noWrap NN n/a IE 4 DOM 1

Read/Write

Whether the browser should render the element as wide as is necessary to display a line of
nonbreaking text on one line. Abuse of this attribute can force the user into a great deal of
inconvenient horizontal scrolling of the page to view all of the content.

Example document.all.wideBody.noWrap = "true"

Value Boolean value: true | false.

Default false

DEL NN n/a IE 4 DOM 1

The DEL object reflects the DEL element.

HTML Equivalent

Object Model Reference
IE [window.]document.all.elementID

Properties

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a

cite innerHTML offsetHeight outerHTML sourceIndex
className innerText offsetLeft outerText style
dateTime isTextEdit offsetParent parentElement tagName
document lang offsetTop parentTextEdit title
id language offsetWidth
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

DEL 541

DOM
 Reference
Methods

Collections/Arrays

Event Handler Properties

cite NN n/a IE n/a DOM 1

Read/Write

A description of the reason for the change or other notation to be associated with the
element, but normally hidden from view.

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

dateTime NN n/a IE n/a DOM 1

Read/Write

The date and time the deletion was made.

Value

See the description of the DATETIME attribute of the DEL element in Chapter 8 for value
formatting details.

Default None.

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

542 DIR
DFN
 See ACRONYM.

DIR NN n/a IE 4 DOM 1

The DIR object reflects the DIR element. This element, originally intended as a multi-
column list format, is treated the same as the UL element.

HTML Equivalent
<DIR>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

className isTextEdit offsetLeft outerHTML sourceIndex
document lang offsetParent outerText style
id language offsetTop parentElement tagName
innerHTML offsetHeight offsetWidth parentTextEdit title
innerText

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

DIV 543

DOM
 Reference
DIV NN n/a IE 4 DOM 1

The DIV object reflects the DIV element. This element creates a block-level element often
used for element positioning or containment grouping of several related elements. In the
Windows version of IE 4, the client and scroll properties are not available unless the
DIV element has its position style attribute set to absolute.

HTML Equivalent
<DIV>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

align document language outerHTML scrollTop
className isTextEdit offsetHeight outerText scrollWidth
clientHeight id offsetLeft parentElement sourceIndex
clientWidth innerHTML offsetParent parentTextEdit style
dataFld innerText offsetTop scrollHeight tagName
dataFormatAs lang offsetWidth scrollLeft title
dataSrc

blur() getAttribute() removeAttribute()
click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
focus()

all[] children[] filters[]

Handler NN IE DOM
onafterupdate n/a 4 n/a
onbeforeupdate n/a 4 n/a
onblur n/a 4 n/a
onchange n/a 4 n/a
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfocus n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

544 DIV
align NN n/a IE 4 DOM 1

Read/Write

Defines the horizontal alignment of the element within its surrounding container.

Example document.all.myDIV.align = "center"

Value Any of the three horizontal alignment constants: center | left | right.

Default left

clientHeight, clientWidth NN n/a IE 4 DOM n/a

Read/Write

According to Microsoft’s developer documentation, these properties reflect the height and
width (in pixels) of the element’s content. But see the section “About client- and offset-
Properties” at the beginning of this chapter for details.

Example var midHeight = document.all.myDiv.clientHeight/2

Value Integer pixel value.

Default None.

dataFld NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to associate a remote data source column name to a DIV
element’s content. A DATASRC attribute must also be set for the element. Setting both the
dataFld and dataSrc properties to empty strings breaks the binding between element and
data source.

Example document.all.myDiv.dataFld = "comment"

Value Case-sensitive identifier of the data source column.

Default None.

dataFormatAs NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding, this property advises the browser whether the source material
arriving from the data source is to be treated as plain text or as tagged HTML.

onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onresize n/a 4 n/a
onrowenter n/a 4 n/a
onrowexit n/a 4 n/a
onscroll n/a 4 n/a
onselectstart n/a 4 n/a

Handler NN IE DOM
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

DIV 545

DOM
 Reference
Example document.all.myDiv.dataFormatAs = "text"

Value IE 4 recognizes two possible settings: text | HTML.

Default text

dataSrc NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute. Setting both the dataFld and dataSrc prop-
erties to empty strings breaks the binding between element and data source.

Example document.all.myDiv.dataSrc = "#DBSRC3"

Value Case-sensitive identifier of the data source.

Default None.

scrollHeight, scrollWidth NN n/a IE 4 DOM n/a

Read-only

The meaning of these two properties is ambiguous based on Microsoft’s description and the
way they’re implemented in the Windows and Macintosh versions of Internet Explorer 4.
My best guess is that these properties are intended to measure the height and width (in
pixels) of the content of an element even when some of the content cannot be seen unless
scrolled with scrollbars. The Macintosh version of the browser interprets this to mean the
amount of the content that you can see at any one time. The important point is that for key
elements, such as the BODY, the properties mean different things and can disrupt cross-plat-
form operation.

Example var midPoint = document.all.myDiv.scrollHeight/2

Value Positive integer or zero.

Default None.

scrollLeft, scrollTop NN n/a IE 4 DOM n/a

Read/Write

The distance in pixels between the actual left or top edge of the element’s physical content
and the left or top edge of the visible portion of the content. Setting these properties allows
you to use scripts to adjust the scroll of content within a scrollable container, such as text in
a TEXTAREA element or an entire document in the browser window or frame. When the
content is not scrolled, both values are zero. Setting the scrollTop property to 15 scrolls
the document upward by 15 pixels in the window; the scrollLeft property is unaffected
unless explicitly changed. The property values change as the user adjusts the scrollbars.

Example document.all.myDiv.scrollTop = 40

Value Positive integer or zero.

Default 0
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

546 DL
blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.

Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.

DL NN n/a IE 4 DOM 1

The DL object reflects the DL element. This element is the wrapper for a definition list
grouping.

HTML Equivalent
<DL>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

className innerText offsetLeft outerHTML sourceIndex
compact isTextEdit offsetParent outerText style
document lang offsetTop parentElement tagName
id language offsetWidth parentTextEdit title
innerHTML offsetHeight

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

document 547

DOM
 Reference
Event Handler Properties

compact NN n/a IE 4 DOM 1

Read/Write

When set to true, the compact property instructs the browser to render a related DT and
DD pair on the same line if space allows. This compact styling is intended for DT elements
consisting of only a few characters.

Example document.all.tags("DL").compact = true

Value Boolean value: true | false.

Default false

document NN 2 IE 3 DOM 1

The document object represents both the content viewed in the browser window or frame
and the other content of the HTML file loaded into the window or frame. Thus, all informa-
tion from the HEAD portion of the file is also part of the document object. All references to
elements must include a reference to the document object. The document object has no
name other than its hard-wired object name: document.

Object Model Reference
NN [window.]document

IE [window.]document

Properties

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a

activeElement charset expando location selection
alinkColor cookie fgColor parentWindow title
bgColor defaultCharset lastModified readyState URL
body domain linkColor referrer vlinkColor
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

548 document
Methods

Collections/Arrays

Event Handler Properties

activeElement NN n/a IE 4 DOM n/a

Read-only

Reference to the object that currently has focus in the document. To learn more about the
object, you’ll need to examine the object’s name or other properties. Because buttons and
other elements do not receive focus on the Macintosh, the returned value of this property
may vary with operating system.

Example var currObj = document.activeElement

captureEvents() getSelection() queryCommandText()
clear() handleEvent() queryCommandValue()
close() open() releaseEvents()
createElement() queryCommandEnabled() routeEvent()
createStyleSheet() queryCommandIndterm() write()
elementFromPoint() queryCommandState() writeln()
execCommand() queryCommandSupported()

all[] children[] forms[] images[] scripts[]
anchors[] embeds[] frames[] links[] styleSheets[]
applets[] filters[] ids[] plugins[] tags[]
classes[]

Handler NN IE DOM
onafterupdate n/a 4 n/a
onbeforeupdate n/a 4 n/a
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onerrorupdate n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onreadystatechange n/a 4 n/a
onrowenter n/a 4 n/a
onrowexit n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

document 549

DOM
 Reference
Value Document object reference.

Default window

alinkColor NN 2 IE 3 DOM n/a

Read/Write (IE)

Color of a hypertext link as it is being clicked. The color is applied to the link text or
border around an image or object embedded within an A element. See also linkColor and
vlinkColor properties for unvisited and visited link colors. Internet Explorer 4 and the
DOM have a parallel aLink property of the BODY object. Dynamically changed values for
alinkColor are not reflected on the page in Navigator.

Example document.alinkColor = "green"

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default #0000FF

bgColor NN 2 IE 3 DOM n/a

Read/Write

Background color of the element. This color setting is not reflected in the style sheet back-
groundColor property except for Navigator LAYER objects. Even if the BGCOLOR attribute
or bgColor property is set with a plain-language color name, the returned value is always a
hexadecimal triplet.

Setting the bgColor property of a document in Navigator 2 or 3 for Macintosh or Unix does
not properly redraw the window. Window content is obscured by the new color on those
platforms.

Example document.bgColor = "yellow"

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default Varies with browser and operating system.

body NN n/a IE 4 DOM 1

Read-only

Returns a reference to the BODY object defined by the BODY element within the document.
This property is used as a gateway to the BODY object’s properties.

Example document.body.leftMargin = 15

Value Object reference.

Default The current BODY object.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

550 document
charset NN n/a IE 4 DOM n/a

Read/Write

Character encoding of the document’s content.

Example
if (document.charset == "csISO5427Cyrillic") {

process for Cyrillic charset
}

Value

Case-insensitive alias from the character set registry (ftp://ftp.isi.edu/in-notes/iana/assign-
ments/character-sets).

Default Determined by browser.

cookie NN 2 IE 3 DOM 1

Read/Write

The HTTP cookie associated with the domain of the document and stored on the client
machine in the “cookie file.” Reading and writing the cookie property are not parallel
operations. Reading a cookie property returns a semicolon-delimited list of name/value
pairs in the following format:

name=value

Up to 20 of these pairs can be stored in the cookie property for a given domain (regardless
of the number of HTML documents used in that web site). A total of 4,000 characters can be
stored in the cookie, but it is advisable to keep each name/value pair to less than 2,000
characters in length. It is up to your scripting code to parse the cookie property value for
an individually named cookie’s value.

Writing cookie property values allows more optional pairs of data associated with a single
name/value pair. The format is as follows:

document.cookie = "name=value
 [; expires=timeInGMT]
 [; path=pathName]
 [; domain=domainName]
 [; secure]"

No matter how many optional subproperties you set per cookie, only the name/value pair
may be retrieved. All cookie data written to the cookie property is maintained in the
browser’s memory until the browser quits. If an expiration date has been made part of the
cookie data and that time has not yet expired, the cookie data is saved to the actual cookie
file; otherwise, the cookie data is discarded. The browser automatically deletes cookie data
that has expired when the browser next starts.

Example
var exp = new Date()
var nowPlusOneWeek = exp.getTime() + (7 * 24 * 60 * 60 * 1000)
exp.setTime(nowPlusOneWeek)
document.cookie = "userName=visitor; expires=" + exp.toGMTString()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

document 551

DOM
 Reference
Value Cookie data. See description.

Default None.

defaultCharset NN n/a IE 4 DOM n/a

Read/Write

Character encoding of the content of the document.

Example document.defaultCharset = "csISO5427Cyrillic "

Value

Case-insensitive alias from the character set registry (ftp://ftp.isi.edu/in-notes/iana/assign-
ments/character-sets).

Default Determined by browser.

domain NN 3 IE 4 DOM n/a

Read/Write

The hostname of the server that served up the document. If documents from different
servers on the same domain must exchange content with each other, the domain proper-
ties of both documents must be set to the same domain to avoid security restrictions.
Normally, if the hosts don’t match, JavaScript disallows access to the other document’s form
data. This property allows, for example, a page from the www server to communicate with
a page served up by a secure server.

Example document.domain = "megaCorp.com"

Value

String of the domain name that two documents have in common (exclusive of the server
name).

Default None.

expando NN n/a IE 4 DOM n/a

Read/Write

Whether scripts in the current document allow the creation and use of custom properties
assigned to the document object. The extensible nature of JavaScript allows scripters to
create a new object property merely by assigning a value to it (as in document.stooge =
"Curly"). This also means the document accepts incorrectly spelled property assignments,
such as forgetting to set a middle letter of a long property name to uppercase (margin-
LeftColor). Such assignments are accepted without question, but the desired result is
nowhere to be seen. If you don’t intend to create custom properties, consider setting docu-
ment.expando to false in an opening script statement as you author a page. This could
help prevent spelling errors from causing bugs. The setting affects only scripts in the current
document.

Example document.expando = false
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

552 document
Value Boolean value: true | false.

Default true

fgColor NN 2 IE 3 DOM n/a

Read/Write

The foreground (text) color for the document. While you can change this property in Navi-
gator, the text does not change dynamically in response (at least through Version 4).

Example document.fgColor = "darkred"

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default Browser default (usually black).

lastModified NN 2 IE 3 DOM n/a

Read-only

The date (as a string) on which the server says the document file was last modified. Some
servers don’t supply this information at all or correctly.

Example document.write(document.lastModified)

Value String representation of a date.

Default None.

linkColor NN 2 IE 3 DOM n/a

Read/Write

The color of a hypertext link that has not been visited (that is, the URL of the link is not in
the browser’s cache). This is one of three states for a link: unvisited, activated, and visited.
The color is applied to the link text or border around an image or object embedded within
an A element. Changes to this property do not dynamically change the link color in Navi-
gator 4 or earlier. In Internet Explorer 4, this property has the same effect as setting the
BODY object’s link property.

Example document.link Color= "#00FF00"

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default #0000FF
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

document 553

DOM
 Reference
location NN 2 IE 3 DOM 1

Read/Write

The URL of the current document. This property was deprecated in Navigator starting with
Version 3. Navigator prefers the document.URL property to reflect this value. To navigate to
another page, you should assign a URL to the location.href property.

Example document.location = "products/widget33.html"

Value A full or relative URL as a string.

Default Document URL.

parentWindow NN n/a IE 4 DOM n/a

Read-only

Returns a reference to the window object (which may be a frame in a frameset) that
contains the current document. You can use this reference to access the window’s proper-
ties and methods directly. The returned value is the same as the window reference from the
document.

Example var siblingCount = document.parentWindow.frames.length

Value Element object reference.

Default window object.

readyState NN n/a IE 4 DOM n/a

Read-only

Returns the current download status of the document content. If a script (especially one
initiated by a user event) can perform some actions while the document is still loading, but
must avoid other actions until the entire page has loaded, this property provides interme-
diate information about the loading process. You would use its value in condition tests. The
value of this property changes during loading as the loading state changes. Each change of
the property value fires an onReadyStateChange event.

Example
if (document.readyState == "loading") {

statements for alternate handling
}

Value

One of the following values (as strings): complete | interactive | loading | unini-
tialized. Some elements may allow the user to interact with partial content, in which case
the property may return interactive until all loading has completed.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

554 document
referrer NN 2 IE 3 DOM 1

Read-only

Returns a string of the URL of the page from which the current page was accessed,
provided the original page had a link to the current page. Many server logs capture this
information as well. Scripts can see whether the visitor reached the current document from
specific origins and perhaps present slightly different content on the page accordingly. If
the visitor arrived by another method, such as typing the document URL into a browser
dialog or by selecting a bookmark, the referrer property returns an empty string.

Example
if (document.referrer) {
 document.write("<P>Thanks for following the link to our web site.</P>")
}

Value String.

Default None.

selection NN n/a IE 4 DOM n/a

Read-only

Returns a selection object. To work with text that has been selected by the user or script,
you must convert the selection to a TextRange object. This is possible only in Internet
Explorer for Win32.

Example var range = document.selection.createRange()

Value Object reference.

Default None.

title NN 2 IE 3 DOM n/a

Read/Write

Unlike the title property for objects that reflect HTML elements, the document.title
property refers to the content of the TITLE element defined in the HEAD portion of a docu-
ment. The title content appears in the browser’s titlebar to help identify the document. This
is also the content that goes into a bookmark listing for the page.

Example document.title = "Fred\'s Home Page"

Value String.

Default None.

URL NN 3 IE 4 DOM n/a

Read/Write

The URL of the current document. The value is the same as location.href. Netscape
deprecates the usage of the document.location property in favor of the document.URL
property to avoid potential confusion (by scripters and JavaScript interpreter engines)
between the location object and document.location property. To navigate to another
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

document 555

DOM
 Reference
page, it is safest (for cross-browser and backward compatibility) to assign a URL string value
to the location.href property, rather than this document-centered property.

Example document.URL = "http://www.megacorp.com"

Value Complete or relative URL as a string.

Default The current document’s URL.

vlinkColor NN 2 IE 3 DOM n/a

Read/Write (IE)

Color of a hypertext link that has been visited recently. The color is applied to the link text
or border around an image or object embedded within an A element. See also alinkColor
and linkColor properties for clicked and unvisited link colors. Internet Explorer 4 and the
DOM have a parallel vLink property of the BODY object. Changed values are not reflected
on the page in Navigator.

Example document.vlinkColor = "gold"

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default

#551a8b (Navigator 4); #800080 (Internet Explorer 4 Windows); #006010 (Internet
Explorer 4 Macintosh).

captureEvents() NN 4 IE n/a DOM n/a

captureEvents(eventTypeList)

Instructs the browser to grab events of a specific type before they reach their intended
target objects. The object invoking this method must then have event handlers defined for
the given event types to process the event. See Chapter 6.

Returned Value

None.

Parameters
eventTypeList

A comma-separated list of case-sensitive event types as derived from the avail-
able Event object constants, such as Event.CLICK or Event.MOUSEMOVE.

clear() NN 2 IE 3 DOM n/a

Removes the current document from the window or frame, usually in preparation to open a
new stream for writing new content. The document.write() and document.writeln()
methods automatically invoke this method. Many bugs with the document.clear()
method plagued earlier browser versions. Even today, it is best to let the document writing
methods handle the job for you.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

556 document
Returned Value

None.

Parameters

None.

close() NN 2 IE 3 DOM n/a

Closes the document writing stream to a window or frame. If a script uses
document.write() or document.writeln() to generate all-new content for a window or
frame, you must append a document.close() method to make sure the entire content is
written to the document. Omitting this method may cause some content not to be written.
This method also prepares the window or frame for a brand-new set of content with the
next document writing method. Do not, however, use document.close() if you use the
document writing methods to dynamically write content to a page loading from the server.

Returned Value

None.

Parameters

None.

createElement() NN n/a IE 4 DOM n/a

createElement("tagName")

Generates in memory an instance of an object associated with the tag passed as a param-
eter to the method. Use this method to create new AREA and OPTION elements. You may
then assign property values to fill out the features of the element, such as the src property
of an image object. Any new element of these types must then be added to their collec-
tions (with the add() method).

Returned Value

Object reference.

Parameters
tagName A string of the uppercase tag name of the desired new element:

document.createElement("OPTION").

createStyleSheet() NN n/a IE 4 DOM n/a

createStyleSheet(["url"[, index]])

Creates and adds a new style sheet for the document. This is also the method you can use
to dynamically load an external style sheet after the document has already loaded. To do
so, specify the URL of the external .css file as the first parameter. If you’d rather script the
addition of individual style sheet rules, you can do so in the Win32 version only. Specify an
empty string for the first parameter and then use the addRule() method for the
styleSheet object for each rule you wish to dynamically add to the style sheet.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

document 557

DOM
 Reference
Returned Value

styleSheet object reference (but null in IE 4/Macintosh, preventing further assignments
of rules).

Parameters
url A string of the URL of an external .css style sheet definition file.

index Optional zero-based integer that indicates where among the styleSheets[]
collection this new style sheet should be inserted. Default behavior is to
append to the end of the collection, but this may affect cascading rules for your
document. See Chapter 3, Adding Style Sheets to Documents.

elementFromPoint() NN n/a IE 4 DOM n/a

elementFromPoint(x, y)

Returns a reference to the object directly underneath the pixel coordinates specified by the
x (horizontal) and y (vertical) parameters. For an element to be recognized, it must be
capable of responding to mouse events. Also, if more than one element is positioned in the
same location, the element with the highest zIndex value or, given equal zIndex values,
the element that comes last in the source code order is the one returned.

Returned Value

Element object reference.

Parameters
x Horizontal pixel measure relative to the left edge of the window or frame.

y Vertical pixel measure relative to the top edge of the window or frame.

execCommand() NN n/a IE 4 DOM n/a

execCommand("commandName"[, UIFlag[, value]])

Available only in the Win32 platform for IE 4, the execCommand() method executes the
named command. Most commands require that a TextRange object be created first for an
insertion point. See Appendix D, Internet Explorer Commands, for a list of commands.

Returned Value

Boolean value: true if command was successful; false if unsuccessful.

Parameters
commandName

A case-insensitive string value of the command name. See Appendix D.

UIFlag Optional Boolean value: true to display any user interface triggered by the
command (if any); false to prevent such display.

value A parameter value for the command.

getSelection() NN 4 IE n/a DOM n/a

Captures the current text selection in the document. For IE, read the selection property
instead.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

558 document
Returned Value

String.

Parameters

None.

handleEvent() NN 4 IE n/a DOM n/a

handleEvent(event)

Instructs the object to accept and process the event whose specifications are passed as the
parameter to the method. The object must have an event handler for the event type to
process the event. See Chapter 8.

Returned Value

None.

Parameters
event A Navigator 4 event object.

open() NN 2 IE 3 DOM n/a

open("MIMEType"[, "replace"])

Opens the output stream for writing to the current window or frame. If document.clear()
has not already been invoked, it is automatically invoked in response to the
document.open() method. Early version bugs may lead you to use document.write()
and document.writeln() to take care of this method more reliably for you.

Returned Value

None.

Parameters
MIMEType Advises the browser of the MIME type of the data to be written in subsequent

statements. Navigator supports: "text/html" | "text/plain" | "image/
gif" | "image/jpeg" | "image/xbm" | "plugIn". Only "text/html"
supported in Internet Explorer 4.

replace The presence of this parameter directs the browser to replace the entry in the
history list for the current document with the document about to be written.

queryCommandEnabled() NN n/a IE 4 DOM n/a

queryCommandEnabled("commandName")

Whether the command can be invoked in light of the current state of the document or
selection. Available only in the Win32 platform for IE 4.

Returned Value

Boolean value: true if enabled; false if not.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

document 559

DOM
 Reference
Parameters
commandName

A case-insensitive string value of the command name. See Appendix D.

queryCommandIndeterm() NN n/a IE 4 DOM n/a

queryCommandIndeterm("commandName")

Whether the command is in an indeterminate state. Available only in the Win32 platform for
IE 4.

Returned Value

Boolean value: true | false.

Parameters
commandName

A case-insensitive string value of the command name. See Appendix D.

queryCommandState() NN n/a IE 4 DOM n/a

queryCommandState("commandName")

Determines the current state of the named command. Available only in the Win32 platform
for IE 4.

Returned Value

true if the command has been completed; false if the command has not completed; null
if the state cannot be accurately determined.

Parameters
commandName

A case-insensitive string value of the command name. See Appendix D.

queryCommandSupported() NN n/a IE 4 DOM n/a

queryCommandSupported("commandName")

Determines whether the named command is supported by the document object. Available
only in the Win32 platform for IE 4.

Returned Value

Boolean value: true | false.

Parameters
commandName

A case-insensitive string value of the command name. See Appendix D.

queryCommandText() NN n/a IE 4 DOM n/a

queryCommandText("commandName")

Returns text associated with the command. Available only in the Win32 platform for IE 4.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

560 document
Returned Value

String.

Parameters
commandName

A case-insensitive string value of the command name. See Appendix D.

queryCommandValue() NN n/a IE 4 DOM n/a

queryCommandValue("commandName")

Returns the value associated with the command, such as the name font of the selection.
Available only in the Win32 platform for IE 4.

Returned Value

Depends on the command.

Parameters
commandName

A case-insensitive string value of the command name. See Appendix D.

releaseEvents() NN 4 IE n/a DOM n/a

releaseEvents(eventTypeList)

The opposite of document.captureEvents(), this method turns off event capture at the
document level for one or more specific events named in the parameter list. See Chapter 6.

Returned Value

None.

Parameters
eventTypeList

A comma-separated list of case-sensitive event types as derived from the avail-
able Event object constants, such as Event.CLICK or Event.MOUSEMOVE.

routeEvent() NN 4 IE n/a DOM n/a

routeEvent(event)

Used inside an event handler function, this method directs Navigator to let the event pass to
its intended target object. See Chapter 6.

Returned Value

None.

Parameters
event A Navigator 4 event object
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

document 561

DOM
 Reference
write(), writeln() NN 2 IE 3 DOM n/a

write("string")

writeln("string")

When invoked as the page loads, these methods can dynamically add content to the page.
When invoked after the page has loaded, a single method invocation clears the current
document, opens a new output stream, and writes the content to the window or frame. A
document.close() method is required afterward. Because the first document.write() or
document.writeln() method destroys the current document, do not use two or more
writing statements to create a new document. Instead load the content into one variable
and pass that variable as the parameter to a single document.write() or
document.writeln() method.

The difference between the two methods is that document.writeln() adds a carriage
return to the source code it writes to the document. This is not reflected in the rendered
content, but can make reading the dynamic source code easier in browser versions that
support dynamic content source viewing (Navigator does so as a wysiwyg: URL in the
source view window).

Returned Value

None.

Parameters
string Any string value, including HTML tags. To write <SCRIPT> tags, use entity

characters for the brackets: <SCRIPT>.

anchors[] NN 2 IE 3 DOM 1

Returns an array of all anchor objects in the current document. This includes A elements
that are designed as either anchors or combination anchors and links. Items in this array are
indexed (zero based) in source code order.

Syntax document.anchors[index].objectPropertyOrMethod

applets[] NN 2 IE 3 DOM 1

Returns an array of all Java applet objects in the current document. An applet must be
started and running before it is counted as an object. Items in this array are indexed (zero
based) in source code order.

Syntax document.applets[index].objectPropertyOrMethod

classes[] NN 4 IE n/a DOM n/a

Used with the JavaScript syntax of style sheets, the classes[] collection is part of a refer-
ence to a single class and the style property assigned to it. For a list of properties, see the
tags object listing in this chapter.

Syntax [document.]classes.className.stylePropertyName
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

562 document
embeds[] NN n/a IE 4 DOM n/a

Returns an array of all embedded objects (EMBED elements) in the current document. Items
in this array are indexed (zero based) in source code order.

Syntax document.embeds(index).objectPropertyOrMethod

forms[] NN 2 IE 3 DOM 1

Returns an array of all FORM objects (FORM elements) in the current document. Items in this
array are indexed (zero based) in source code order.

Syntax document.forms[index].objectPropertyOrMethod

frames[] NN n/a IE 4 DOM n/a

Returns an array of all IFRAME objects (IFRAME elements) in the current document. Items in
this array are indexed (zero based) in source code order.

Syntax document.frames(index).objectPropertyOrMethod

ids[] NN 4 IE n/a DOM n/a

Used with the JavaScript syntax of style sheets, the ids[] collection is part of a reference to
a single ID and the style property assigned to it. For a list of properties, see the tags object
listing in this chapter.

Syntax [document.]ids.idName.stylePropertyName

images[] NN 2 IE 3 DOM 1

Returns an array of all IMAGE objects (IMG elements) in the current document. Items in this
array are indexed (zero based) in source code order.

Syntax document.images[index].objectPropertyOrMethod

links[] NN 2 IE 3 DOM 1

Returns an array of all link-style objects (A elements whose HREF attributes are set, plus all
AREA elements) in the current document. Items in this array are indexed (zero-based) in
source code order.

Syntax document.links[index].objectPropertyOrMethod

plugins[] NN n/a IE 4 DOM n/a

Returns an array of all embedded objects (EMBED elements) in the current document. Items
in this array are indexed (zero based) in source code order. Do not confuse this collection
with the navigator.plugins collection in Netscape Navigator.

Syntax document.plugins(index).objectPropertyOrMethod
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

DT 563

DOM
 Reference
scripts[] NN n/a IE 4 DOM n/a

Returns an array of all SCRIPT objects (SCRIPT elements) in the current document. Each
SCRIPT object may contain any number of functions. The scripts[] collection counts the
number of actual <SCRIPT> tags in the document. Items in this array are indexed (zero
based) in source code order.

Syntax document.scripts(index).objectPropertyOrMethod

styleSheets[] NN n/a IE 4 DOM n/a

Returns an array of all styleSheet objects in the current document. Each style object may
contain any number of style sheet rules. The styleSheets[] collection counts the number
of actual <STYLE> tags in the document. Items in this array are indexed (zero based) in
source code order.

Syntax document.styleSheets(index).objectPropertyOrMethod

tags[] NN 4 IE n/a DOM n/a

Used with the JavaScript syntax of style sheets, the tags[] collection is part of a reference
to a single tag type and the style property assigned to it. For a list of properties, see the
tags object listing in this chapter. Do not confuse this Navigator use of the tags[] collec-
tion with Internet Explorer’s use of the tags[] collection that belongs to the all collection.

Syntax [document.]tags.tagName.stylePropertyName

DT NN n/a IE 4 DOM 1

The DT object reflects the DT element.

HTML Equivalent
<DT>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

className isTextEdit offsetLeft outerHTML sourceIndex
document lang offsetParent outerText style
id language offsetTop parentElement tagName
innerHTML noWrap offsetWidth parentTextEdit title
innerText offsetHeight

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

564 elements
Collections/Arrays

Event Handler Properties

noWrap NN n/a IE 4 DOM 1

Read/Write

Whether the browser should render the element as wide as is necessary to display a line of
nonbreaking text on one line. Abuse of this attribute can force the user into a great deal of
inconvenient horizontal scrolling of the page to view all of the content.

Example document.all.wideBody.noWrap = "true"

Value Boolean value: true | false.

Default false

elements NN 2 IE 3 DOM n/a

A collection of all elements contained within a form. Collection members are sorted in
source code order. Internet Explorer lets you use array notation or parentheses to access a
single element in the collection. Because each form element includes a type property
(starting with Navigator 3 and Internet Explorer 4), scripts can loop through all elements in
search of elements of a specific type (e.g., all checkbox elements).

Object Model Reference
NN document.forms[i].elements[i]

document.formName.elements[i]

IE document.forms[i].elements(i)
document.formName.elements[i]

Properties

all[] children[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a

length
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

EMBED 565

DOM
 Reference
length NN n/a IE 4 DOM n/a

Read-only

Returns the number of elements in the collection.

Example var howMany = document.forms[0].elements.length

Value Integer.

EM
See ACRONYM.

EMBED NN 3 IE 4 DOM n/a

The EMBED object reflects the EMBED element. This object is treated differently in Navigator
and Internet Explorer. In Navigator, the object exposes the properties and methods of the
plugin that plays the media loaded into the EMBED element. As a result, the precise set of
properties and methods varies with the plugin being used for the multimedia content (and
is not shown in the lists below). Access to the object is via the element’s name. IE, on the
other hand, is more straightforward in its treatment of the object as just another element
with its unique set of properties and methods (listed below). This means, however, that IE
cannot control the plugin through scripting as Navigator can.

HTML Equivalent
<EMBED>

Object Model Reference
NN [window.]document.elementName

IE [window.]document.all.elementID
[window.]document.embeds(i)

Properties

Methods

accessKey hidden name outerText src
className id offsetHeight palette style
clientHeight innerHTML offsetLeft parentElement tabIndex
clientLeft innerText offsetParent parentTextEdit tagName
clientTop isTextEdit offsetTop pluginspage title
clientWidth lang offsetWidth readyState units
document language outerHTML sourceIndex

blur() getAttribute() removeAttribute()
click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
focus()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

566 EMBED
Collections/Arrays

Event Handler Properties

accessKey NN n/a IE 4 DOM n/a

Read/Write

A single character key that brings focus to an element. The browser and operating system
determine whether the user must press a modifier key (e.g., Ctrl, Alt, or Command) with
the access key to bring focus to the element. In IE 4/Windows, the Alt key is required, and
the key is not case sensitive. Not working in IE 4/Mac.

Example document.all.myEmbed.accessKey = "n"

Value Single alphanumeric (and punctuation) keyboard character.

Default None.

clientHeight, clientWidth NN n/a IE 4 DOM n/a

Read-only

According to Microsoft’s developer documentation, these properties reflect the height and
width (in pixels) of the element’s content. But see the section “About client- and offset-
Properties” at the beginning of this chapter for details.

Example var midHeight = document.all.myEmbed.clientHeight/2

Value Integer pixel value.

Default None.

clientLeft, clientTop NN n/a IE 4 DOM n/a

Read-only

According to Microsoft’s developer documentation, these properties reflect the distance
between the “true” left and top edges of the document area and the edges of the element.
But see the section “About client- and offset- Properties” at the beginning of this chapter for
details. To get or set the pixel position of an element in the document, use the pixelLeft
and pixelTop properties.

Value A string value for a length in a variety of units or percentage.

Default None.

all[] children[] filters[]

Handler NN IE DOM
onblur n/a 4 n/a
onfocus n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

EMBED 567

DOM
 Reference
hidden NN n/a IE 4 DOM n/a

Read/Write

Whether the embedded data’s plugin control panel appears on the screen. Changes to this
property force the page to reflow its content to make room for the plugin control panel or
close up space around a newly hidden panel.

Example document.all.jukebox.hidden = true

Value Boolean value: true | false.

Default false

name NN 4 IE 4 DOM n/a

Read/Write (IE)

The name property is part of Navigator’s way of referencing the object. The value of the
property, however, cannot be retrieved through the object itself, since the only properties
that are returned are those of the plugin that plays the multimedia content. In IE, however,
the property is available for reading and writing.

Example document.all.myEmbed.name = "tunes"

Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

palette NN n/a IE 4 DOM n/a

Read-only

Returns the setting of the PALETTE attribute of the EMBED object.

Value String.

Default None.

pluginspage NN n/a IE 4 DOM n/a

Read-only

The URL for downloading and installing the plugin necessary to run the current object’s
embedded data.

Value A complete or relative URL as a string.

Default

None returned, but Internet Explorer has its own default URL for plugin information.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

568 EMBED
readyState NN n/a IE 4 DOM n/a

Read-only

Returns the current download status of the embedded content. This property provides a
more granular way of testing whether a particular downloadable element is ready to be run
or scripted instead of the onLoad event handler for the entire document. As the value of
this property changes during loading, the system fires an onReadyStateChange event.

Example
if (document.contentsMap.readyState == "uninitialized") {

statements for alternate handling
}

Value

Unlike the document object’s version of this property, the EMBED object’s values are inte-
gers. As can best be determined: 0 means uninitialized; 1 means loading; and 4 means
complete.

Default None.

src NN n/a IE 4 DOM n/a

Read/Write

URL of the external content file associated with the object. To change the content, assign a
new URL to the property.

Example document.all.myEmbed.src = "tunes/dannyboy.wav"

Value Complete or relative URL as a string.

Default None.

tabIndex NN n/a IE 4 DOM 1

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their tabIndex properties are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest tabIndex value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same tabIndex values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the tabIndex property or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A value of -1 removes the element from
tabbing order altogether.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text and password INPUT fields.

Example document.all.myEmbed.tabIndex = 6

Value Integer.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

embeds 569

DOM
 Reference
Default None.

units NN n/a IE 4 DOM n/a

Read/Write

The unit of measure for the height and width dimensions of the element. Internet Explorer
appears to treat all settings as pixels.

Example document.all.myEmbed.units = "ems"

Value Any of the following case-insensitive constants (as a string): pixels | px | em.

Default pixels

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.

Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.

embeds NN 3 IE 4 DOM n/a

A collection of all EMBED elements contained in the current element. Collection members
are sorted in source code order. Internet Explorer lets you use array notation or paren-
theses to access a single element in the collection.

Object Model Reference
NN document.embeds

IE document.embeds

Properties
length
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

570 event
length NN 3 IE 4 DOM n/a

Read-only

Returns the number of elements in the collection.

Example var howMany = document.embeds.length

Value Integer.

event NN 4 IE 4 DOM n/a

While the event object contains information about a user- or system-generated event in
Navigator and Internet Explorer, the event mechanisms for the two browser families are
very different, as described in Chapter 6. With only a few exceptions, the event object
properties for the two browsers are mutually exclusive. Observe the browser compatibility
listings for each of the following properties carefully.

Object Model Reference
NN eventObj

IE window.event

Properties

altKey NN n/a IE 4 DOM n/a

Read-only

Reveals the state of the Alt key at the time the event fired.

Example
if (event.altKey) {

handle case of Alt key down
}

Value Boolean value: true | false.

Default false

button NN n/a IE 4 DOM n/a

Read-only

Which mouse button was pressed to trigger the mouse event. Although theoretically you
should be able to detect the right button, Internet Explorer 4 does not fire mouse events
with that button, since context menus always appear in the browser.

altKey data offsetX screenX toElement
button fromElement offsetY screenY type
cancelBubble keyCode pageX shiftKey which
clientX layerX pageY srcElement x
clientY layerY reason srcFilter y
ctrlKey modifiers returnValue target
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

event 571

DOM
 Reference
Example
if (event.button == 1) {

handle event for left button
}

Value

Any of the following allowed integers: 0 (no button) | 1 (left button) | 2 (right button) | 4
(middle button of three-button mouse).

Default 0

cancelBubble NN n/a IE 4 DOM n/a

Read/Write

Specifies whether the event should propagate (bubble) up the element container hierarchy.
You usually only need to set this property to true to override the default behavior and
prevent the event from going any further.

Example window.event.cancelBubble = true

Value Boolean: true | false.

Default false

clientX, clientY NN n/a IE 4 DOM n/a

Read-only

The horizontal (x) and vertical (y) coordinate of the mouse at the moment the current event
fired. These coordinates are relative to the viewable document area of the browser window
or frame.

Example
if ((event.clientX >= 10 || event.clientX <= 20) &&
(event.clientY >= 50 || event.clientY <= 100)) {

process code for click in hot zone bounded by 10,50 and 20,100
}

Value Integer of pixel values.

Default None.

ctrlKey NN n/a IE 4 DOM n/a

Read-only

Whether the Control key was pressed at the instant the event fired. See Chapter 6 for testing
for this key in cross-browser event handling code.

Example
if (event.ctrlKey) {

process for Control key being down
}

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

572 event
Value Boolean value: true | false.

Default false

data NN 4 IE n/a DOM n/a

Read-only

Accessory data associated with the event. As of Navigator 4, the only event for which the
data property has information is the dragdrop event, in which case the data property
returns the URL of the item being dropped onto the window or frame.

Example var srcDoc = evtObj.data

Value String.

Default None.

fromElement NN n/a IE 4 DOM n/a

Read-only

Returns a reference to the object where the cursor had been just prior to the onMouseOver
or onMouseOut event.

Example
if (event.fromElement.id == "lowerLevel") {
 ...
}

Value Object reference.

Default None.

keyCode NN n/a IE 4 DOM n/a

Read/Write

The Unicode key value for the keyboard key that triggered the event. If the event is not
keyboard driven, the value is zero. While you may change the value of this property, it
does not influence the character displayed in the text field. See Chapter 6 about capturing
keyboard events.

Example
if (event.keyCode == 65) {
 ...
}

Value Integer.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

event 573

DOM
 Reference
layerX, layerY NN 4 IE n/a DOM n/a

Read-only

The horizontal (x) and vertical (y) coordinate of the mouse at the moment the current event
fired. These coordinates are relative to the containing layer. If no layers or positionable
elements have been defined, the default layer of the base document is used as a reference
point, thus being equivalent to the pageX and pageY properties.

Example
if ((evtObj.layerX >= 10 || evtObj.layerX <= 20) &&
(evtObj.layerY >= 50 || evtObj.layerY <= 100)) {

process code for click in hot zone bounded by 10,50 and 20,100
}

Value Integer of pixel values.

Default None.

modifiers NN 4 IE n/a DOM n/a

Read-only

An integer that represents the keyboard modifier key(s) being held down at the time the
event fired. You can use the & operator with a series of Event object constants to find out
whether a particular modifier key was pressed. See Chapter 6.

Example var altKeyPressed = evtObj.modifiers & Event.ALT_MASK

Value Integer.

Default 0

offsetX, offsetY NN n/a IE 4 DOM n/a

Read-only

The left and top coordinates of the mouse pointer relative to the containing element (exclu-
sive of padding, borders, or margins) when the event fired. You can determine the
containing element via the offsetParent property. See the section “About client- and
offset- Properties” at the beginning of this chapter about offset measurement anomalies in
Internet Explorer 4.

Example
if (event.offsetX <= 20 && event.offsetY <=40) {
 ...
}

Value Integer pixel count.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

574 event
pageX, pageY NN 4 IE n/a DOM n/a

Read-only

The left and top coordinates of the element’s content relative to the top-left corner of the
page area when the event fired. The measurements ignore any scrolling of the page.

Example
if (evtObj.pageX <= 20 && evtObj.pageY <=40) {
 ...
}

Value Integer pixel count.

Default None.

reason NN n/a IE 4 DOM n/a

Read-only

Returns a code associated with an onDataSetComplete event signifying whether the data
transfer was successful or, if incomplete, whether the transfer stopped due to an error or a
stoppage by the client or user. This property must be examined in an event handler for the
onDataSetComplete event.

Example
if (event.reason == 2) {
 alert("An error occurred during the most recent update.")
}

Value

One of three possible integer values:

0 Transfer was successful

1 Transfer aborted

2 An error halted the transfer

Default None.

returnValue NN n/a IE 4 DOM n/a

Read/Write

The value to be returned to the event’s source element to allow or prohibit the element’s
default action connected with the event. If you set event.returnValue to false, the
element does not carry out its normal operation, such as navigating to a link or submitting
the form.

Example event.returnValue = "false"

Value Boolean value: true | false.

Default true
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

event 575

DOM
 Reference
screenX, screenY NN 4 IE 4 DOM n/a

Read-only

Horizontal and vertical pixel coordinate points where the cursor was located on the video
screen when the event occurred. The top-left corner of the screen is point 0,0. There is no
particular coordination with the browser window, unless you have positioned the window
and know where the active window area is in relation to the screen.

Example
// NN
if (evtObj.screenX < 5 || evtObj.screenY < 5) {
 alert("You\'re too close to the edge!")
}
// IE
if (event.screenX < 5 || event.screenY < 5) {
 alert("You\'re too close to the edge!")
}

Value Any positive integer or zero.

Default None.

shiftKey NN n/a IE 4 DOM n/a

Read-only

Reveals the state of the Shift key at the time the event fired.

Example
if (event.shiftKey) {

handle case of Shift key down
}

Value Boolean value: true | false.

Default false

srcElement NN n/a IE 4 DOM n/a

Read-only

Reference to the element object that fired the current event. This property is convenient in
switch constructions for an event handler function that handles the same event type for a
number of different elements.

Example
switch (event.srcElement.id) {
 case myDIV:
 ...
 ...
}

Value Object reference.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

576 event
srcFilter NN n/a IE 4 DOM n/a

Read-only

Reference to the filter object that fired the current onFilterChange event. This property is
convenient in switch constructions for an event handler function that handles the same
event type for a number of different elements.

Example
switch (event.srcFilter.id) {
 case myDIV:
 ...
 ...
}

Value Object reference.

Default None.

target NN 4 IE n/a DOM n/a

Read-only

Reference to the element object that is the intended destination of the current event. This
property is convenient in switch constructions for an event handler function that handles
the same event type for a number of different elements.

Example
switch (evtObj.target.name) {
 case "myButton":
 ...
 ...
}

Value Object reference.

Default None.

toElement NN n/a IE 4 DOM n/a

Read-only

Returns a reference to the object to which the cursor has moved that triggered the
onMouseOut event.

Example
if (event.toElement.id == "upperLevel") {
 ...
}

Value Object reference.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

event 577

DOM
 Reference
type NN 4 IE 4 DOM n/a

Read-only

The type of the current event (without the “on” prefix). Values are all lowercase.

Example
// NN
if (evtObj.type == "change") {
 ...
}
// IE
if (event.type == "change") {
 ...
}

Value Any event name (without the “on” prefix) as a string.

Default None.

which NN 4 IE n/a DOM n/a

Read-only

Returns a value relevant to the type of event. For mouse events, the property value is an
integer indicating which mouse button was used (1 is the left button; 3 is the right button).
For keyboard events, the property value is an integer of the keyboard character ASCII code.

Example
if (evtObj.which == 65) {
 ...
}

Value Integer.

Default None.

x, y NN n/a IE 4 DOM n/a

Read-only

Returns the horizontal and vertical pixel coordinates of the mouse pointer at the time the
event occurred. The coordinate system is either a positioned element or the BODY element.
A value of -1 is returned if the pointer was outside of the document area of the browser
window.

Example
if (event.x < 20 && event.y < 30) {
 ...
}

Value Integer.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

578 FIELDSET
Event NN 4 IE n/a DOM n/a

The Event object is a static object in Navigator that contains a large set of case-sensitive
constant values you can use to test user- or system-generated events for keyboard modi-
fiers and event types (see the modifiers and type properties of the event object). These
constant values evaluate to mathematically related integers. Not all event types assigned a
constant value are yet implemented as events in Navigator 4.

Object Model Reference
NN Event

Properties

external NN n/a IE 4 DOM 1

The external object is used primarily by developers who use Internet Explorer as a
component for their applications and require access to custom extensions to the document
object model.

FIELDSET NN n/a IE 4 DOM n/a

The FIELDSET object reflects the FIELDSET element.

HTML Equivalent
<FIELDSET>

Object Model Reference
IE [window.]document.all.elementID

Properties

ABORT DBLCLICK KEYPRESS MOUSEMOVE SCROLL
ALT_MASK DRAGDROP KEYUP MOUSEOUT SELECT
BACK ERROR LOCATE MOUSEOVER SHIFT_MASK
BLUR FOCUS LOAD MOUSEUP SUBMIT
CHANGE FORWARD META_MASK MOVE UNLOAD
CLICK HELP MOUSEDOWN RESET XFER_DONE
CONTROL_MASK KEYDOWN MOUSEDRAG RESIZE

accessKey document offsetHeight outerText scrollWidth
align id offsetLeft parentElement sourceIndex
className innerHTML offsetParent parentTextEdit style
clientHeight innerText offsetTop scrollHeight tabIndex
clientLeft isTextEdit offsetWidth scrollLeft tagName
clientTop lang outerHTML scrollTop title
clientWidth language
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

FIELDSET 579

DOM
 Reference
Methods

Collections/Arrays

Event Handler Properties

accessKey NN n/a IE 4 DOM n/a

Read/Write

A single character key that brings focus to the element. The browser and operating system
determine whether the user must press a modifier key (e.g., Ctrl, Alt, or Command) with
the access key to bring focus to the element. In IE 4/Windows, the Alt key is required, and
the key is not case sensitive. Not working in IE 4/Mac.

Example document.all.myFieldset.accessKey = "n"

Value Single alphanumeric (and punctuation) keyboard character.

Default None.

blur() getAttribute() removeAttribute()
click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
focus()

all[] children[] filters[]

Handler NN IE DOM
onafterupdate n/a 4 n/a
onbeforeupdate n/a 4 n/a
onblur n/a 4 n/a
onchange n/a 4 n/a
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onerrorupdate n/a 4 n/a
onfilterchange n/a 4 n/a
onfocus n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onresize n/a 4 n/a
onscroll n/a 4 n/a
onselect n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

580 FIELDSET
align NN n/a IE 4 DOM n/a

Read/Write

Defines the horizontal alignment of the element within its surrounding container. In prac-
tice, this property has little effect on the FIELDSET object or its contents.

Example document.all.myFieldset.align = "center"

Value Any of the three horizontal alignment constants: center | left | right.

Default left

clientHeight, clientWidth NN n/a IE 4 DOM n/a

Read/Write

According to Microsoft’s developer documentation, these properties reflect the height and
width (in pixels) of the element’s content. But see the section “About client- and offset-
Properties” at the beginning of this chapter for details.

Example var midHeight = document.all.myFieldset.clientHeight/2

Value Integer pixel value.

Default None.

clientLeft, clientTop NN n/a IE 4 DOM n/a

Read-only

According to Microsoft’s developer documentation, these properties reflect the distance
between the “true” left and top edges of the document area and the edges of the element.
But see the section “About client- and offset- Properties” at the beginning of this chapter for
details. To get or set the pixel position of an element in the document, use the pixelLeft
and pixelTop properties.

Value A string value for a length in a variety of units or percentage.

Default None.

scrollHeight, scrollWidth NN n/a IE 4 DOM n/a

Read-only

The meaning of these two properties is ambiguous based on Microsoft’s description and the
way they’re implemented in the Windows and Macintosh versions of Internet Explorer 4.
My best guess is that these properties are intended to measure the height and width (in
pixels) of the content of an element even when some of the content cannot be seen unless
scrolled with scrollbars. The Macintosh version of the browser interprets this to mean the
amount of the content that you can see at any one time. The important point is that for key
elements, such as the BODY, the properties mean different things and can disrupt cross-plat-
form operation.

Example var midPoint = document.all.myFieldset.scrollHeight/2

Value Positive integer or zero.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

FIELDSET 581

DOM
 Reference
Default None.

scrollLeft, scrollTop NN n/a IE 4 DOM n/a

Read/Write

The distance in pixels between the actual left or top edge of the element’s physical content
and the left or top edge of the visible portion of the content. Setting these properties allows
you to use scripts to adjust the scroll of content within a scrollable container, such as text in
a TEXTAREA element or an entire document in the browser window or frame. When the
content is not scrolled, both values are zero. Setting the scrollTop property to 15 scrolls
the document upward by 15 pixels in the window; the scrollLeft property is unaffected
unless explicitly changed. The property values change as the user adjusts the scrollbars.

Example document.all.myFieldset.scrollTop = 40

Value Positive integer or zero.

Default 0

tabIndex NN n/a IE 4 DOM 1

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their tabIndex properties are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest tabIndex value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same tabIndex values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the tabIndex property or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A value of -1 removes the element from
tabbing order altogether.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text and password INPUT fields.

Example document.all.myFieldset.tabIndex = 6

Value Integer.

Default None.

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.

Parameters

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

582 fileUpload
focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.

fileUpload NN 3 IE 4 DOM 1

The fileUpload object is a form control generated with an INPUT element whose TYPE
attribute is set to "file". The “fileUpload” term does not appear in scripts, but it is the way
Netscape casually refers to this object.

HTML Equivalent
<INPUT TYPE="file">

Object Model Reference
NN [window.]document.formName.elementName

[window.]document.forms[i].elements[i]

IE [window.]document.formName.elementName
[window.]document.forms[i].elements[i]
[window.]document.all.elementID

Properties

Methods

Collections/Arrays

accessKey isTextEdit offsetParent parentElement tabIndex
className lang offsetTop parentTextEdit tagName
disabled language offsetWidth size title
document name outerHTML sourceIndex type
form offsetHeight outerText style value
id offsetLeft

blur() getAttribute() removeAttribute()
click() handleEvent() scrollIntoView()
contains() insertAdjacentHTML() select()
focus() insertAdjacentText() setAttribute()

all[] children[] filters[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

fileUpload 583

DOM
 Reference
Event Handler Properties

accessKey NN n/a IE 4 DOM 1

Read/Write

A single character key that brings focus to the element. The browser and operating system
determine whether the user must press a modifier key (e.g., Ctrl, Alt, or Command) with
the access key to bring focus to the element. In IE 4/Windows, the Alt key is required, and
the key is not case sensitive. Not working in IE 4/Mac.

Example document.entryForm.myFileUpload.accessKey = "n"

Value Single alphanumeric (and punctuation) keyboard character.

Default None.

disabled NN n/a IE 4 DOM 1

Read/Write

Whether the element is available for user interaction. When set to true, the element cannot
receive focus or be modified by the user. It is also not submitted with the form.

Example document.forms[0].myFileUpload.disabled = true

Value Boolean value: true | false.

Default false

Handler NN IE DOM
onblur 3 4 n/a
onchange n/a 4 n/a
onclick n/a 4 n/a
ondblclick n/a 4 n/a
onfilterchange n/a 4 n/a
onfocus 3 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselect 3 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

584 fileUpload
form NN 3 IE 4 DOM n/a

Read-only

Returns a reference to the FORM element that contains the current element (if any). This
property is most often passed as a parameter for an event handler, using the this keyword
to refer to the current form control.

Example
<INPUT TYPE="file" VALUE="Send File" onClick="doValidate(this.form)">

Value Object reference.

Default None.

name NN 2 IE 3 DOM 1

Read/Write

The identifier associated with the form control. The value of this property is submitted as
one-half of the name/value pair when the form is submitted to the server. Names are
hidden from user view, since control labels are assigned via other means, depending on the
control type. Form control names may also be used by script references to the objects.

Example document.orderForm.myCheckbox.name = "Win32"

Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

size NN n/a IE 4 DOM 1

Read/Write

Roughly speaking, the width in characters that the input text box portion of the file input
element should be sized to accommodate. In practice, the browser does not always accu-
rately predict the proper width when the font used is a proportional one. See details in the
SIZE attribute discussion for the INPUT element in Chapter 8. There is no interaction
between the size and maxLength properties for this object. This property is not available
for IE 4 on the Macintosh.

Example document.forms[0].myFileUpload.size = 20

Value Positive integer.

Default 20

tabIndex NN n/a IE 4 DOM 1

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their tabIndex properties are first in line when a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

fileUpload 585

DOM
 Reference
user starts tabbing in a page. Focus starts with the element with the lowest tabIndex value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same tabIndex values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the tabIndex property or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A value of -1 removes the element from
tabbing order altogether.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text and password INPUT fields.

Example document.forms[0].myFileUpload.tabIndex = 6

Value Integer.

Default None.

type NN 3 IE 4 DOM 1

Read-only

Returns the type of form control element. The value is returned in all lowercase letters. It
may be necessary to cycle through all form elements in search of specific types to do some
processing on (e.g., emptying all form controls of type "text" while leaving other controls
untouched).

Example
if (document.forms[0].elements[3].type == "text") {
 ...
}

Value

Any of the following constants (as a string): button | checkbox | file | hidden | image
| password | radio | reset | select-multiple | select-one | submit | text |
textarea.

Default file

value NN 2 IE 3 DOM 1

Read/Write

Current value associated with the form control that is submitted with the name/value pair
for the element. For a fileUpload object, this value is the URL-encoded full pathname to
the local file. This is true even for the Macintosh browser versions, which tend to display
only the file’s name in the form element display.

Value String.

Default None.

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

586 filters
Returned Value

None.

Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.

handleEvent() NN 4 IE n/a DOM n/a

handleEvent(event)

Instructs the object to accept and process the event whose specifications are passed as the
parameter to the method. The object must have an event handler for the event type to
process the event.

Returned Value

None.

Parameters
event A Navigator 4 event object.

select() NN 3 IE 4 DOM n/a

Selects all the text displayed in the form element.

Returned Value

None.

Parameters

None.

filters NN n/a IE 4 DOM n/a

A collection of all filters associated with the current element. Internet Explorer lets you use
array notation or parentheses to access a single element in the collection.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

FONT 587

DOM
 Reference
Object Model Reference
IE document.all.elementID.filters(i)

document.all.elementID.filters[i]

Properties

Methods

length NN n/a IE 4 DOM n/a

Read-only

Returns the number of elements in the collection.

Example var howMany = document.body.filters.length

Va()lue Integer.

item() NN n/a IE 4 DOM n/a

item(index[, subindex])

Returns a single object or collection of objects corresponding to the element matching the
index value (or, optionally, the index and subindex values).

Returned Value

One object or collection (array) of objects. If there are no matches to the parameters, the
returned value is null.

Parameters
index When the parameter is a zero-based integer, the returned value is a single

element corresponding to the said numbered item in source code order (nested
within the current element); when the parameter is a string, the returned value
is a collection of elements whose id or name properties match that string.

subindex If you specify a string value for the first parameter, you may use the second
parameter to specify a zero-based integer to retrieve a specific element from the
collection whose id or name properties match the first parameter’s string value.

FONT NN n/a IE 4 DOM 1

The FONT object reflects the FONT element.

HTML Equivalent

Object Model Reference
IE [window.]document.all.elementID

length

item()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

588 FONT
Properties

Methods

Collections/Arrays

Event Handler Properties

color NN n/a IE 4 DOM 1

Read/Write

Sets the font color of all text contained by the FONT element.

Example document.all.myFont.color = "red"

Value

Case-insensitive hexadecimal triplet or plain-language color name as a string. See
Appendix A for acceptable plain-language color names.

Default Browser default.

className innerHTML offsetHeight outerHTML sourceIndex
color innerText offsetLeft outerText style
document isTextEdit offsetParent parentElement tagName
face lang offsetTop parentTextEdit title
id language offsetWidth size

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

FORM 589

DOM
 Reference
face NN n/a IE 4 DOM 1

Read/Write

A hierarchy of font faces to use for the content surrounded by the current font object. The
browser looks for the first font face in the comma-delimited list of font face names until it
either finds a match in the client system or runs out of choices, at which point the browser
default font face is used. Font face names must match the system font face names exactly.

Example document.all.myFont.face = "Bookman, Times Roman, serif"

Value

One or more font face names in a comma-delimited list within a string. You may use real
font names or the recognized generic faces: serif | sans-serif | cursive | fantasy |
monospace.

Default Browser default.

size NN n/a IE 4 DOM 1

Read/Write

The size of the font in the 1-7 browser relative scale. For more accurate font size settings,
see fontSize in Chapter 10.

Example document.all.fontSpec2.size = "+1"

Value

Either an integer (as a quoted string) or a quoted relative value consisting of a + or -
symbol and an integer value.

Default 3

FORM NN 2 IE 3 DOM 1

The FORM object reflects the FORM element. The FORM object can be addressed in a refer-
ence either by the value assigned to its tag NAME attribute or by the index of the forms array
contained by every document. To assemble a reference to a form control object, the FORM
object must be part of the reference. This covers the eventuality that more than one form
may be placed in a document.

HTML Equivalent
<FORM>

Object Model Reference
NN [window.]document.formName

[window.]document.forms[i]
[window.]document.form["formName"]

IE [window.]document.formName
[window.]document.forms[i]
[window.]document.form["formName"]
[window.]document.all.elementID
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

590 FORM
Properties

Methods

Collections/Arrays

Event Handler Properties

action NN 2 IE 3 DOM 1

Read/Write

The URL to be accessed when a form is being submitted. Script control of this property lets
one form be submitted to different server processes based on user interaction with the rest
of the form. This property is read-only in IE 3.

Example
document.entryForm.action = "http://www.megacorp.com/cgi-bin/altEntry"

Value Complete or relative URL.

action innerText name offsetWidth sourceIndex
className isTextEdit offsetHeight outerHTML style
document lang offsetLeft outerText tagName
encoding language offsetParent parentElement target
id length offsetTop parentTextEdit title
innerHTML method

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute() submit()
handleEvent() reset()

all[] children[] elements[] filters[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onreset 3 4 n/a
onselectstart n/a 4 n/a
onsubmit 3 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

FORM 591

DOM
 Reference
Default None.

encoding NN 2 IE 3 DOM n/a

Read/Write

The MIME type for the data being submitted to the server with the form. For typical form
submissions (where the METHOD attribute is set to post), the default value is the proper
content type. But if you change the action property for a form by script, consider whether
you require a custom encoding for the purpose. The DOM working draft indicates it may
prefer to name this property encType to more closely mirror the tag attribute.

Note that the encoding property is not modifiable in Internet Explorer 3.

Example document.orderForm.encoding = "text/plain"

Value

Case-insensitive MIME type (content type) value as a string. For multiple items, a comma-
delimited list is allowed in a single string.

Default application/x-www-form-urlencoded

length NN 2 IE 3 DOM n/a

Read-only

The number of form elements in the form.

Example
for (var i = 0; i < document.forms[0].length; i++)
 ...
}

Value Integer.

Default None.

method NN 2 IE 3 DOM 1

Read/Write

Forms may be submitted via two possible HTTP methods: get and post. These methods
determine whether the form element data is sent to the server appended to the ACTION
attribute URL (get) or as a transaction message body (post). In practice, when the ACTION
and METHOD attributes are not assigned in a FORM element, the form performs an uncondi-
tional reload of the same document, restoring form controls to their default values. Note
that the method property is read-only in Internet Explorer 3.

Example document.entryForm.method = "post"

Value Either of the following constant values as a string: get | post.

Default get
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

592 FORM
name NN 2 IE 3 DOM 1

Read/Write

The identifier associated with the form. This information is not submitted with the form, but
a form’s name is used in references to the form and nested form elements.

Example var firstFormName = document.forms[0].name

Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

target NN 2 IE 3 DOM 1

Read/Write

The name of the window or frame that is to receive content returned by the server after the
form is submitted. Such names are assigned to frames by the FRAME element’s NAME
attribute; for subwindows, the name is assigned via the second parameter of the
window.open() method.

Example document.myForm.target = "_top"

Value

String value of the window or frame name, or any of the following constants (as a string):
_parent | _self | _top | _blank. The _parent value targets the frameset to which the
current document belongs; the _self value targets the current window; the _top value
targets the main browser window, thereby eliminating all frames; and the _blank value
creates a new window of default size.

Default None (which implies the current window or frame).

handleEvent() NN 4 IE n/a DOM n/a

handleEvent(event)

Instructs the object to accept and process the event whose specifications are passed as the
parameter to the method. The object must have an event handler for the event type to
process the event.

Returned Value

None.

Parameters
event A Navigator 4 event object.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

forms 593

DOM
 Reference
reset() NN 3 IE 4 DOM n/a

Performs the same action as a click of a reset-type input element. All form controls revert to
their default values.

Returned Value

None.

Parameters

None.

submit() NN 2 IE 3 DOM n/a

Performs the same action as a click of a submit-type input element. This method does not
fire the onSubmit event handler in Navigator.

Returned Value

None.

Parameters

None.

elements[] NN 2 IE 3 DOM n/a

Returns an array of all form control objects contained by the current form.

Syntax
document.forms[i].elements(index).objectPropertyOrMethod

forms NN 2 IE 3 DOM n/a

A collection of all FORM objects in the document.

Object Model Reference
NN document.forms[i]

IE document.forms[i]
document.forms(i)

Properties

Methods

length NN 2 IE 3 DOM n/a

Read-only

Returns the number of elements in the collection.

length

item()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

594 FRAME
Example var howMany = document.forms.length

Value Integer.

item() NN n/a IE 4 DOM n/a

item(index[, subindex])

Returns a single object or collection of objects corresponding to the element matching the
index value (or, optionally, the index and subindex values).

Returned Value

One object or collection (array) of objects. If there are no matches to the parameters, the
returned value is null.

Parameters
index When the parameter is a zero-based integer, the returned value is a single

element corresponding to the said numbered item in source code order (nested
within the current element); when the parameter is a string, the returned value
is a collection of elements whose id or name properties match that string.

subindex If you specify a string value for the first parameter, you may use the second
parameter to specify a zero-based integer to retrieve a specific element from the
collection whose id or name properties match the first parameter’s string value.

FRAME NN n/a IE 4 DOM 1

The FRAME object reflects the FRAME element, which can only be generated inside a
FRAMESET element. While Navigator knows about frames as objects, it treats a frame
precisely like a window object. Internet Explorer 3 and later also observe this behavior.
Therefore, for cross-platform access to frame properties and methods, see the window
object listing in this chapter. But if you need access to the properties listed in this section,
you must access the FRAME object via its frame ID (not name). Be aware that references to
frame objects shown in this section may not work properly in the Windows 95 version of
Internet Explorer 4. Also, the windowRef placeholder may be filled with parent or top if
the reference is in a script contained by a child frame.

HTML Equivalent
<FRAME>

Object Model Reference
IE [windowRef.]document.all.frameID

Properties
borderColor frameBorder language parentElement src
className height marginHeight parentTextEdit style
dataFld id marginWidth sourceIndex tagName
dataSrc isTextEdit name scrolling title
document lang noResize
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

FRAME 595

DOM
 Reference
Methods

Collections/Arrays

borderColor NN n/a IE 4 DOM n/a

Read/Write

Color of the frame’s border. Each browser and operating system may resolve conflicts
between different colored borders differently, so test any changes your scripts make to the
color of individual frame borders.

Example parent.document.all.myFrame.borderColor = "salmon"

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with operating system.

dataFld NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to associate a remote data source column name to the frame’s
SRC attribute. A DATASRC attribute must also be set for the element. Setting both the
dataFld and dataSrc properties to empty strings breaks the binding between element and
data source.

Example parent.document.all.myFrame.dataFld = "linkURL"

Value Case-sensitive identifier of the data source column.

Default None.

dataSrc NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Setting both the
dataFld and dataSrc properties to empty strings breaks the binding between element and
data source.

Example parent.document.all.myFrame.dataSrc = "#DBSRC3"

Value Case-sensitive identifier of the data source.

Default None.

contains() removeAttribute() setAttribute()
getAttribute()

all[] children[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

596 FRAME
frameBorder NN n/a IE 4 DOM n/a

Read/Write

Controls whether an individual frame within a frameset displays a border. Controlling indi-
vidual frame borders appears to be a problem for most browsers in most operating system
versions. Turning off the border of one frame may have no effect if all adjacent frames have
their borders on. Feel free to experiment with the effects of turning some borders on and
some borders off, but be sure to test the final effect on all browsers and operating systems
used by your audience. Rely more comfortably on the FRAMEBORDER attribute or frame-
Border property of the entire FRAMESET.

Example parent.document.all.otherFrame.frameBorder = "no"

Value

Internet Explorer 4 accepts the string values of 1 (on) and 0 (off) as well as yes and no.

Default yes

height NN n/a IE 4 DOM n/a

Read/Write

The height in pixels of the element. Changes to these values are immediately reflected in
reflowed content on the page. Be aware that some elements, such as the IMG, may scale to
fit the new dimension.

Example parent.document.all.myFrame.height = 250

Value Integer.

Default None.

marginHeight, marginWidth NN n/a IE 4 DOM n/a

Read/Write

The number of pixels between the inner edge of a frame and the content rendered inside
the frame. The marginHeight property controls space along the top and (when scrolled)
bottom edges of a frame; the marginWidth attribute controls space on the left and right
edges of a frame.

Without any prompting, Internet Explorer 4 automatically inserts a margin of 14 (Windows)
or 8 (Macintosh) pixels inside a frame. But if you attempt to override the default behavior,
be aware that setting any one of these two attributes causes the value of the other to go to
zero. Therefore, unless you want the content to be absolutely flush with various frame
edges, you need to assign values to both attributes.

Example
parent.document.all.myFrame.marginHeight = 14
parent.document.all.myFrame.marginWidth = 5

Value Positive integer value or zero.

Default 14 (Windows) or 8 (Macintosh).
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

FRAME 597

DOM
 Reference
name NN n/a IE 4 DOM 1

Read/Write

The identifier associated with a frame for use as the value assigned to TARGET attributes or
as script references to the frame. The value is usually assigned via the NAME attribute, but it
can be modified by script if necessary.

Example
if (parent.frames[1].name == "main") {
 ...
}

Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

noResize NN n/a IE 4 DOM 1

Read/Write

Whether the frame can be resized by the user. All border edges of the affected FRAME
element become locked, meaning all edges that extend to other frames in the frameset
remain locked as well.

Example parent.document.all.frameID.noResize = "true"

Value Boolean value: true | false.

Default false

scrolling NN n/a IE 4 DOM 1

Read/Write

The treatment of scrollbars for a frame when the content exceeds the visible area of the
frame. You can force a frame to display scrollbars at all times or never. Or you can let the
browser determine the need for scrolling.

Example parent.document.all.mainFrame.scrolling = "yes"

Value One of three constants (as a string): auto | no | yes.

Default auto

src NN n/a IE 4 DOM n/a

Read/Write

URL of the external content file loaded into the frame. To change the content, assign a new
URL to the property. For cross-platform applications, you can also set the location.href
property of the frame to load a different document into the frame using window-related
references (parent.frameName.location.href = "newDoc.html").
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

598 frames
Example parent.document.all.myFrame.src = "images/altNavBar.jpg"

Value Complete or relative URL as a string.

Default None.

frames NN 2 IE 3 DOM n/a

A collection of all FRAME objects defined in the document. Only the first-level frames are
exposed to the FRAMESET object. To find further nested frames requires digging into the
frames collections of nested FRAMESET objects.

Object Model Reference
NN [windowRef.]frames[i]

IE [windowRef.]frames[i]
[windowRef.]frames(i)

Properties

Methods

length NN 2 IE 3 DOM n/a

Read-only

Returns the number of child frames defined in the frameset whose window starts the
reference.

Example var howMany = parent.frames.length

Value Integer.

item() NN n/a IE 4 DOM n/a

item(index[, subindex])

Returns a single object or collection of objects corresponding to the element matching the
index value (or, optionally, the index and subindex values).

Returned Value

One object or collection (array) of objects. If there are no matches to the parameters, the
returned value is null.

Parameters
index When the parameter is a zero-based integer, the returned value is a single

element corresponding to the said numbered item in source code order (nested
within the current element); when the parameter is a string, the returned value
is a collection of elements whose id or name properties match that string.

length

item()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

FRAMESET 599

DOM
 Reference
subindex If you specify a string value for the first parameter, you may use the second
parameter to specify a zero-based integer to retrieve a specific element from the
collection whose id or name properties match the first parameter’s string value.

FRAMESET NN n/a IE 4 DOM 1

The FRAMESET object reflects the FRAMESET element. While Navigator knows about
framesets as objects, it treats a frameset like any other window object. Internet Explorer 3
and later also observe this behavior. Therefore, for cross-platform access to FRAMESET
properties and methods, see the window object listing in this chapter. But if you need
access to the properties listed in this section, you must access the FRAMESET object via its
frameset ID. Be aware that references to frameset objects shown in this section may not
work properly in the Windows 95 version of Internet Explorer 4. Also, the windowRef
placeholder may be filled with parent or top if the reference is in a script contained by a
child frame.

HTML Equivalent
<FRAMESET>

Object Model Reference
IE [windowRef.]document.all.framesetID

Properties

Methods

Collections/Arrays

Event Handler Properties

border NN n/a IE 4 DOM n/a

Read/Write

Thickness of the spaces between frames in a frameset in pixels. Only the outermost
FRAMESET element of a system of nested framesets responds to the border property
setting. Internet Explorer 4 treats the default thicknesses for Windows and Macintosh differ-

border document isTextEdit parentTextEdit style
borderColor frameBorder lang rows tagName
className frameSpacing language sourceIndex title
cols id parentElement

contains() removeAttribute() setAttribute()
getAttribute()

all[] children[]

Handler NN IE DOM
onbeforeunload n/a 4 n/a
onload n/a 4 n/a
onresize n/a 4 n/a
onunload n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

600 FRAMESET
ently, so be aware that the same value may look different on each operating system
platform.

Example top.document.all.myFrameset.border = 4

Value

An integer value. A setting of zero eliminates the border entirely. While the value is
supposed to represent the precise pixel thickness of borders in the frameset, this is not
entirely true for all operating systems or browsers.

Default 6 (IE 4 Windows); 1 (IE 4 Mac).

borderColor NN n/a IE 4 DOM n/a

Read/Write

Color of borders between frames of the frameset. The borderColor property of an indi-
vidual frame overrides the FRAMESET object’s setting

Example parent.document.all.myFrameset.borderColor = "salmon"

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with operating system.

cols NN n/a IE 4 DOM 1

Read/Write

Defines the sizes or proportions of the column arrangement of frames in a frameset.
Column size is defined in one of three ways:

• An absolute pixel size

• A percentage of the width available for the entire frameset

• A wildcard (*) to represent all available remaining space after other pixels and percent-
ages have been accounted for

Exercise extreme care when scripting a change to this property. Altering the composition of
a frameset on the fly might disrupt scripts that communicate across frames. Reducing the
number of columns may destroy documents whose scripts or objects support scripts in
other frames or the parent. It is safest to maintain the same number of columns, but use this
property to adjust the widths of existing frame columns.

Example parent.document.all.framesetter.cols = "40%,60%"

Value

Comma-separated list (as a string) of pixel, percentage, or wildcard (*) values. Internet
Explorer 4 for the Macintosh exhibits incorrect behavior with some combinations that
include a wildcard value.

Default 100%
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

H1, H2, H3, H4, H5, H6 601

DOM
 Reference
frameBorder NN n/a IE 4 DOM n/a

Read/Write

Controls whether the frameset displays borders between frames. Adjusting this property
does not dynamically change the border visibility in Internet Explorer 4.

Example parent.document.all.framesetter.frameBorder = "no"

Value

Internet Explorer 4 accepts the string values of 1 (on) and 0 (off) as well as yes and no.

Default yes

frameSpacing NN n/a IE 4 DOM n/a

Read/Write

The amount of spacing in pixels between frames within a frameset.

Example parent.document.all.framesetter.frameSpacing = 5

Value Integer.

Default 2

rows NN n/a IE 4 DOM 1

Read/Write

The sizes or proportions of the row arrangement of frames in a frameset. See the cols
property for additional details of selecting values for the rows property.

Example document.all.myFrameset.rows = "20%, 300, *"

Value

String of comma-delimited list of pixel or percentage values, or the * wildcard character.

Default None.

H1, H2, H3, H4, H5, H6 NN n/a IE 4 DOM 1

These objects reflect the HTML header elements of the same names. See the description of
the elements in Chapter 8 for examples of how various browsers render each of the header
sizes.

HTML Equivalent
<H1>
<H2>
<H3>
<H4>
<H5>
<H6>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

602 H1, H2, H3, H4, H5, H6
Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

align NN n/a IE 4 DOM 1

Read/Write

Defines the horizontal alignment of the element within its surrounding container.

Example document.all.myHeader.align = "center"

Value Any of the three horizontal alignment constants: center | left | right.

Default left

align innerText offsetLeft outerHTML sourceIndex
className isTextEdit offsetParent outerText style
document lang offsetTop parentElement tagName
id language offsetWidth parentTextEdit title
innerHTML offsetHeight

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

hidden 603

DOM
 Reference
HEAD NN n/a IE 4 DOM 1

The HEAD object reflects the HEAD element. Accessing this object via its ID reference may
not work in the Windows version of IE 4. Use the tags[] collection instead, as shown later
in this reference section.

HTML Equivalent
<HEAD>

Object Model Reference
IE [window.]document.all.elementID

[window.]document.all.tags("HEAD")[0]

Properties

Methods

hidden NN 3 IE 4 DOM 1

The hidden object is a form control generated with an INPUT element whose TYPE
attribute is set to "hidden". This element has no event handlers, because users do not
interact directly with the element. Be aware that any values assigned to a hidden object are
removed if the user reloads the page. In other words, it does not function as a persistent
store. The Win32 version of Internet Explorer 4 exposes many more properties than are
listed below. Most of these are included in the internal object definition for consistency
across other text-oriented form controls, but have no significance for a hidden object.

HTML Equivalent
<INPUT TYPE="hidden">

Object Model Reference
NN [window.]document.formName.elementName

[window.]document.forms[i].elements[i]

IE [window.]document.formName.elementName
[window.]document.forms[i].elements[i]
[window.]document.all.elementID

Properties

className id parentElement tagName title
document isTextEdit sourceIndex outerText style

contains() removeAttribute() setAttribute()
getAttribute()

className document language sourceIndex title
dataFld form name style type
dataSrc id parentElement tagName value
disabled isTextEdit parentTextEdit
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

604 hidden
Methods

dataFld property NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to associate a remote data source column name with the
element’s value. A DATASRC attribute must also be set for the element. Setting both the
dataFld and dataSrc properties to empty strings breaks the binding between element and
data source.

Example document.all.myObject.dataFld = "price"

Value Case-sensitive identifier of the data source column.

Default None.

dataSrc NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Setting both the
dataFld and dataSrc properties to empty strings breaks the binding between element and
data source.

Example document.all.inventoryTable.dataSrc = "#DBSRC3"

Value Case-sensitive identifier of the data source.

Default None.

disabled NN n/a IE 4 DOM 1

Read/Write

Normally, this property determines whether the element is available for user interaction. Its
importance for a hidden element is that when this property is set to true, the element’s
name/value pair is not submitted with the form.

Example document.forms[0].elements[3].disabled = true

Value Boolean value: true | false.

Default false

form NN 2 IE 3 DOM n/a

Read-only

Returns a reference to the FORM element that contains the current element (if any). This
property is most often passed as a parameter for an event handler, using the this keyword
to refer to the current form control. It has little significance for a hidden form element.

contains() removeAttribute() setAttribute()
getAttribute()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

hidden 605

DOM
 Reference
Value Object reference.

Default None.

name NN 2 IE 3 DOM 1

Read/Write

The identifier associated with the form control. The value of this property is submitted as
one-half of the name/value pair when the form is submitted to the server. Names are
hidden from user view, since control labels are assigned via other means, depending on the
control type. Form control names may also be used by script references to the objects.

Example document.orderForm.compName.name = "company"

Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

type NN 3 IE 4 DOM 1

Read-only

Returns the type of form control element. The value is returned in all lowercase letters. It
may be necessary to cycle through all form elements in search of specific types to do some
processing on (e.g., emptying all form controls of type "text" while leaving other controls
untouched).

Example
if (document.forms[0].elements[3].type == "text") {
 ...
}

Value

Any of the following constants (as a string): button | checkbox | file | hidden | image
| password | radio | reset | select-multiple | select-one | submit | text |
textarea.

Default hidden

value NN 2 IE 3 DOM 1

Read/Write

Current value associated with the form control that is submitted with the name/value pair
for the element. All values are strings, but they may represent other kinds of data, including
Boolean and numeric values.

Example document.forms[0].price.value = "33.95"

Value String.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

606 history
Default None.

history NN 2 IE 3 DOM n/a

During a browser session, the browser uses the history object to maintain a list of URLs
visited by the user. This list (stored as an array) is used by the browser to assist with navi-
gation via the Back and Forward buttons. Due to the sensitive nature of the private
information stored in the history object, not many of the details are exposed to scripts
that could capture such information and surreptitiously submit it to a server. In more recent
browser versions, each window maintains its own history object.

Object Model Reference
NN [window.]history

IE [window.]history

Properties

Methods

current, next, previous NN 4 IE n/a DOM n/a

Read-only

The URL of the current, next, and previous URLs in the history array. This information is
private and can be retrieved in Navigator 4 (or later) only with signed scripts and the user’s
approval. Signed scripts are beyond the scope of this book, but a good JavaScript book
should show you how to create and program signed scripts.

Example var prevURL = parent.otherFrame.history.previous

Value String.

Default None.

length NN 2 IE 3 DOM n/a

Read-only

The number of items in the history list. Even with this information, you are not allowed to
extract a specific history entry except with signed scripts and the user’s permission in Navi-
gator 4 or later.

Example
if (history.length > 4) {
 ...
}

Value Integer.

Default None.

current length next previous

back() forward() go()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

HR 607

DOM
 Reference
back() NN 2 IE 3 DOM n/a

The basic action is to navigate to the previously viewed document, similar to the click of
the browser’s Back button. In Navigator 4, however, you can direct the back() method to a
specific window or frame, thus bypassing the default behavior of the Back button. For
example, repeated calls to parent.otherFrame.history.back() eventually run out of
history for the frame and cease to do anything further. On the other hand, repeated calls to
top.history.back() are the same as clicking the Back button, conceivably backing out
of the frameset entirely if it wasn’t the first document loaded in the current browser session.

Returned Value

None.

Parameters

None.

forward() NN 2 IE 3 DOM n/a

The basic action is to navigate to the same URL that the browser’s Forward button leads to
(if it is active). Similar cautions about the window’s history from the history.back()
method apply here, as well.

Returned Value

None.

Parameters

None.

go() NN 2 IE 3 DOM n/a

go(stepCount | "URL")

Navigates to a specific position in the history listing.

Returned Value

None.

Parameters
stepCount

An integer representing how many items away from the current listing the
browser should use to navigate. A value of zero causes the current page to
reload; a value of -1 is the same as back(); a value of -2 is the URL two
steps back from the current item in history. A bug in IE 3 causes all values
other than 0 to be treated as -1.

URL A URL or (in Navigator) document title stored in the history listing.

HR NN n/a IE 4 DOM 1

The HR object reflects the HR element.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

608 HR
HTML Equivalent
<HR>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

align NN n/a IE 4 DOM 1

Read/Write

Defines the horizontal alignment of the element within its surrounding container.

Example document.all.myHR.align = "center"

Value Any of the three horizontal alignment constants: center | left | right.

Default center

align isTextEdit offsetLeft outerText style
className lang offsetParent parentElement tagName
color language offsetTop parentTextEdit title
document noShade offsetWidth size width
id offsetHeight outerHTML sourceIndex

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

filters[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

HR 609

DOM
 Reference
color NN n/a IE 4 DOM 1

Read/Write

Sets the color scheme of the horizontal rule. If the rule is rendered in 3-D, complementary
colors are automatically assigned to the shaded area.

Example document.all.myHR.color = "red"

Value

Case-insensitive hexadecimal triplet or plain-language color name as a string. See
Appendix A for acceptable plain-language color names.

Default Browser default.

noShade NN n/a IE 4 DOM 1

Read/Write

Whether the browser should render the rule as a flat (not 3-D) line. In Internet Explorer
only, if you set the color property, the browser changes the default line style to a no-
shade style.

Example document.all.bar2.noShade = "true"

Value Boolean value: true | false.

Default false

size NN n/a IE 4 DOM 1

Read/Write

The thickness in pixels of the horizontal rule.

Example document.all.rule2.size = 3

Value Positive integer.

Default 2

width NN n/a IE 4 DOM 1

Read/Write

The width of the rule either in pixels (as an integer) or a percentage (as a string) of the next
outermost block-level container.

Example document.all.bar3.width = "70%"

Value Integer (for pixels) or string (for pixels or percentage).

Default 100%
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

610 IFRAME
HTML NN n/a IE 4 DOM 1

The HTML object reflects the HTML element.

HTML Equivalent
<HTML>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

I
See B.

IFRAME NN n/a IE 4 DOM 1

The IFRAME object reflects the IFRAME element. Be aware that, in Internet Explorer 4, a
number of properties defined for this object have no effect on the object nor any default
value.

HTML Equivalent
<IFRAME>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

className isTextEdit parentElement sourceIndex tagName
document language parentTextEdit style title
id

contains() removeAttribute() setAttribute()
getAttribute()

align hspace name outerHTML src
className id noResize outerText style
dataFld isTextEdit offsetHeight parentElement tabIndex
dataSrc lang offsetLeft parentTextEdit tagName
document language offsetParent scrolling title
frameBorder marginHeight offsetTop sourceIndex vspace
frameSpacing marginWidth offsetWidth

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

IFRAME 611

DOM
 Reference
Collections/Arrays

align NN n/a IE 4 DOM 1

Read/Write

Defines how the element is aligned relative to surrounding text content. Most values set the
vertical relationship between the element and surrounding text. For example, to align the
bottom of the element with the baseline of the surrounding text, the align property value
would be baseline. An element can be “floated” along the left or right margin to let
surrounding text wrap around the element.

Example document.all.myIframe.align = "absmiddle"

Value

Any of the following alignment constant values (as a string): absbottom | absmiddle |
baseline | bottom | right | left | none | texttop | top.

Default bottom

dataFld NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to associate a remote data source column name with the value
of the src property. A DATASRC attribute must also be set for the element. Setting both the
dataFld and dataSrc properties to empty strings breaks the binding between element and
data source.

Example document.all.myIframe.dataFld = "frameURL"

Value Case-sensitive identifier of the data source column.

Default None.

dataSrc NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Setting both the
dataFld and dataSrc properties to empty strings breaks the binding between element and
data source.

Example document.all.myIframe.dataSrc = "#DBSRC3"

Value Case-sensitive identifier of the data source.

Default None.

all[] children[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

612 IFRAME
frameBorder NN n/a IE 4 DOM n/a

Read/Write

This property should control whether the frame displays a border. In practice, the property
has no effect on the visual appearance of an inline frame.

Value

Internet Explorer 4 accepts the string values of 1 (on) and 0 (off) as well as yes and no.

Default yes

frameSpacing NN n/a IE 4 DOM n/a

Read/Write

The amount of spacing in pixels between frames within a frameset. This property has no
effect on an inline frame in Internet Explorer 4.

Value Integer.

Default None.

hspace, vspace NN n/a IE 4 DOM n/a

Read/Write

The pixel measure of horizontal and vertical margins surrounding an inline frame. The
hspace property affects the left and right edges of the element equally; the vspace prop-
erty affects the top and bottom edges of the element equally. These margins are not the
same as margins set by style sheets, but they have the same visual effect.

Example
document.logo.hspace = 5
document.logo.vspace = 8

Value Integer of pixel count.

Default 0

marginHeight, marginWidth NN n/a IE 4 DOM n/a

Read/Write

Should control the number of pixels between the inner edge of a frame and the content
rendered inside the frame, but in practice these properties have no effect on the rendered
content in Internet Explorer 4.

Value Positive integer value or zero.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

IFRAME 613

DOM
 Reference
name NN n/a IE 4 DOM 1

Read/Write

The identifier associated with a frame for use as the value assigned to TARGET attributes or
as script references to the frame. The value is usually assigned via the NAME attribute, but it
can be modified by script if necessary.

Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

noResize NN n/a IE 4 DOM n/a

Read/Write

Whether the frame can be resized by the user. In Internet Explorer 4, an inline frame
cannot be resized, so this property is superfluous.

Value Boolean value: true | false.

Default false

scrolling NN n/a IE 4 DOM 1

Read/Write

The treatment of scrollbars for a frame when the content exceeds the visible area of the
frame. You can force a frame to display scrollbars at all times or never. Or you can let the
browser determine the need for scrolling. In IE 4 for the Macintosh, only the vertical
scrollbar is turned off when this property is set to no.

Example document.all.mainFrame.scrolling = "yes"

Value One of three constants (as a string): auto | no | yes.

Default auto

src NN n/a IE 4 DOM 1

Read/Write

URL of the external content file loaded into the current element. To change the content,
assign a new URL to the property.

Example document.all.myIframe.src = "section2.html"

Value Complete or relative URL as a string.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

614 images
tabIndex NN n/a IE 4 DOM n/a

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. In practice, the tabIndex property setting has no effect on
user interaction with an inline frame.

Value Integer.

Default None.

vspace
See hspace.

images NN 3 IE 4 DOM n/a

An array of all IMG objects contained by the document. This object is implemented only in
browser versions that treat images as objects. Therefore, you can use the existence of this
array object as a conditional switch surrounding statements that swap or preload images:

if (document.images) {
image object statements here

}

Internet Explorer 3 for the Macintosh provided support for images as objects.

Object Model Reference
NN document.images[i]

IE document.images[i]
document.images(i)

Properties

Methods

length NN 3 IE 4 DOM n/a

Read-only

Returns the number of elements in the collection.

Example var howMany = document.images.length

Value Integer.

item() NN n/a IE 4 DOM n/a

item(index[, subindex])

Returns a single object or collection of objects corresponding to the element matching the
index value (or, optionally, the index and subindex values).

length

item()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

IMG 615

DOM
 Reference
Returned Value

One object or collection (array) of objects. If there are no matches to the parameters, the
returned value is null.

Parameters
index When the parameter is a zero-based integer, the returned value is a single

element corresponding to the said numbered item in source code order (nested
within the current element); when the parameter is a string, the returned value
is a collection of elements whose id or name properties match that string.

subindex If you specify a string value for the first parameter, you may use the second
parameter to specify a zero-based integer to retrieve a specific element from the
collection whose id or name properties match the first parameter’s string value.

IMG NN 3 IE 4 DOM 1

The IMG object reflects the IMG element.

HTML Equivalent

Object Model Reference
NN [window.]document.imageName

[window.]document.images[i]

IE [window.]document.imageName
[window.]document.images[i]
[window.]document.all.elementID

Properties

Methods

Collections/Arrays

align height lowsrc outerText style
alt href name parentElement tagName
border hspace offsetHeight parentTextEdit title
className id offsetLeft prototype useMap
complete isMap offsetParent readyState vspace
dataFld isTextEdit offsetTop sourceIndex width
dataSrc lang offsetWidth src x
document language outerHTML start y
dynsrc loop

blur() getAttribute() removeAttribute()
click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
focus()

all[] children[] filters[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

616 IMG
Event Handler Properties

align NN n/a IE 4 DOM 1

Read/Write

Defines how the element is aligned relative to surrounding text content. Most values set the
vertical relationship between the element and surrounding text. For example, to align the
bottom of the element with the baseline of the surrounding text, the align property value
would be baseline. An element can be “floated” along the left or right margin to let
surrounding text wrap around the element.

Example document.logoImg.align = "absmiddle"

Value

Any of the following alignment constant values (as a string): absbottom | absmiddle |
baseline | bottom | right | left | none | texttop | top.

Default bottom

Handler NN IE DOM
onabort 3 4 n/a
onafterupdate n/a 4 n/a
onbeforeupdate n/a 4 n/a
onblur n/a 4 n/a
onchange n/a 4 n/a
onclick n/a 4 n/a
ondataavailable n/a 4 n/a
ondatasetchanged n/a 4 n/a
ondatasetcomplete n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onerror 3 4 n/a
onfilterchange n/a 4 n/a
onfocus n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onload 3 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onresize n/a 4 n/a
onrowenter n/a 4 n/a
onrowexit n/a 4 n/a
onscroll n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

IMG 617

DOM
 Reference
alt NN n/a IE 4 DOM 1

Read/Write

Text to be displayed where the IMG element appears on the page when a browser does not
download graphics (or is waiting for the image to download). The text is usually a brief
description of what the image is. Be aware that the size of the image area on the page may
limit the amount of text you can assign to the alt property. Make sure the description is
readable.

Example document.corpLogo.alt = "MegaCorp Logo"

Value Any quoted string of characters.

Default None.

border NN 3 IE 4 DOM 1

Read/Write (IE)

Thickness of the border around an element (in pixels). While Internet Explorer 4 draws a
border around an existing image when you change this property, the property is read-only
in Navigator 4.

Example document.logoImage.border = 4

Value

An integer value. A setting of zero removes the border entirely in Internet Explorer 4.

Default 0

complete NN 3 IE 4 DOM n/a

Read-only

Reveals whether the IMG element’s SRC image file has fully loaded. Note that Navigator 4
provides an incorrect true reading before the image has completely loaded.

Example
if (document.logo.complete) {

 safe to process the image object
}

Value Boolean value: true | false.

Default false

dataFld NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to associate a remote data source column name with the src
property of the IMG object. A DATASRC attribute must also be set for the element. Setting
both the dataFld and dataSrc properties to empty strings breaks the binding between
element and data source.

Example document.myImage.dataFld = "linkURL"
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

618 IMG
Value Case-sensitive identifier of the data source column.

Default None.

dataSrc NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Setting both the
dataFld and dataSrc properties to empty strings breaks the binding between element and
data source.

Example document.myImage.dataSrc = "#DBSRC3"

Value Case-sensitive identifier of the data source.

Default None.

dynsrc NN n/a IE 4 DOM n/a

Read/Write

URL of a video clip to be displayed through the IMG element. Changing this property loads
a new video clip into the image object. See also the loop property for controlling the
frequency of video clip play.

Example document.images[3].dynsrc = "snowman.avi"

Value Complete or relative URL as a string.

Default None.

height, width NN 3 IE 4 DOM 1

Read/Write (IE)

The height and width in pixels of the image element. Changes to these values are immedi-
ately reflected in reflowed content on the page in Internet Explorer 4. Be aware that images
scale to fit the new dimension.

Example document.prettyPicture.height = 250

Value Integer.

Default None.

href NN n/a IE 4 DOM n/a

Read/Write

The URL specified by the element’s SRC attribute. Identical to the src property.

Example document.logoImage.href = "images/fancyLogo.gif"

Value String of complete or relative URL.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

IMG 619

DOM
 Reference
hspace, vspace NN 3 IE 4 DOM 1

Read/Write (IE)

The pixel measure of horizontal and vertical margins surrounding an image object. The
hspace property affects the left and right edges of the element equally; the vspace affects
the top and bottom edges of the element equally. These margins are not the same as
margins set by style sheets, but they have the same visual effect. New values may be
assigned to these properties in Internet Explorer 4.

Example
document.logo.hspace = 5
document.logo.vspace = 8

Value Integer of pixel count.

Default 0

isMap NN n/a IE 4 DOM 1

Read/Write

Whether the IMG element is acting as a server-side image map. For an image to be a server-
side image map, it must be wrapped with an A element whose HREF attribute points to the
URL of the CGI program that knows how to interpret the click coordinate information. The
browser appends coordinate information about the click to the URL as a GET form method
appends form element data to the ACTION attribute URL.

More recent browsers allow client-side image maps (see the useMap property), which
operate more quickly for the user, because there is no communication with the server to
carry out the examination of the click coordinate point.

Example document.navMap.isMap = true

Value Boolean value: true | false.

Default false

loop NN n/a IE 4 DOM n/a

Read/Write

If you specify a video clip with the DYNSRC attribute, the loop property controls how many
times the clip should play (loop). Changing to a value of -1 is equal to a continuous loop.

Example document.movieImg.loop = 3

Value Integer.

Default 1

lowsrc NN 3 IE 4 DOM n/a

Read/Write (IE)

The URL of a lower-resolution (or alternate) image to download into the document space if
the image of the SRC attribute will take a long time to download. The lowsrc image should
be the same pixel size as the primary SRC image. It makes sense to change the lowsrc
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

620 IMG
property only if you are also going to change the src property. In this case, make sure you
change the lowsrc property first so that the browser knows how to handle the long down-
load for the src image.

Example document.productImage.lowsrc = "images/widget43LoRes.jpg"

Value Any complete or relative URL as a string.

Default None.

name NN 2 IE 3 DOM 1

Read/Write

The identifier associated with the image object for use in scripted references to the object.

Example var imgName = document.images[3].name

Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

protocol NN n/a IE 4 DOM n/a

Read-only

Normally, this property returns the protocol component of the URL associated with the
element. Values for an IMG object do not follow the regular format (for local file access, for
example, the returned value is File Protocol instead of file:). This property, which
works only in Win32, does not appear to be wired properly.

Value String.

Default None.

prototype NN n/a IE 4 DOM n/a

Read-only

Returns a reference to the static Image object from which all instances of image objects are
created. This mechanism is more commonly used in JavaScript core language objects (see
Chapter 11, JavaScript Core Language Reference). The fact that this property is available
only in Internet Explorer 4 for the Macintosh calls its legitimacy into question.

Value Object reference.

Default object Image

readyState NN n/a IE 4 DOM n/a

Read-only

Returns the current download status of the image content. This property provides a more
granular way of testing whether a particular downloadable element is ready to be run or
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

IMG 621

DOM
 Reference
scripted instead of the onLoad event handler for the entire document. As the value of this
property changes during loading, the system fires an onReadyStateChange event.

Example
if (document.contentsMap.readyState == "uninitialized") {

statements for alternate handling
}

Value

One of the following values (as strings): complete | interactive | loading | unini-
tialized. Some elements may allow the user to interact with partial content, in which case
the property may return interactive until all loading has completed.

Default None.

useMap NN n/a IE 4 DOM 1

Read/Write

The URL of the MAP element in the same document that contains client-side image map hot
areas and links. The value includes the hashmark assigned with the map name in the
USEMAP attribute of the IMG element.

Example document.images[0].useMap = "#altMap"

Value A string starting with a hashmark and the name of the MAP element.

Default None.

vspace
See hspace.

width
See height.

x, y NN 4 IE n/a DOM n/a

Read-only

The horizontal and vertical pixel coordinates of the top-left corner of the image relative to
the page. These are Navigator-only properties, corresponding to the offsetLeft and
offsetTop properties of Internet Explorer 4.

Example var imageFromTop = document.logoImg.y

Value Integer.

Default None.

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

622 INS
Returned Value

None.

Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.

INPUT NN n/a IE 4 DOM 1

The INPUT object reflects the INPUT element. See the individual descriptions for each
INPUT object type: button, checkbox, fileUpload, hidden, password, radio, reset,
submit, and text.

INS NN n/a IE 4 DOM 1

The INS object reflects the INS element.

HTML Equivalent
<INS>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

cite innerHTML offsetHeight outerHTML sourceIndex
className innerText offsetLeft outerText style
dateTime isTextEdit offsetParent parentElement tagName
document lang offsetTop parentTextEdit title
id language offsetWidth

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

ISINDEX 623

DOM
 Reference
Collections/Arrays

Event Handler Properties

cite NN n/a IE n/a DOM 1

Read/Write

A description of the reason for the change or other notation to be associated with the
element, but normally hidden from view.

Value

Any string of characters. The string must be inside a matching pair of (single or double)
quotation marks.

Default None.

dateTime NN n/a IE n/a DOM 1

Read/Write

The date and time the deletion was made.

Value

See the description of the DATETIME attribute of the DEL element in Chapter 8 for value
formatting details.

Default None.

ISINDEX NN n/a IE n/a DOM 1

The ISINDEX object reflects the ISINDEX element. Since this element is deprecated in
HTML 4.0 and is omitted from Internet Explorer 4’s developer documentation, it wouldn’t

all[] children[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

624 LABEL
be surprising if this object disappears before the DOM recommendation is released. The
description of the prompt property is purely speculative, based on the corresponding
attribute in the HTML element.

HTML Equivalent
<ISINDEX>

Properties

prompt NN n/a IE n/a DOM 1

Read/Write

The prompt message for the text entry field.

Value String.

Default None.

KBD
See ACRONYM.

LABEL NN n/a IE 4 DOM 1

The LABEL object reflects the LABEL element.

HTML Equivalent
<LABEL>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

prompt

accessKey htmlFor lang offsetTop parentTextEdit
className id language offsetWidth sourceIndex
document innerHTML offsetHeight outerHTML style
dataFld innerText offsetLeft outerText tagName
dataFormatAs isTextEdit offsetParent parentElement title
dataSrc

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

LABEL 625

DOM
 Reference
Event Handler Properties

accessKey NN n/a IE 4 DOM 1

Read/Write

A single character key that brings focus to the INPUT element associated with the LABEL
element. The browser and operating system determine whether the user must press a modi-
fier key (e.g., Ctrl, Alt, or Command) with the access key to bring focus to the related
element. In IE 4/Windows, the Alt key is required, and the key is not case sensitive. Not
working in IE 4/Mac.

Example document.entryForm.firstNameLabel.accessKey = "n"

Value Single alphanumeric (and punctuation) keyboard character.

Default None.

dataFld NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to associate a remote data source column name with the
displayed text of the input element label. A DATASRC attribute must also be set for the
element. Setting both the dataFld and dataSrc properties to empty strings breaks the
binding between element and data source.

Example document.all.myLabel.dataFld = "labelText"

Value Case-sensitive identifier of the data source column.

Default None.

dataFormatAs NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding, this property advises the browser whether the source material
arriving from the data source is to be treated as plain text or as tagged HTML.

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

626 layer
Example document.forms[0].myLabel.dataFormatAs = "HTML"

Value IE 4 recognizes two possible settings: text | HTML.

Default text

dataSrc NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Setting both the
dataFld and dataSrc properties to empty strings breaks the binding between element and
data source.

Example document.all.myLabel.dataSrc = "#DBSRC3"

Value Case-sensitive identifier of the data source.

Default None.

htmlFor NN n/a IE 4 DOM n/a

Read/Write

The element ID of the INPUT element to which the label is associated (the value of the FOR
attribute). Binds the LABEL element to a particular INPUT element.

Example document.all.label3.htmlFor = "chkbox3"

Value String.

Default None.

layer NN 4 IE n/a DOM n/a

The layer object reflects the LAYER and ILAYER elements.

HTML Equivalent
<ILAYER>
<LAYER>

Object Model Reference
NN [window.]document.layerName

Properties
above clip left parentLayer top
background document name siblingAbove visibility
below hidden pageX siblingBelow zIndex
bgColor id pageY src
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

layer 627

DOM
 Reference
Methods

Event Handler Properties

above, below NN 4 IE n/a DOM n/a

Read-only

Return a reference to the positionable element whose stacking z-order is above or below
the current element. These properties operate in the context of all positionable elements in
a document. If the current element is the highest element, the above property returns null.
To restrict the examination of next higher or lower elements within a single layer context,
see siblingAbove and siblingBelow. To adjust the stacking order with respect to
specific objects, see the moveAbove() and moveBelow() methods.

Example var nextHigher = document.myILayer.above

Value Object reference or null.

Default None.

background NN 4 IE n/a DOM n/a

Read/Write

This property holds an image object whose src property can be set to change the image
used for the layer’s background. In other words, you must set this property of the object.

Example document.myIlayer.background.src = "images/newlogo.gif"

Value An image object property, such as src.

Default None.

bgColor NN 4 IE n/a DOM n/a

Read/Write

Background color of the element. While you may set the value with either a hexadecimal
triplet or plain-language color value, values returned from the property are for some reason
the decimal equivalent of the hexadecimal RGB version. The default behavior is a trans-
parent background created with a bgColor property value of null.

Example document.myIlayer.bgColor = "yellow"

load() moveBy() resizeBy()
moveAbove() moveTo() resizeTo()
moveBelow() moveToAbsolute()

Handler NN IE DOM
onblur 4 n/a n/a
onfocus 4 n/a n/a
onload 4 n/a n/a
onmouseout 4 n/a n/a
onmouseover 4 n/a n/a
onmouseup 4 n/a n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

628 layer
Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names. Returned values are the decimal equivalent of the hexadecimal
value. A value of null sets the background to transparent.

Default null (transparent).

clip NN 4 IE n/a DOM n/a

Read/Write

Defines a clipping region of a positionable element. This property is treated more like an
object in itself in that you adjust its values through six properties: clip.top, clip.left,
clip.bottom, clip.right, clip.width, and clip.height. Adjust the side(s) or dimen-
sion(s) of your choice. All values represent pixel values.

Example document.myIlayer.clip.width = 150

Value Integer.

Default None.

hidden NN 4 IE n/a DOM n/a

Read/Write

Whether the object is visible on the page. When the object is hidden, its surrounding
content does not close the gap left by the element.

Example document.myIlayer.hidden = false

Value Boolean value: true | false.

Default false

left NN 4 IE n/a DOM n/a

Read/Write

For positionable elements, defines the position of the left edge of an element’s box (content
plus left padding, border, and/or margin) relative to the left edge of the next outermost
block content container. For the relative-positioned layer, the offset is based on the left
edge of the inline location of where the element would normally appear in the content.

Example document.myIlayer.left = 45

Value Integer.

Default 0

name NN 4 IE n/a DOM n/a

Read-only

The identifier associated with a layer for use as the value assigned to TARGET attributes or
as script references to the frame. If no value is explicitly assigned to the ID attribute, Navi-
gator automatically assigns the NAME attribute value to the ID attribute.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

layer 629

DOM
 Reference
Example
if (document.layers[2].name == "main") {
 ...
}

Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

pageX, pageY NN 4 IE n/a DOM n/a

Read/Write

The horizontal (x) and vertical (y) position of the object relative to the top and left edges of
the entire document.

Example document.myIlayer.pageX = 400

Value Integer.

Default None.

parentLayer NN 4 IE n/a DOM n/a

Read-only

Returns a reference to the next outermost layer in the containment hierarchy. For a single
layer in a document, its parentLayer is the window object.

Example
if (parentLayer != window) {
 ...
}

Value Object reference (a layer or window).

Default window

siblingAbove, siblingBelow NN 4 IE n/a DOM n/a

Read-only

Return a reference to the positionable element whose stacking z-order is above or below
the current element, but only within the context of the shared parentLayer. If the current
element is the highest element, the siblingAbove property returns null. To widen the
examination of next higher or lower elements to a document-wide context, see above and
below. To adjust the stacking order with respect to specific objects, see the moveAbove()
and moveBelow() methods.

Example var nextHigher = document.myILayer.siblingAbove

Value Object reference or null.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

630 layer
Default None.

src NN 4 IE n/a DOM n/a

Read/Write

URL of the external content file loaded into the current element. To change the content,
assign a new URL to the property.

Assigning a new URL to this property does not work with inline layers (ILAYER elements)
in Navigator 4. Instead the current source document is removed, and other page elements
can be obscured. Avoid setting this property for inline layers until this problem is fixed. The
same goes for the load() method.

Example document.myIlayer.src = "swap2.html"

Value Complete or relative URL as a string.

Default None.

top NN 4 IE n/a DOM n/a

Read/Write

For positionable elements, defines the position of the top edge of an element’s box (content
plus top padding, border, and/or margin) relative to the top edge of the next outermost
block content container. All measures are in pixels. When the element is a relative-posi-
tioned inline layer, the offset is based on the top edge of the inline location of where the
element would normally appear in the content.

Example document.myIlayer.top = 50

Value Integer.

Default 0

visibility NN 4 IE n/a DOM n/a

Read/Write

The state of the positioned element’s visibility. Surrounding content does not close the
space left by an element whose visibility property is set to hide (or the CSS version,
hidden). If you set the property to the CSS syntax values (hidden | visible), they are
converted internally to the JavaScript versions and returned from the property in that
format.

Example document.myIlayer.visibility = "hide"

Value One of the constant values (as a string): hide | inherit | show.

Default inherit
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

layer 631

DOM
 Reference
zIndex NN 4 IE n/a DOM n/a

Read/Write

For a positioned element, the stacking order relative to other elements within the same
parent container. See Chapter 4 for details on relationships of element layering amid
multiple containers.

Example document.myIlayer.zIndex = 3

Value Integer.

Default 0

captureEvents() NN 4 IE n/a DOM n/a

captureEvents(eventTypeList)

Instructs the browser to grab events of a specific type before they reach their intended
target objects. The object invoking this method must then have event handlers defined for
the given event types to process the event. See Chapter 6.

Returned Value

None.

Parameters
eventTypeList

A comma-separated list of case-sensitive event types as derived from the avail-
able Event object constants, such as Event.CLICK or Event.MOUSEMOVE.

handleEvent() NN 4 IE n/a DOM n/a

handleEvent(event)

Instructs the object to accept and process the event whose specifications are passed as the
parameter to the method. The object must have an event handler for the event type to
process the event. See Chapter 6.

Returned Value

None.

Parameters
event A Navigator 4 event object.

load() NN 4 IE n/a DOM n/a

load("URL", newLayerWidth)

This method lets you load a new document into a layer object. It does not work properly
in Navigator 4 for ILAYER elements. The existing document is unloaded from the layer, but
the new one does not load as you’d expect. There is no satisfactory workaround except to
transform the element into a LAYER.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

632 layer
Returned Value

Boolean value: true if the document loading was successful.

Parameters
URL String value of the complete or relative URL of the document to be loaded into

the layer.

newLayerWidth
Integer value in pixels of a resized width of the element to accommodate the
new content.

moveAbove(), moveBelow() NN 4 IE n/a DOM n/a

moveAbove(layerObject)

moveBelow(layerObject)

These methods shift the z-order of the current layer to a specific location relative to
another, sibling layer. This is helpful if your script is not sure of the precise zIndex value
of a layer you want to use as a reference point for the current layer’s stacking order. Use
moveAbove() to position the current layer immediately above the layer object referenced
as a parameter.

Returned Value

None.

Parameters
layerObject

Reference to another layer object that shares the same parent as the current
layer.

moveBy() NN 4 IE n/a DOM n/a

moveBy(deltaX, deltaY)

A convenience method that shifts the location of the current element by specified pixel
amounts along both axes. To shift along only one axis, set the other value to zero. Positive
values for deltaX shift the element to the right; negative values to the left. Positive values
for deltaY shift the element downward; negative values upward. This method comes in
handy for path animation under the control of a setInterval() or setTimeout()
method that moves the element in a linear path over time.

Returned Value

None.

Parameters
deltaX Positive or negative pixel count of the change in horizontal direction of the

element.

deltaY Positive or negative pixel count of the change in vertical direction of the
element.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

layer 633

DOM
 Reference
moveTo(), moveToAbsolute() NN 4 IE n/a DOM n/a

moveTo(x, y)

moveToAbsolute(x, y)

Convenience methods that shift the location of the current element to a specific coordinate
point. The differences between the two methods show when the element to be moved is
nested inside another positioned container (e.g., a layer inside a layer). The moveTo()
method uses the coordinate system of the parent container; the moveToAbsolute()
method uses the coordinate system of the page. For a single layer on a page, the two
methods yield the same result.

Returned Value

None.

Parameters
x Positive or negative pixel count relative to the top of the reference container,

whether it be the next outermost layer (moveTo()) or the page
(moveToAbsolute()).

y Positive or negative pixel count relative to the left edge of the reference
container, whether it be the next outermost layer (moveTo()) or the page
(moveToAbsolute()).

releaseEvents() NN 4 IE n/a DOM n/a

releaseEvents(eventTypeList)

The opposite of layerObj.captureEvents(), this method turns off event capture at the
layer level for one or more specific events named in the parameter list. See Chapter 6.

Returned Value

None.

Parameters
eventTypeList

A comma-separated list of case-sensitive event types as derived from the avail-
able Event object constants, such as Event.CLICK or Event.MOUSEMOVE.

resizeBy() NN 4 IE n/a DOM n/a

resizeBy(deltaX, deltaY)

A convenience method that shifts the width and height of the current element by specified
pixel amounts. To adjust along only one axis, set the other value to zero. Positive values for
deltaX make the element wider; negative values make the element narrower. Positive
values for deltaY make the element taller; negative values make the element shorter. The
top and bottom edges remain fixed; only the right and bottom edges are moved.

Returned Value

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

634 LEGEND
Parameters
deltaX Positive or negative pixel count of the change in horizontal dimension of the

element.

deltaY Positive or negative pixel count of the change in vertical dimension of the
element.

resizeTo() NN 4 IE n/a DOM n/a

resizeTo(x, y)

Convenience method that adjusts the height and width of the current element to specific
pixel sizes. The top and left edges of the element remain fixed, while the bottom and right
edges move in response to this method.

Returned Value

None.

Parameters
x Width in pixels of the element.

y Height in pixels of the element.

routeEvent() NN 4 IE n/a DOM n/a

routeEvent(event)

Used inside an event handler function, this method directs Navigator to let the event pass to
its intended target object. See Chapter 6.

Returned Value

None.

Parameters
event A Navigator 4 event object.

LEGEND NN n/a IE 4 DOM 1

The LEGEND object reflects the LEGEND element. A LEGEND element must be nested inside
and immediately after the FIELDSET element associated with a form or group of form
controls.

HTML Equivalent
<LEGEND>

Object Model Reference
IE [window.]document.all.elementID
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

LEGEND 635

DOM
 Reference
Properties

Methods

Collections/Arrays

Event Handler Properties

accessKey NN n/a IE 4 DOM n/a

Read/Write

A single character key that brings focus to an element or, in the case of a LEGEND element,
to the first focusable form control in the associated FIELDSET element. The browser and
operating system determine whether the user must press a modifier key (e.g., Ctrl, Alt, or
Command) with the access key to bring focus to the related element. In IE 4/Windows, the
Alt key is required, and the key is not case sensitive. Not working in IE 4/Mac.

accessKey document language outerHTML scrollTop
align id offsetHeight outerText scrollWidth
className innerHTML offsetLeft parentElement sourceIndex
clientHeight innerText offsetParent parentTextEdit style
clientLeft isTextEdit offsetTop scrollHeight tagName
clientTop lang offsetWidth scrollLeft title
clientWidth

blur() getAttribute() removeAttribute()
click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
focus()

all[] children[] filters[]

Handler NN IE DOM
onblur n/a 4 n/a
onchange n/a 4 n/a
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfocus n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onscroll n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

636 LEGEND
Example document.all.myLegend.accessKey = "n"

Value Single alphanumeric (and punctuation) keyboard character.

Default None.

align NN n/a IE 4 DOM 1

Read/Write

Controls the alignment of the LEGEND element with respect to the containing FIELDSET
element. The permissible values do not always work as planned in Internet Explorer 4. For
example, the bottom value displays the label at the top left of the fieldset rectangle. So
does the top value, although it is supposed to be centered along the top. The other values
(center, left, and right) work as expected, but on the Macintosh, the center and
right settings inexplicably widen the fieldset rectangle. Be sure to check your desired
setting on both operating system platforms.

Example document.all.myLegend.align = "center"

Value

Any one of the following constant values (as a string): bottom | center | left | right |
top.

Default left

clientHeight, clientWidth NN n/a IE 4 DOM n/a

Read/Write

According to Microsoft’s developer documentation, these properties reflect the height and
width (in pixels) of the element’s content. But see the section “About client- and offset-
Properties” at the beginning of this chapter for details.

Example var midHeight = document.all.myLegend.clientHeight/2

Value Integer pixel value.

Default None.

clientLeft, clientTop NN n/a IE 4 DOM n/a

Read-only

According to Microsoft’s developer documentation, these properties reflect the distance
between the “true” left and top edges of the document area and the edges of the element.
But see the section “About client- and offset- Properties” at the beginning of this chapter for
details. To get or set the pixel position of an element in the document, use the pixelLeft
and pixelTop properties.

Value A string value for a length in a variety of units or percentage.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

LEGEND 637

DOM
 Reference
scrollHeight, scrollWidth NN n/a IE 4 DOM n/a

Read-only

The meaning of these two properties is ambiguous based on Microsoft’s description and the
way they’re implemented in the Windows and Macintosh versions of Internet Explorer 4.
My best guess is that these properties are intended to measure the height and width (in
pixels) of the content of an element even when some of the content cannot be seen unless
scrolled with scrollbars. The Macintosh version of the browser interprets this to mean the
amount of the content that you can see at any one time. The important point is that for key
elements, such as the BODY, the properties mean different things and can disrupt cross-plat-
form operation.

Example var midPoint = document.all.myLegend.scrollHeight/2

Value Positive integer or zero.

Default None.

scrollLeft, scrollTop NN n/a IE 4 DOM n/a

Read/Write

The distance in pixels between the actual left or top edge of the element’s physical content
and the left or top edge of the visible portion of the content. Changing these properties
appears to have no visual effect in Internet Explorer.

Example document.all.myLegend.scrollTop = 40

Value Positive integer or zero.

Default 0

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.

Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

638 LI
LI NN n/a IE 4 DOM 1

The LI object reflects the LI element.

HTML Equivalent

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

type NN n/a IE 4 DOM 1

Read/Write

The manner in which the leading bullets, numbers, or letters of items in the list are
displayed. Bullet styles are displayed when the LI element is nested inside a UL element;

className isTextEdit offsetParent parentElement tagName
document lang offsetTop parentTextEdit title
id language offsetWidth sourceIndex type
innerHTML offsetHeight outerHTML style value
innerText offsetLeft outerText

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

LINK 639

DOM
 Reference
numbers and letters for an OL element. If your script changes the type for a single LI
object, be aware that the change affects all subsequent LI elements in the same list.

Example
document.all.instruxListItem3.type = "a"
document.all.point4.type = "square"

Value

For an OL style list, possible values are: A | a | I | i | 1. Sequencing is performed auto-
matically as follows:

For a UL-style list, possible values are: circle | disc | square.

Default 1 and disc

value NN n/a IE 4 DOM 1

Read/Write

The number of the item within an ordered list. This property applies to an LI element only
when it is nested inside an OL element. The default value for unadjusted numbering is
always zero. If you set the value property of one item in the list, the following items
continue the sequence from the new value.

Example document.all.step5.value = 5

Value Positive integer.

Default 0

LINK NN n/a IE 4 DOM 1

The LINK object reflects the LINK element. Note that many of the properties listed here are
not available for scripting in the object unless their corresponding attributes are set initially
in the HTML tag. This includes: href, rel, rev, and type. The media property is not avail-
able in the Macintosh version of IE 4. Fortunately, there is little need to script this object,
since the impact of the LINK element is felt by the browser as the document loads.

HTML Equivalent
<LINK>

Object Model Reference
IE [window.]document.all.elementID

Type Example
A A, B, C, ...
a a, b, c, ...
I I, II, III, ...
i i, ii, iii, ...
1 1, 2, 3, ...
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

640 LINK
Properties

Methods

Collections/Arrays

Event Handler Properties

disabled NN n/a IE 4 DOM n/a

Read/Write

Whether information from the LINK element should be applied. For example, if the LINK
element loads an external style sheet, you can disable the style sheet from a script by
setting the LINK object’s disabled property to true.

Example document.all.styleLink.disabled = true

Value Boolean value: true | false.

Default false

href NN n/a IE 4 DOM 1

Read/Write

The URL specified by the element’s HREF attribute. For example, to swap external style
sheets after the page has loaded, assign an alternate style sheet file to the href property.
This property is read-only in IE 4/Macintosh.

Example document.all.styleLink.href = "altStyles.css"

Value String of complete or relative URL.

Default None.

media NN n/a IE 4 DOM 1

Read/Write

The intended output device for the content of the destination document pointed to by the
HREF attribute. The media property looks forward to the day when browsers are able to

className href parentElement rel tagName
disabled id parentTextEdit rev title
document media readyState sourceIndex type

contains() removeAttribute() setAttribute()
getAttribute()

all[] children[]

Handler NN IE DOM
onerror n/a 4 n/a
onload n/a 4 n/a
onreadystatechange n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

LINK 641

DOM
 Reference
tailor content to specific kinds of devices such as pocket computers, text-to-speech digi-
tizers, or fuzzy television sets. This property is not available in IE 4/Macintosh.

Example document.all.link3.media = "print"

Value Any one of the following constant values as a string: all | print | screen.

Default all

readyState NN n/a IE 4 DOM n/a

Read-only

Returns the current download status of the embedded content. This property provides a
more granular way of testing whether a particular downloadable element is ready to be run
or scripted instead of the onLoad event handler for the entire document. As the value of
this property changes during loading, the system fires an onReadyStateChange event.

Example
if (document.all.myLink.readyState != "complete") {

statements for alternate handling
}

Value

One of the following values (as strings): complete | interactive | loading | unini-
tialized. Some elements may allow the user to interact with partial content, in which case
the property may return interactive until all loading has completed.

Default None.

rel NN n/a IE 4 DOM 1

Read/Write

Defines the relationship between the current element and the destination of the link. Also
known as a forward link, not to be confused in any way with the destination document
whose address is defined by the HREF attribute. This property is not exploited yet in
Internet Explorer 4, but you can treat the attribute as a kind of parameter to be checked
and/or modified under script control. See the discussion of the A element’s REL attribute in
Chapter 8 for a glimpse of how this property may be used in the future.

Value

Case-insensitive, space-delimited list of HTML 4.0 standard link types (as a single string)
applicable to the element. Sanctioned link types are:

Default None.

alternate contents index start
appendix copyright next stylesheet
bookmark glossary prev subsection
chapter help section
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

642 links
rev NN n/a IE 4 DOM 1

Read/Write

Defines the relationship between the current element and the destination of the link. Also
known as a reverse link. This property is not exploited yet in Internet Explorer 4, but you
can treat the attribute as a kind of parameter to be checked and/or modified under script
control. See the discussion of the A element’s REV attribute in Chapter 8 for a glimpse of
how this property may be used in the future.

Value

Case-insensitive, space-delimited list of HTML 4.0 standard link types (as a single string)
applicable to the element. See the rel property for sanctioned link types.

Default None.

type NN n/a IE 4 DOM n/a

Read/Write

An advisory MIME type declaration about the data being loaded from an external source.
For example, an external style sheet would be text/css. This information is usually set in
the element tag’s TYPE attribute.

Example
if (document.all.myStyle.type == "text/css") {
 ...
}

Value String.

Default None.

links NN 2 IE 3 DOM n/a

A collection of all A elements whose assigned HREF attributes make them behave as links
(instead of only anchors). Collection members are sorted in source code order. Navigator
and Internet Explorer let you use array notation to access a single link in the collection
(document.links[0] or document.links["section3"], for example). Internet Explorer
4 also allows the index value to be placed inside parentheses instead of brackets (docu-
ment.links(0), for example). If you wish to use the link’s name as an index value
(always as a string identifier), be sure to use the value of the NAME attribute, rather than the
ID attribute. To use the ID attribute in a reference to an anchor, access the object via a
document.all.elementID reference.

Object Model Reference
NN document.links[i]

IE document.links(i)
document.links[i]

Properties
length
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

LISTING 643

DOM
 Reference
length NN 2 IE 3 DOM n/a

Read-only

Returns the number of elements in the collection.

Example var howMany = document.links.length

Value Integer.

LISTING NN n/a IE 4 DOM n/a

The LISTING object reflects the LISTING element.

HTML Equivalent
<LISTING>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

className isTextEdit offsetLeft outerHTML sourceIndex
document lang offsetParent outerText style
id language offsetTop parentElement tagName
innerHTML offsetHeight offsetWidth parentTextEdit title
innerText

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

644 location
location NN 2 IE 3 DOM 1

There is one location object in each window or frame. The object stores all information
about the URL of the document currently loaded into that window or frame. By assigning a
new URL to the href property of the location object, you instruct the browser to load a
new page into the window or frame. This is the primary way of scripting the loading of a
new page:

location.href = "newPage.html"

A script in one frame can reference the location object in another frame to load a new
document into that other frame:

parent.otherFrameName.location.href = "newPage.html"

Security restrictions prevent a script in one frame from accessing location object informa-
tion in another frame if the document in the second frame does not come from the same
domain as the document with the nosy script. This prevents a rogue script from monitoring
navigation in another frame to external web sites. In Navigator 4, you can overcome the
security restriction with the help of signed scripts (a topic more suitable for a JavaScript
book covering Navigator 4), but the user still has to give explicit permission for a script to
access location object information outside the script’s domain.

Object Model Reference
NN [windowRef.]location

IE [windowRef.]location

Properties

Methods

hash NN 2 IE 3 DOM 1

Read/Write

That portion of a URL following the # symbol, referring to an anchor location in a docu-
ment. This property contains its data only if the user has explicitly navigated to an anchor,
and is not just scrolling to it. Do not include the # symbol when setting the property.

Example location.hash = "section3"

Value String.

Default None.

onmouseup n/a 4 n/a
onselectstart n/a 4 n/a

hash hostname pathname protocol search
host href port

assign() reload() replace()

Handler NN IE DOM
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

location 645

DOM
 Reference
host NN 2 IE 3 DOM 1

Read/Write

The combination of the hostname and port (if any) of the server that serves up the current
document. If the port is explicitly part of the URL, the hostname and port are separated by a
colon, just as they are in the URL.

Example
if (location.host = "www.megacorp.com:80") {
 ...
}

Value String of hostname, optionally followed by a colon and port number.

Default Depends on server.

hostname NN 2 IE 3 DOM 1

Read/Write

The combination of the hostname of the server (i.e., a “two-dot” address consisting of
server name and domain) that serves up the current document. The hostname property
does not include the port number.

Example
if (location.hostname = "www.megacorp.com") {
 ...
}

Value String of hostname (server and domain).

Default Depends on server.

href NN 2 IE 3 DOM 1

Read/Write

The complete URL of the document loaded in the window or frame. Assigning a URL to this
property is how you script navigation to load a new document into the window or frame
(although Internet Explorer also offers the equivalent window.navigate() method).

Example location.href = "http://www.megacorp.com"

Value String of complete or relative URL.

Default None.

pathname NN 2 IE 3 DOM 1

Read/Write

The pathname component of the URL. This consists of all URL information following the
last character of the domain name, including the initial forward slash symbol.

Example location.pathname = "/images/logoHiRes.gif"
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

646 location
Value String.

Default None.

port NN 2 IE 3 DOM 1

Read/Write

The port component of the URL, if one exists. This consists of all URL information following
the colon after the last character of the domain name. The colon is not part of the port
property value.

Example location.port = "80"

Value String (a numeric value as string).

Default None.

protocol NN 2 IE 3 DOM 1

Read/Write

The protocol component of the URL. This consists of all URL information up to and
including the first colon of a URL. Typical values are: "http:", "file:", "ftp:", and
"mailto:".

Example
if (location.protocol == "file:") {

statements for treating document as local file
}

Value String.

Default None.

search NN 2 IE 3 DOM 1

Read/Write

The URL-encoded portion of a URL that begins with the ? symbol. A document that is
served up as the result of the search also may have the search portion available as part of
the window.location property. You can modify this property by script. Doing so sends
the URL and search criteria to the server. You must know the format of data (usually name/
value pairs) expected by the server to perform this properly.

Example location.search="?p=Tony+Blair&d=y&g=0&s=a&w=s&m=25"

Value String starting with the ? symbol.

Default None.

assign() NN 2 IE 3 DOM n/a

assign("URL")

This method was intended to be hidden from view of scripters, but remains available for
now. It performs the same action as assigning a URL to the location.href property. The
assign() method is listed here for completeness and should not be used.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

locationbar, menubar, personalbar, scrollbars, statusbar, toolbar 647

DOM
 Reference
Returned Value

None.

Parameters
URL A string version of a complete or relative URL of a document to be loaded into

a window or frame.

reload() NN 3 IE 4 DOM 1

reload([unconditional])

Performs a hard reload of the document associated with the location object. This kind of
reload resets form elements to their default values (for a soft reload, use history.go(0)).
By default the reload() method performs a conditional-GET action, which retrieves the
file from the browser cache if the file is still in the cache (and the cache is turned on). To
force a reload from the server, force an unconditional-GET by adding the true Boolean
parameter.

Returned Value

None.

Parameters
unconditional

An optional Boolean value. If true, the browser performs an unconditional-
GET to force a reload of the document from the server, rather than the browser
cache.

replace() NN 3 IE 4 DOM 1

replace("URL")

Loads a new document into the reference window and replaces the browser’s history listing
entry of the current document with the entry of the new document. Thus, some interim
page that you don’t want appearing in history (to prevent the Back button from ever
returning to the page) can be removed from the history and replaced with the entry of the
newly loaded document.

Returned Value

None.

Parameters
URL A string version of a complete or relative URL of a document to be loaded into

a window or frame.

locationbar, menubar, personalbar,
scrollbars, statusbar, toolbar NN 4 IE n/a DOM n/a

These six objects belong to the window object and represent portions of the “chrome”
surrounding the content area of the browser window. With signed scripts in Navigator 4
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

648 MAP
(and the user’s permission), you can dynamically hide and show these elements in a
browser window. These features can also be turned off via the third parameter of the
window.open() method, but only when generating a new window. To change the visi-
bility of these items in an existing window, signed scripts are required.

Object Model Reference
NN [window.]locationbar

[window.]menubar
[window.]personalbar
[window.]scrollbars
[window.]statusbar
[window.]toolbar

Properties

visible NN 4 IE n/a DOM n/a

Read/Write

Accessible only through signed scripts in Navigator 4, determines whether the window
chrome feature is displayed.

Example window.statusbar.visible = "false"

Value Boolean value: true | false.

Default true

MAP NN n/a IE 4 DOM 1

The MAP object reflects the MAP element.

HTML Equivalent
<MAP>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

visible

className isTextEdit offsetLeft outerHTML sourceIndex
document lang offsetParent outerText style
id language offsetTop parentElement tagName
innerHTML name offsetWidth parentTextEdit title
innerText offsetHeight

click() getAttribute() scrollIntoView()
contains() removeAttribute() setAttribute()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

MARQUEE 649

DOM
 Reference
Collections/Arrays

Event Handler Properties

name NN n/a IE 4 DOM 1

Read/Write

The identifier associated with the client-side image map specification. A MAP element
contains all the AREA elements that define the hotspots of an image and their link destina-
tions. The name assigned to the MAP element is the one cited by the USEMAP attribute of the
IMG element. This binds the MAP definitions to the image.

Example document.all.myMap.name = "altMap"

Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

areas[] NN n/a IE 4 DOM n/a

A collection of all AREA element objects nested inside the MAP element.

Syntax document.all.myMap.areas(index)

MARQUEE NN n/a IE 4 DOM n/a

The MARQUEE object reflects the MARQUEE element.

HTML Equivalent
<MARQUEE>

all[] areas[] children[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

650 MARQUEE
Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

accessKey dataSrc lang outerText scrollWidth
behavior direction language parentElement sourceIndex
bgColor document loop parentTextEdit style
className height offsetHeight recordNumber tabIndex
clientHeight hspace offsetLeft scrollAmount tagName
clientLeft id offsetParent scrollDelay title
clientTop innerHTML offsetTop scrollHeight trueSpeed
clientWidth innerText offsetWidth scrollLeft vspace
dataFld isTextEdit outerHTML scrollTop width
dataFormatAs

blur() getAttribute() scrollIntoView()
click() insertAdjacentHTML() setAttribute()
contains() insertAdjacentText() start()
focus() removeAttribute() stop()

all[] children[] filters[]

Handler NN IE DOM
onafterupdate n/a 4 n/a
onblur n/a 4 n/a
onbounce n/a 4 n/a
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfinish n/a 4 n/a
onfocus n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onresize n/a 4 n/a
onrowenter n/a 4 n/a
onrowexit n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

MARQUEE 651

DOM
 Reference
accessKey NN n/a IE 4 DOM n/a

Read/Write

A single character key that brings focus to the element. The browser and operating system
determine whether the user must press a modifier key (e.g., Ctrl, Alt, or Command) with
the access key to bring focus to the element. In IE 4/Windows, the Alt key is required, and
the key is not case sensitive. Not working in IE 4/Mac.

Example document.all.myBanner.accessKey = "n"

Value Single alphanumeric (and punctuation) keyboard character.

Default None.

behavior NN n/a IE 4 DOM n/a

Read/Write

The motion of the content within the rectangular space set aside for the MARQUEE element.
You have a choice of three motion types.

Example document.all.newsBanner.behavior = "slide"

Value

Case-insensitive MARQUEE element motion types:

alternate
Content alternates between marching left and right.

scroll Content scrolls (according to the DIRECTION attribute or direction property)
into view and out of view before starting again.

slide Content scrolls (according to the DIRECTION attribute or direction property)
into view, stops at the end of its run, blanks, and then starts again.

Default scroll

bgColor NN n/a IE 4 DOM n/a

Read/Write

Background color of the element. This color setting is not reflected in the style sheet back-
groundColor property except for Navigator layer objects. Even if the BGCOLOR attribute or
bgColor property is set with a plain-language color name, the returned value is always a
hexadecimal triplet.

Example document.all.myBanner.bgColor = "yellow"

onscroll n/a 4 n/a
onselectstart n/a 4 n/a
onstart n/a 4 n/a

Handler NN IE DOM
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

652 MARQUEE
Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default Varies with browser and operating system.

clientHeight, clientWidth NN n/a IE 4 DOM n/a

Read/Write

According to Microsoft’s developer documentation, these properties reflect the height and
width (in pixels) of the element’s content. But see the section “About client- and offset-
Properties” at the beginning of this chapter for details.

Example var midHeight = document.all.myBanner.clientHeight/2

Value Integer pixel value.

Default None.

clientLeft, clientTop NN n/a IE 4 DOM n/a

Read-only

According to Microsoft’s developer documentation, these properties reflect the distance
between the “true” left and top edges of the document area and the edges of the element.
But see the section “About client- and offset- Properties” at the beginning of this chapter for
details. To get or set the pixel position of an element in the document, use the pixelLeft
and pixelTop properties.

Value A string value for a length in a variety of units or percentage.

Default None.

dataFld NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to associate a remote data source column name with the
content of the MARQUEE element. A DATASRC attribute must also be set for the element.
Setting both the dataFld and dataSrc properties to empty strings breaks the binding
between element and data source.

Example document.all.myBanner.dataFld = "hotNews"

Value Case-sensitive identifier of the data source column.

Default None.

dataFormatAs NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding, this property advises the browser whether the source material
arriving from the data source is to be treated as plain text or as tagged HTML.

Example document.all.myBanner.dataFormatAs = "text"
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

MARQUEE 653

DOM
 Reference
Value IE 4 recognizes two possible settings: text | HTML.

Default text

dataSrc NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Setting both the
dataFld and dataSrc properties to empty strings breaks the binding between element and
data source.

Example document.all.myBanner.dataSrc = "#DBSRC3"

Value Case-sensitive identifier of the data source.

Default None.

direction NN n/a IE 4 DOM n/a

Read/Write

Direction of the scroll within the element space.

Example document.all.banner.direction = "down"

Value Four possible case-insensitive directions: down | left | right | up.

Default left

height, width NN n/a IE 4 DOM n/a

Read/Write

The height and width in pixels of the element. Changes to these values are immediately
reflected in reflowed content on the page.

Example document.all.myBanner.height = 250

Value Integer.

Default None.

hspace, vspace NN n/a IE 4 DOM n/a

Read/Write

The pixel measure of horizontal and vertical margins surrounding the element. The hspace
property affects the left and right edges of the element equally; the vspace affects the top
and bottom edges of the element equally. These margins are not the same as margins set by
style sheets, but they have the same visual effect.

Example
document.all.myBanner.hspace = 5
document.all.myBanner.vspace = 8
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

654 MARQUEE
Value Integer of pixel count.

Default 0

loop NN n/a IE 4 DOM n/a

Read/Write

Sets the number of times the element scrolls its content. After the final scroll, the content
remains in a fixed position. Constant animation can sometimes be distracting to page visi-
tors, so if you have the MARQUEE turn itself off after a few scrolls, you may be doing your
visitors a favor.

Example document.all.banner.loop = 3

Value

Any positive integer if you want the scrolling to stop after that number of times. Otherwise,
set the value to -1.

Default -1

recordNumber NN n/a IE 4 DOM n/a

Read-only

Used with data binding, returns an integer representing the record within the data set that
generated the element (i.e., an element whose content is filled via data binding). Values of
this property can be used to extract a specific record from an Active Data Objects (ADO)
record set (see recordset property).

Example
<SCRIPT FOR="tableTemplate" EVENT="onclick">
 myDataCollection.recordset.absoluteposition = this.recordNumber
 ...
</SCRIPT>

Value Integer.

Default None.

scrollAmount NN n/a IE 4 DOM n/a

Read/Write

The amount of space between positions of each drawing of the content. The greater the
space, the faster the text appears to scroll. See also scrollDelay.

Example document.all.banner.scrollAmount = 4

Value Positive integer.

Default 6
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

MARQUEE 655

DOM
 Reference
scrollDelay NN n/a IE 4 DOM n/a

Read/Write

The amount of time in milliseconds between each drawing of the content. The greater the
delay, the slower the text appears to scroll. See also scrollAmount.

Example document.all.banner.scrollDelay = 100

Value Positive integer.

Default 85 (Windows 95); 90 (Macintosh).

scrollHeight, scrollWidth NN n/a IE 4 DOM n/a

Read-only

The meaning of these two properties is ambiguous based on Microsoft’s description and the
way they’re implemented in the Windows and Macintosh versions of Internet Explorer 4.
My best guess is that these properties are intended to measure the height and width (in
pixels) of the content of an element even when some of the content cannot be seen unless
scrolled with scrollbars. The Macintosh version of the browser interprets this to mean the
amount of the content that you can see at any one time. The important point is that for key
elements, such as the BODY, the properties mean different things and can disrupt cross-plat-
form operation.

Example var midPoint = document.all.myBanner.scrollHeight/2

Value Positive integer or zero.

Default None.

scrollLeft, scrollTop NN n/a IE 4 DOM n/a

Read/Write

The distance in pixels between the actual left or top edge of the element’s physical content
and the left or top edge of the visible portion of the content. Setting these properties does
not appear to visually impact the display of content in the MARQUEE element.

Example document.all.myBanner.scrollTop = 40

Value Positive integer or zero.

Default 0

tabIndex NN n/a IE 4 DOM 1

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their tabIndex properties are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest tabIndex value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same tabIndex values, the element that comes
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

656 MARQUEE
earlier in the document receives focus first. Next come all elements that either don’t support
the tabIndex property or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A value of -1 removes the element from
tabbing order altogether.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text and password INPUT fields.

Example document.all.myBanner.tabIndex = 6

Value Integer.

Default None.

trueSpeed NN n/a IE 4 DOM n/a

Read/Write

Whether the browser should honor SCROLLDELAY settings below 60 milliseconds. The
default setting (false) prevents accidental settings that scroll too fast for most readers.

Example document.all.banner.trueSpeed = "true"

Value Boolean value: true | false.

Default false

vspace
See hspace.

width
See height.

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.

Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

MENU 657

DOM
 Reference
Parameters

None.

start() NN n/a IE 4 DOM n/a

Starts the MARQUEE element scrolling if it has been stopped. If the method is invoked on a
stopped element, the onstart event handler also fires in response.

Returned Value

None.

Parameters

None.

stop() NN n/a IE 4 DOM n/a

Stops the scrolling of the MARQUEE element. The content remains on the screen in the
precise position it was in when the method was invoked. Restart via the start() method.

Returned Value

None.

Parameters

None.

MENU NN n/a IE 4 DOM 1

The MENU object reflects the MENU element.

HTML Equivalent
<MENU>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

className isTextEdit offsetLeft outerHTML sourceIndex
document lang offsetParent outerText style
id language offsetTop parentElement tagName
innerHTML offsetHeight offsetWidth parentTextEdit title
innerText

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

658 META
Collections/Arrays

Event Handler Properties

menubar
See locationbar.

META NN n/a IE 4 DOM 1

The META object reflects the META element.

HTML Equivalent
<META>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

all[] children[] filters[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a

charset httpEquiv lang parentTextEdit tagName
className id language sourceIndex title
content isTextEdit parentElement style url

contains() removeAttribute() setAttribute()
getAttribute()

all[] children[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

META 659

DOM
 Reference
charset NN n/a IE 4 DOM n/a

Read/Write

Character encoding of the content in the file associated with the href attribute. This prop-
erty does not change the setting of the CHARSET attribute of a name/value pair contained by
the CONTENT attribute or property. For now the charset property has little or no effect on
a document.

Example
if (document.all.myMeta.charset == "csISO5427Cyrillic") {

process for Cyrillic charset
}

Value

Case-insensitive alias from the character set registry (ftp://ftp.isi.edu/in-notes/iana/assign-
ments/character-sets).

Default Determined by browser.

content NN n/a IE 4 DOM 1

Read/Write

The equivalent of the “value” of a name/value pair. The property’s corresponding CONTENT
attribute is usually accompanied by either a NAME or HTTP-EQUIV attribute, either of which
act as the “name” portion of the name/value pair. Specific values of the CONTENT attribute
vary with the value of the NAME or HTTP-EQUIV attribute. Sometimes the CONTENT attribute
value contains multiple values. In such cases, the values are delimited by a semicolon.
Some of these multiple values may be name/value pairs in their own right, such as the
content for a refresh META element. The first value is a number representing the number of
seconds of delay before loading another document; the second value is a name/value pair
indicating a URL of the document to load after the delay expires.

Changing the content property on a loaded document may not produce the desired effect
if the browser relies on the incoming value as the document loads.

Example
document.all.refreshMeta.content ="5,http://www.giantco.com/
basicindex.html"

Value Any string of characters.

Default None.

httpEquiv NN n/a IE 4 DOM 1

Read/Write

The equivalent of the “name” of a name/value pair. The property’s corresponding HTTP-
EQUIV attribute is usually accompanied by a CONTENT attribute, which acts as the “value”
portion of the name/value pair. The author may elect to use the NAME attribute instead of
the HTTP-EQUIV attribute, but only one may be set. Adjust only the property corre-
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

660 mimeType
sponding to the attribute used in the META element’s tag. Then be sure to set the content
property with a value that makes sense with the httpEquiv or name property

Example document.all.refreshMeta.httpEquiv = "expires"

Value String.

Default None.

url NN n/a IE 4 DOM n/a

Read/Write

Microsoft claims that this property lets you change the URL of the CONTENT attribute of a
META tag that reloads the page. This is not correct. Nor does changing the content prop-
erty to a time and URL alter the information, which is captured by the browser when the
document loads. Perhaps there will be some future application of this property.

mimeType NN 3 IE n/a DOM n/a

The mimeType object belongs to the navigator object. The object represents a MIME type
specification. Its properties let scripts find out the browser is equipped to handle a specific
MIME type of external content before it is loaded from the server. All these properties are
mirrored in the internal document displayed when you choose Navigator’s About Plug-ins
menu option. Internet Explorer offers no comparable facilities.

Object Model Reference
NN navigator.mimeTypes[i]

Properties

description NN 3 IE n/a DOM n/a

Read-only

Returns the brief description of the plugin. This information is embedded in the plugin by
its developer. Be aware that the precise wording of this description may vary for the same
plugin written for different operating systems.

Example var descr = navigator.mimeTypes[0].description

Value String.

Default None.

enabledPlugin NN 3 IE n/a DOM n/a

Read-only

Returns a plugin object reference corresponding to the plugin currently set to play any
incoming data formatted according to the current MIME type. You can then dig deeper into
properties of the returned plugin object to retrieve, say, its name.

description enabledPlugin suffixes type
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

navigator 661

DOM
 Reference
Example var plugName = navigator.mimeTypes[0].enabledPlugin.name

Value plugin object reference.

Default None.

suffixes NN 3 IE n/a DOM n/a

Read-only

Returns a comma-delimited string list of file suffixes associated with the mimeType object.
For example, the MIME type associated with Macromedia Shockwave knows about three
suffixes. The suffixes property value for that mimeType object is:

dcr, dir, dxr

If you loop through all mimeType objects registered in the browser to find a match for a
specific suffix, you can then find out whether the matching mimeType object has a plugin
installed for it (via the enabledPlugin property).

Example var suff = navigator.mimeTypes[14].suffixes

Value String.

Default None.

type NN 3 IE n/a DOM n/a

Read-only

Returns a string version of the MIME type associated with the mimeType object. You could,
for example, loop through all the mimeType objects in search of the one that matches a
specific MIME type (application/x-midi) and examine that mimeType object further to
see whether it is currently supported and enabled.

Example var MType = navigator.mimeTypes[3].type

Value String.

Default None.

navigator NN 2 IE 3 DOM n/a

The navigator object in many ways represents the browser application. As such, the
browser is outside the scope of the document object model. Even so, the navigator object
plays an important role in scripting, because it allows scripts to see what browser and
browser version is running the script. In addition to several key properties that both Navi-
gator and Internet Explorer have in common, each browser also extends the property listing
of this object in ways that would generally benefit all browsers.

Object Model Reference
NN navigator

IE navigator
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

662 navigator
Properties

Methods

Collections/Arrays

appCodeName NN 2 IE 3 DOM n/a

Read-only

Reveals the code name of the browser. Both Navigator and Internet Explorer return
Mozilla, which was the code name for an early version of Navigator (a combination of the
early freeware name of the Mosaic browser and Godzilla). The Mozilla character is
Netscape’s corporate mascot, but both companies’ browsers return this code name.

Example var codeName = navigator.appCodeName

Value Mozilla

Default Mozilla

appMinorVersion NN n/a IE 4 DOM n/a

Read-only

Reveals the value to the right of the decimal point in the entire version number. So-called
bug-fix or patched versions, such as 4.03, are not reflected in IE’s version numbering, so
they return a value of 0. The exact release version is available by parsing the values of
appVersion or userAgent.

Example var subVer = navigator.appMinorVersion

Value

String version of the first digit to the right of the decimal of the primary version number.

Default Depends on browser version.

appName NN 2 IE 3 DOM n/a

Read-only

Reveals the model name of the browser.

Example var isNav = navigator.appName == "Netscape"

Value String values. NN: Netscape; IE: Microsoft Internet Explorer

Default Depends on browser.

appCodeName browserLanguage onLine userAgent
appMinorVersion cookieEnabled platform userLanguage
appName cpuClass systemLanguage userProfile
appVersion language

javaEnabled() preference() taintEnabled()

mimeTypes[] plugins[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

navigator 663

DOM
 Reference
appVersion NN 2 IE 3 DOM n/a

Read-only

Reveals the version number of the browser, along with minimal operating system platform
information (a subset of the information returned by userAgent). The first word of the
value returned by Navigator includes the version number down to the x.xx level, whereas
Internet Explorer goes only to the x.x level. In parentheses, both browsers include oper-
ating system information and (for Navigator) the browser’s default language version. Sample
returned values are as follows:

Navigator:

4.04 [en] (Win95; I)
4.03 (Macintosh; I; PPC)

Internet Explorer:

4.0 (compatible; MSIE 4.01; Windows 95)
4.0 (compatible; MSIE 4.0; Macintosh; I; PPC)

You can use parseInt() on this value to determine whether a browser is of a particular
generation, as shown in the following example. This extracts the integer value, which can
be used in a math comparison operation to find out whether the browser is at a minimum
needed version level for a script to run.

Example var isVer4Min = parseInt(navigator.appVersion) >= 4

Value String values.

Default Depends on browser.

browserLanguage NN n/a IE 4 DOM n/a

Read-only

The default written language of the browser. The Navigator 4 equivalent is the navi-
gator.language property.

Example var browLangCode = navigator.browserLanguage

Value Case-insensitive language code as a string.

Default Browser default.

cookieEnabled NN n/a IE 4 DOM n/a

Read-only

Returns whether the browser allows reading and writing of cookie data.

Example
if (cookieEnabled) {
 setCookieData(data)
}

Value Boolean value: true | false.

Default Depends on browser setting.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

664 navigator
cpuClass NN n/a IE 4 DOM n/a

Read-only

Returns a string reference of the CPU of the client computer. Common Intel microproces-
sors (including Pentium-class CPUs and Macintoshes running Windows emulators) return
x86, while PowerPC Macintoshes return PPC. This value tells you only about the basic hard-
ware class, not the operating system or specific CPU speed or model number.

Example
if (navigator.cpuClass == "PPC") {

statements specific to PowerPC clients
}

Value String value.

Default Depends on client hardware.

language NN 4 IE n/a DOM n/a

Read-only

The written language for which the browser version was created. The language is specified
in the ISO 639 language code scheme. Internet Explorer provides this information via the
navigator.browserLanguage property.

Example var mainLang = navigator.language

Value Case-insensitive language code as a string.

Default Browser default.

onLine NN n/a IE 4 DOM n/a

Read-only

Whether the browser is set for online or offline browsing (in Internet Explorer 4’s File
menu). Pages may wish to invoke live server actions when they load in online mode, but
avoid these calls when in offline mode. Use this Boolean property to build such condi-
tional statements.

Example
if (navigator.onLine) {
 document.write("<APPLET ...>")
 ...
}

Value Boolean value: true | false.

Default true

platform NN 4 IE 4 DOM n/a

Read-only

Returns the name of the operating system or hardware platform of the browser. For
Windows 95/NT, the value is Win32; for a Macintosh running a PowerPC CPU, the value is
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

navigator 665

DOM
 Reference
MacPPC. At least for the major platforms I’ve been able to test, Navigator and Internet
Explorer agree on the returned values. Using this property to determine the baseline facili-
ties of the client in a conditional expression can help the page optimize its output for the
device.

Example
if (navigator.platform == "Win32") {

document.write() content suitable for a Windows 95/NT computer
}

Value String.

Default None.

systemLanguage NN n/a IE 4 DOM n/a

Read-only

The code for the default written language used by the operating system. If you have multi-
lingual content available, you can use this property to insert content in specific languages.

Example
if (navigator.systemLanguage = "nl") {

document.write() some Dutch content
}

Value Case-insensitive language code.

Default

Usually the browser default (en for English-language Internet Explorer available in the
United States).

userAgent NN 2 IE 3 DOM n/a

Read-only

Information about the browser software, including version, operating system platform, and
brand. This is the most complete set of information about the browser, whereas appVer-
sion and appName properties provide subset data. Typical data for this property looks like
the following:

Mozilla/4.0 (compatible; MSIE 4.01; Windows 95)

Do not rely on the length or position of any part of this data, as it may vary with browser,
version, and proxy server used at the client end. Instead, use the indexOf() method to
check for the presence of a desired string.

Example
if (navigator.userAgent.indexOf("MSIE") != -1) {
 var isIE = true
}

Value String.

Default Depends on browser.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

666 navigator
userLanguage NN n/a IE 4 DOM n/a

Read-only

The default written language of the browser, based on the operating system user profile
setting (if one exists). The property defaults to the browserLanguage property.

Example var userLangCode = navigator.userLanguage

Value Case-insensitive language code as a string.

Default Browser default.

userProfile NN n/a IE 4 DOM n/a

Read-only

The userProfile property is, itself, an object that lets scripts request permission to access
personal information stored in the visitor’s user profile (for Win32 versions of Internet
Explorer 4). See the userProfile object.

Example
navigator.userProfile.addReadRequest("vcard.displayname")
navigator.userProfile.doReadRequest("3", "MegaCorp Customer Service")
var custName = navigator.userProfile.getAttribute("vcard.displayname")
navigator.userProfile.clearRequest()
if (custName) {
 ...
}

Value userProfile object reference.

Default Browser default.

javaEnabled() NN 3 IE 4 DOM n/a

Returns whether Java is turned on in the browser. This property won’t help you in a non-
scriptable browser (or scriptable browser that doesn’t support the property), but it does tell
you whether the user has Java turned off in the browser preferences.

Returned Value

Boolean value: true | false.

Parameters

None.

preference() NN 4 IE n/a DOM n/a

preference(name[, value])

By way of signed scripts in Navigator 4, you can access a wide variety of user preferences
settings. These include even the most detailed items, such as whether the user has elected
to download images or whether style sheets are enabled. Most of these settings are
intended for scripts used by network administrators to install and control the user settings of
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

NOFRAMES, NOSCRIPT 667

DOM
 Reference
enterprisewide deployment of Navigator. Consult the Netscape developer web site for
further information about these preferences settings (http://developer.netscape.com/library/
documentation/deplymt/jsprefs.htm).

Returned Value

Preference value in a variety of data types.

Parameters
name The preference name as a string, such as general.always_load_images.

value An optional value to set the named preference.

taintEnabled() NN 3 IE 4 DOM n/a

Returns whether “data tainting” is turned on in the browser. This security mechanism was
never fully implemented in Navigator, but the method that checks for it is still included in
newer versions of Navigator for backward compatibility. Internet Explorer 4 also includes it
for compatibility, even though it always returns false.

Returned Value

Boolean value: true | false.

Parameters

None.

NOFRAMES, NOSCRIPT NN n/a IE n/a DOM 1

The NOFRAMES object reflects the NOFRAMES element, and the NOSCRIPT object reflects the
NOSCRIPT element. These objects appear in the DOM working draft and are not yet
reflected as objects in any browser, although the HTML elements exist in both Navigator
and Internet Explorer.

HTML Equivalent
<NOFRAMES>

Properties

dir NN n/a IE n/a DOM 1

Read/Write

The direction of character rendering for the element’s text whose characters are not
governed by inherent directionality according to the Unicode standard. Character rendering
is either left to right or right to left.

Value ltr | rtl (case insensitive).

Default ltr

className id lang style title
dir
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

668 OBJECT
OBJECT NN n/a IE 4 DOM 1

The OBJECT object reflects the OBJECT element. This is an updated way of embedding
other media and external data into a document (through a plugin or ActiveX control).

HTML Equivalent
<OBJECT>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

accessKey data isTextEdit offsetTop style
align dataFld lang offsetWidth tabIndex
altHtml dataSrc language outerHTML tagName
classid document name outerText title
className form object parentElement type
code height offsetHeight parentTextEdit vspace
codeBase hspace offsetLeft readyState width
codeType id offsetParent sourceIndex

blur() focus() scrollIntoView()
click() getAttribute() setAttribute()
contains() removeAttribute()

all[] children[] filters[]

Handler NN IE DOM
onafterupdate n/a 4 n/a
onbeforeupdate n/a 4 n/a
onblur n/a 4 n/a
onclick n/a 4 n/a
ondataavailable n/a 4 n/a
ondatasetchanged n/a 4 n/a
ondatasetcomplete n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onerror n/a 4 n/a
onerrorupdate n/a 4 n/a
onfilterchange n/a 4 n/a
onfocus n/a 4 n/a
onhelp n/a 4 n/a
onreadystatechange n/a 4 n/a
onrowenter n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

OBJECT 669

DOM
 Reference
accessKey NN n/a IE 4 DOM n/a

Read/Write

A single character key that brings focus to the element. The browser and operating system
determine whether the user must press a modifier key (e.g., Ctrl, Alt, or Command) with
the access key to bring focus to the element. In IE 4/Windows, the Alt key is required, and
the key is not case sensitive. Not working in IE 4/Mac.

Example document.all.myObject.accessKey = "n"

Value Single alphanumeric (and punctuation) keyboard character.

Default None.

align NN n/a IE 4 DOM 1

Read/Write

Defines how the element is aligned relative to surrounding text content. Most values set the
vertical relationship between the element and surrounding text. For example, to align the
bottom of the element with the baseline of the surrounding text, the align property value
would be baseline. An element can be “floated” along the left or right margin to let
surrounding text wrap around the element.

Example document.all.myObject.align = "absmiddle"

Value

Any of the following alignment constant values (as a string): absbottom | absmiddle |
baseline | bottom | right | left | none | texttop | top.

Default bottom

altHtml NN n/a IE 4 DOM 1

Read/Write

HTML content to be displayed if the object or applet fails to load. This can be a message,
static image, or any other HTML that best fits the scenario. There are inconsistencies in
Internet Explorer with regard to this property’s casing. The Win32 version requires
altHtml; the Mac version requires altHTML.

Example document.all.myObject.altHtml = ""

Value Any quoted string of characters, including HTML tags.

Default None.

onrowexit n/a 4 n/a
onselectstart n/a 4 n/a

Handler NN IE DOM
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

670 OBJECT
classid NN n/a IE 4 DOM 1

Read-only

The URL of the object’s implementation. In Internet Explorer, the URL can point to the
CLSID directory (with a clsid: URL) that stores all the IDs for registered ActiveX controls,
such as DirectAnimation. Be aware that there is a discrepancy in the case of this property
name in Internet Explorer 4: Win32 requires classid; the Macintosh version requires
classID. The DOM leaves the read/write or read-only status of this property to the discre-
tion of the browser.

Example
if (document.all.soundObject.classid == "clsid:83A38BF0-B33A-A4FF-
C619A82E891D"){

process for the desired sound object
}

Value String.

Default None.

code NN n/a IE 4 DOM 1

Read-only

The name of the Java applet class file set to the CODE attribute of the OBJECT element.

Example
if (document.all.clock.code == "Y2Kcounter.class") {

process for the found class file
}

Value Case-sensitive (usually) applet class filename as a string.

Default None.

codeBase NN n/a IE 4 DOM 1

Read-only

Path to the directory holding the class file designated in either the CODE or CLASSID
attribute. The CODEBASE attribute does not name the class file, just the path.

Example
if (document.all.clock.codeBase == "classes") {

process for the found class file directory
}

Value

Case-sensitive pathname, usually relative to the directory storing the current HTML
document.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

OBJECT 671

DOM
 Reference
codeType NN n/a IE 4 DOM 1

Read/Write

An advisory about the content type of the object referred to by the CLASSID attribute. A
browser might use this information to assist in preparing support for a resource requiring a
multimedia player or plugin. If the CODETYPE property is set to an empty string, the
browser looks next for the TYPE attribute setting (although it is normally associated with
content linked by the DATA attribute URL). If both attributes have no (or empty) values set,
the browser gets the content type information from the resource as it downloads.

Example document.all.gameTime.codeType = "application/x-crossword"

Value

Case-insensitive MIME type. A catalog of registered MIME types is available from ftp://
ftp.isi.edu/in-notes/iana/assignments/media-types/.

Default None.

data NN n/a IE 4 DOM n/a

Read-only

URL of a file containing data for the OBJECT element (as distinguished from the object
itself). Relative URLs are calculated relative to the CODEBASE attribute if one is assigned;
otherwise, the URL is relative to the document’s URL.

Example var objDataURL = document.all.soundEffect.data

Value A complete or relative URL as a string.

Default None.

dataFld NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to associate a remote data source column name to an OBJECT
element attribute determined by properties set in the object. A DATASRC attribute must also
be set for the element. Setting both the dataFld and dataSrc properties to empty strings
breaks the binding between element and data source.

Example document.all.myObject.dataFld = "linkURL"

Value Case-sensitive identifier of the data source column.

Default None.

dataSrc NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Setting both the
dataFld and dataSrc properties to empty strings breaks the binding between element and
data source.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

672 OBJECT
Example document.all.myObject.dataSrc = "#DBSRC3"

Value Case-sensitive identifier of the data source.

Default None.

form NN n/a IE 4 DOM n/a

Read-only

Returns a reference to the FORM element that contains the current element (if any). This
property is appropriate only if the object is acting as a form control. Not available in the
Macintosh version.

Value Object reference.

Default None.

height, width NN n/a IE 4 DOM n/a

Read/Write

The height and width in pixels of the element. Changes to these values are immediately
reflected in reflowed content on the page.

Example document.all.myObject.height = 250

Value Integer.

Default None.

hspace, vspace NN n/a IE 4 DOM 1

Read/Write

The pixel measure of horizontal and vertical margins surrounding an OBJECT element. The
hspace property affects the left and right edges of the element equally; the vspace affects
the top and bottom edges of the element equally. These margins are not the same as
margins set by style sheets, but they have the same visual effect.

Example
document.all.myObject.hspace = 5
document.all.myObject.vspace = 8

Value Integer of pixel count.

Default 0

name NN n/a IE 4 DOM 1

Read/Write

The identifier associated with the OBJECT element. If the object should be one that goes
inside a form, the name property is submitted as one-half of the name/value pair when the
form is submitted to the server.

Example document.all.myObject.name = "company"
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

OBJECT 673

DOM
 Reference
Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

object NN n/a IE 4 DOM n/a

Read-only

A reference to a wrapper around an object to allow access to document object model prop-
erties of the OBJECT element when the names may be confused with internal property
naming of the object. For example, if the code loaded into an OBJECT element had a prop-
erty named hspace, the script reference document.all.reader.hspace would retrieve
that internal property, rather than the hspace property of the HTML element. The object
property wrapper tells the JavaScript interpreter to get the property from the HTML element
without diving into the external object’s code.

Example var objCode = document.all.reader.object.code

Value Object reference.

Default None.

readyState NN n/a IE 4 DOM n/a

Read-only

Returns the current download status of the embedded content. This property provides a
more granular way of testing whether a particular downloadable element is ready to be run
or scripted instead of the onLoad event handler for the entire document. As the value of
this property changes during loading, the system fires an onReadyStateChange event.

Example
if (document.all.myObject.readyState == 4) {

statements for alternate handling
}

Value

Unlike the document object’s version of this property, the OBJECT object’s values are inte-
gers. As can best be determined: 0 means uninitialized; 1 means loading; and 4 means
complete.

Default None.

tabIndex NN n/a IE 4 DOM 1

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their tabIndex properties are first in line when a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

674 OL
user starts tabbing in a page. Focus starts with the element with the lowest tabIndex value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same tabIndex values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the tabIndex property or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A value of -1 removes the element from
tabbing order altogether.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text and password INPUT fields.

Example document.all.myObject.tabIndex = 6

Value Integer.

Default None.

type NN n/a IE 4 DOM 1

Read/Write

An advisory about the MIME type of the external data to be loaded into the object. The
browser looks to the type property value if the codeType property is null.

Example
if (document.all.myObject.type == "image/jpeg") {
 ...
}

Value

Case-insensitive MIME type. A catalog of registered MIME types is available from ftp://
ftp.isi.edu/in-notes/iana/assignments/media-types/.

Default None.

vspace
See hspace.

width
See height.

OL NN n/a IE 4 DOM 1

The OL object reflects the OL element.

HTML Equivalent

Object Model Reference
IE [window.]document.all.elementID
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

OL 675

DOM
 Reference
Properties

Methods

Collections/Arrays

Event Handler Properties

compact NN n/a IE 4 DOM 1

Read/Write

When set to true, the compact property should instruct the browser to render items in the
list in a more compact format. This property has no effect in Internet Explorer 4 and is
completely unavailable in the Macintosh version.

Example document.all.myOL.compact = true

Value Boolean value: true | false.

Default false

className innerText offsetLeft outerText style
compact isTextEdit offsetParent parentElement tagName
document lang offsetTop parentTextEdit title
id language offsetWidth sourceIndex type
innerHTML offsetHeight outerHTML start

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

676 OPTION
start NN n/a IE 4 DOM 1

Read/Write

The starting number for the sequence of items in the OL element. This is convenient when a
sequence of items must be disturbed by running body text. While the value is a number,
the corresponding Arabic numeral, Roman numeral, or alphabet letter renders the value.

Example document.all.sublist2.start = 6

Value Positive integer.

Default None.

type NN n/a IE 4 DOM 1

Read/Write

The manner in which the leading numbers or letters of items in the list are displayed.

Example document.all.instruxList.type = "a"

Value

Possible values are: A | a | I | i | 1. Sequencing is performed automatically as follows:

Default 1

OPTION NN 2 IE 3 DOM 1

The OPTION object reflects the OPTION element, which must be nested inside a SELECT
element. References to OPTION objects most often use its parent SELECT object, with the
OPTION object treated as one member of an array of options belonging to that SELECT
object.

HTML Equivalent
<OPTION>

Object Model Reference
NN [window.]document.formName.selectName.options[i]

[window.]document.forms[i].elements[i].options[i]

IE [window.]document.formName.selectName.options[i]
[window.]document.forms[i].elements[i].options[i]
[window.]document.all.elementID

Type Example
A A, B, C, ...
a a, b, c, ...
I I, II, III, ...
i i, ii, iii, ...
1 1, 2, 3, ...
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

OPTION 677

DOM
 Reference
Properties

Methods

defaultSelected NN 2 IE 3 DOM 1

Read/Write

Whether element has the SELECTED attribute set in the tag. You can compare the current
selected property against defaultSelected to see whether the state of the select control
has changed since the document loaded. Changing this property does not affect the current
selected status.

Example
var listItem = document.forms[0].selector.options[2]
if (listItem.selected != listItem.defaultSelected) {

process for changed state
}

Value Boolean value: true | false.

Default Determined by HTML tag attribute.

index NN 2 IE 3 DOM n/a

Read-only

Returns the zero-based index value of the current option object within the collection of
options of the SELECT element. The select object’s selectedIndex property returns the
index value of the option that is currently selected. Since you usually access an OPTION
object via its place in the options array, there is little need to reference this property.

Example var firstValue = document.forms[0].stateList.options[0].index

Value Integer.

Default None.

selected NN 2 IE 3 DOM 1

Read/Write

Whether the list option has been selected by the user, meaning that its value is submitted
with the form. Scripts can modify the value to select an item algorithmically. To find out
which option is selected, it is more efficient to use the select object’s selectedIndex prop-
erty, rather than looping through all options in search of those whose selected properties

className index offsetParent parentTextEdit tagName
document isTextEdit offsetWidth selected text
defaultSelected language parentElement style value
id offsetHeight

contains() removeAttribute() setAttribute()
getAttribute() scrollIntoView()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

678 options
are true. The exception to this is when the SELECT element is set to allow multiple selec-
tions, in which case you need to cycle through them all to find the chosen items.

Example document.forms[0].selectList.options[3].selected = true

Value Boolean value: true | false.

Default false

text NN 2 IE 3 DOM 1

Read/Write

The text associated with the OPTION element. This text is between the start and end tags
and is what appears in the SELECT element on screen. A hidden value associated with the
list item can be stored, retrieved, and changed via the value property.

Example
var list = document.forms[0].selectList
var listItemText = list.options[list.selectedIndex].text

Value String.

Default None.

value NN 4 IE 4 DOM 1

Read/Write

Value associated with the OPTION element. If the OPTION element has a VALUE attribute or
value property set, this is the value returned for the value property; otherwise, the text
visible in the list is returned.

Example var itemValue = document.forms[0].selectList.options[2]value

Value String.

Default None.

options NN 2 IE 3 DOM n/a

An array of OPTION elements nested within a SELECT object.

Object Model Reference
NN [window.]document.formName.selectName.options

IE [window.]document.formName.selectName.options

Properties

Methods

length

add() item() remove()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

options 679

DOM
 Reference
length NN 2 IE 3 DOM n/a

Read-only

Returns the number of elements in the collection.

Example var howMany = document.forms[0].mySelect.options.length

Value Integer.

add() NN n/a IE 4 DOM n/a

add(element, [index])

Adds an already-created element (from the createElement() method) to the current
collection. The element must be of the OPTION type. By default the new element is added
as the last item of the collection unless you specify an index value as a second parameter.
The following example sequence appends a new item to a SELECT object:

var newElem = document.createElement("OPTION")
newElem.text = "Freddy"
newElem.value = "Freddy Mercury"
document.forms[1].rockers.options.add(newElem)

Notice that a generic object is created first. Then its properties are stuffed with values. Then
the new element is physically added to the SELECT element.

The process for adding an OPTION element is entirely different in Navigator. To append a
new item, assign the results of an Option() constructor to the indexed option at the end of
the array (corresponding to the integer returned by the length property). Parameters to the
constructor function are (in order):

1. String corresponding to the text property

2. String corresponding to the value property

3. Boolean corresponding to the defaultSelected property

4. Boolean corresponding to the selected property

For example, the Navigator version of the preceding IE example is as follows:

document.forms[1].rockers.options[length] = new Option("Freddy",
 "Freddy Mercury", false, false)

You could insert the new item anywhere you like in the list by specifying the desired index
value of the options array.

Returned Value

None.

Parameters
element A fully formed element object reference, usually generated by the

createElement() method.

index An optional integer indicating where in the collection the new element should
be placed.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

680 P
item() NN n/a IE 4 DOM n/a

item(index[, subindex])

Returns a single object or collection of objects corresponding to the element matching the
index value (or, optionally, the index and subindex values).

Returned Value

One object or collection (array) of objects. If there are no matches to the parameters, the
returned value is null.

Parameters
index When the parameter is a zero-based integer, the returned value is a single

element corresponding to the said numbered item in source code order (nested
within the current element); when the parameter is a string, the returned value
is a collection of elements whose id or name properties match that string.

subindex If you specify a string value for the first parameter, you may use the second
parameter to specify a zero-based integer to retrieve a specific element from the
collection whose id or name properties match the first parameter’s string value.

remove() NN n/a IE 4 DOM n/a

remove(index)

Deletes an element from the current collection. Simply specify the zero-based index value
of the OPTION element you wish to remove from the collection belonging to a SELECT
element. The following example deletes the first item from a SELECT object:

document.forms[1].rockers.options.remove(0)

The process for removing an OPTION element is entirely different in Navigator. To delete an
item, assign null to the item in the collection. For example, the Navigator version of the
preceding IE example is as follows:

document.forms[1].rockers.options[0] = null

Regardless of the browser-specific process of removing an option from the SELECT object,
the length of the options array collapses to fill the space.

Returned Value

None.

Parameters
index A zero-based integer indicating which item in the collection should be deleted.

P NN n/a IE 4 DOM 1

The P object reflects the P element.

HTML Equivalent
<P>

Object Model Reference
IE [window.]document.all.elementID
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

P 681

DOM
 Reference
Properties

Methods

Collections/Arrays

Event Handler Properties

align NN n/a IE 4 DOM 1

Read/Write

Determines how the paragraph text is justified within the available width of the next outer-
most container (usually the document BODY).

Example document.all.myP.align = "center"

Value Any of the three horizontal alignment constants: center | left | right.

Default left

align innerText offsetLeft outerHTML sourceIndex
className isTextEdit offsetParent outerText style
document lang offsetTop parentElement tagName
id language offsetWidth parentTextEdit title
innerHTML offsetHeight

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

682 password
password NN 2 IE 3 DOM 1

The password object is a form control generated with an INPUT element whose TYPE
attribute is set to "password". This object is similar to the text object, except that the char-
acters typed into the text box by the user are converted to asterisk or bullet symbols for
privacy.

HTML Equivalent
<INPUT TYPE="password">

Object Model Reference
NN [window.]document.formName.elementName

[window.]document.forms[i].elements[i]

IE [window.]document.formName.elementName
[window.]document.forms[i].elements[i]
[window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

accessKey form offsetHeight outerText style
className id offsetLeft parentElement tabIndex
dataFld isTextEdit offsetParent parentTextEdit tagName
dataSrc lang offsetTop readOnly title
defaultValue language offsetWidth size type
disabled maxLength outerHTML sourceIndex value
document name

blur() getAttribute() removeAttribute()
click() handleEvent() scrollIntoView()
contains() insertAdjacentHTML() select()
focus() insertAdjacentText() setAttribute()

all[] children[] filters[]

Handler NN IE DOM
onblur 2 3 n/a
onchange 2 3 n/a
onclick n/a 4 n/a
ondblclick n/a 4 n/a
onfocus 2 3 n/a
onhelp n/a 4 n/a
onkeydown 4 4 n/a
onkeypress 4 4 n/a
onkeyup 4 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

password 683

DOM
 Reference
accessKey NN n/a IE 4 DOM 1

Read/Write

A single character key that brings focus to the element. The browser and operating system
determine whether the user must press a modifier key (e.g., Ctrl, Alt, or Command) with
the access key to bring focus to the element. In IE 4/Windows, the Alt key is required, and
the key is not case sensitive. Not working in IE 4/Mac.

Example document.entryForm.myPassword.accessKey = "n"

Value Single alphanumeric (and punctuation) keyboard character.

Default None.

dataFld NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to associate a remote data source column name to a password
object’s value property. A DATASRC attribute must also be set for the element. Setting both
the dataFld and dataSrc properties to empty strings breaks the binding between element
and data source.

Example document.myForm.myPassword.dataFld = "linkURL"

Value Case-sensitive identifier of the data source column.

Default None.

dataSrc NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute. Setting both the dataFld and dataSrc prop-
erties to empty strings breaks the binding between element and data source.

Example document.myForm.myPassword.dataSrc = "#DBSRC3"

Value Case-sensitive identifier of the data source.

Default None.

defaultValue NN 2 IE 3 DOM 1

Read-only

The default text for the password input element, as established by the VALUE attribute.

onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselect 2 3 n/a

Handler NN IE DOM
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

684 password
Example
var pwObj = document.forms[0].myPassword
if (pwObj.value != pwObj.defaultValue) {
 ...
}

Value Any string value.

Default None.

disabled NN n/a IE 4 DOM 1

Read/Write

Whether the element is available for user interaction. When set to true, the element cannot
receive focus or be modified by the user. It is also not submitted with the form.

Example document.forms[0].myPassword.disabled = true

Value Boolean value: true | false.

Default false

form NN 2 IE 3 DOM n/a

Read-only

Returns a reference to the FORM element that contains the current element (if any). This
property is most often passed as a parameter for an event handler, using the this keyword
to refer to the current form control.

Example
<INPUT TYPE="password" NAME="passwd" onChange="doValidate(this.form)">

Value Object reference.

Default None.

maxLength NN n/a IE 4 DOM n/a

Read/Write

The maximum number of characters that may be typed into a password field INPUT
element. In practice, browsers beep or otherwise alert users when a typed character would
exceed the maxLength value. There is no innate correlation between the maxLength and
size properties. If the maxLength allows for more characters than fit within the specified
width of the element, the browser provides horizontal scrolling (albeit awkward for many
users) to allow entry and editing of the field.

Example document.entryForm.myPassword.maxLength = 35

Value Positive integer value.

Default Unlimited.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

password 685

DOM
 Reference
name NN 2 IE 3 DOM 1

Read/Write

The identifier associated with the form control. The value of this property is submitted as
one-half of the name/value pair when the form is submitted to the server. Names are
hidden from user view, since control labels are assigned via other means, depending on the
control type. Form control names may also be used by script references to the objects.

Example document.orderForm.myPassword.name = "Win32"

Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

readOnly NN n/a IE 4 DOM n/a

Read-only

Whether the form element can be edited on the page by the user. A form control whose
readOnly property is true may still be modified by scripts, even though the user may not
alter the content.

Example document.forms[0].myPassword.readOnly = "true"

Value Boolean value: true | false.

Default false

size NN n/a IE 4 DOM 1

Read/Write

Roughly speaking, the width in characters that the input box should be sized to accommo-
date. In practice, the browser does not always accurately predict the proper width even
when all characters are the same, as they are in the password object. See details in the SIZE
attribute discussion for the INPUT element in Chapter 8. There is no interaction between the
size and maxLength properties for this object.

Example document.forms[0].myPassword.size = 12

Value Positive integer.

Default 20

tabIndex NN n/a IE 4 DOM 1

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their tabIndex properties are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest tabIndex value
and proceeds in order to the highest value, regardless of physical location on the page or in
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

686 password
the document. If two elements have the same tabIndex values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the tabIndex property or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A value of -1 removes the element from
tabbing order altogether.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text and password INPUT fields.

Example document.forms[0].myPassword.tabIndex = 6

Value Integer.

Default None.

type NN 3 IE 4 DOM 1

Read-only

Returns the type of form control element. The value is returned in all lowercase letters. It
may be necessary to cycle through all form elements in search of specific types to do some
processing on (e.g., emptying all form controls of type "text" while leaving other controls
untouched).

Example
if (document.forms[0].elements[3].type == "password") {
 ...
}

Value

Any of the following constants (as a string): button | checkbox | file | hidden | image
| password | radio | reset | select-multiple | select-one | submit | text |
textarea.

Default password

value NN 2 IE 3 DOM 1

Read/Write

Current value associated with the form control that is submitted with the name/value pair
for the element. All values are strings. Browsers return the actual characters typed by the
user (except in Navigator 2), so you can retrieve an entered password for further processing
before submission (or perhaps for storage in the cookie).

Example document.forms[0].myPassword.value = "franken"

Value String.

Default None.

blur() NN 2 IE 3 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

personalbar 687

DOM
 Reference
Returned Value

None.

Parameters

None.

focus() NN 2 IE 3 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.

handleEvent() NN 4 IE n/a DOM n/a

handleEvent(event)

Instructs the object to accept and process the event whose specifications are passed as the
parameter to the method. The object must have an event handler for the event type to
process the event.

Returned Value

None.

Parameters
event A Navigator 4 event object.

select() NN 2 IE 3 DOM n/a

Selects all the text displayed in the form element.

Returned Value

None.

Parameters

None.

personalbar
See locationbar.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

688 PLAINTEXT
PLAINTEXT NN n/a IE 4 DOM 1

The PLAINTEXT object reflects the PLAINTEXT element. Note that the Win32 version of
Internet Explorer 4 incorrectly evaluates the innerHTML, innerText, outerHTML, and
outerText property values to include all document content following the start tag for the
element. This element is deprecated in favor the PRE element.

HTML Equivalent
<PLAINTEXT>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

className isTextEdit offsetLeft outerHTML sourceIndex
document lang offsetParent outerText style
id language offsetTop parentElement tagName
innerHTML offsetHeight offsetWidth parentTextEdit title
innerText

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

plugin 689

DOM
 Reference
plugin NN 3 IE n/a DOM n/a

A plugin object represents a single plugin that is registered with Navigator at launch time.
Access to a single plugin is normally via the navigator.plugins array. It is also common
to use the navigator.mimeTypes array and associated properties to uncover whether the
browser has the desired plugin installed before loading external content. Most of the prop-
erties provide scripted access to information normally found in the About Plug-ins window
available from Navigator’s Help menu.

Object Model Reference
NN navigator.plugins[i]

Properties

Methods

description NN 3 IE n/a DOM n/a

Read-only

A brief plain-language description of the plugin supplied by the plugin manufacturer.

Example var descr = navigator.plugins[2].description

Value String.

Default None.

filename NN 3 IE n/a DOM n/a

Read-only

Returns the filename of the plugin binary. In Win32 versions of Navigator, the full path-
name is returned; for the Mac, only the filename is returned.

Example var file = navigator.plugins[2].filename

Value String.

Default None.

length NN 3 IE n/a DOM n/a

Read-only

Returns the number of MIME types supported by the plugin. Don’t confuse this property
with the length property of the entire navigator.plugins array, which measures how
many plugin objects are known to the browser.

Example var howManyMIMEs = navigator.plugins[2].length

Value Integer.

Default None.

description filename length name

refresh()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

690 plugins
name NN 3 IE n/a DOM n/a

Read-only

Returns the name of the plugin assigned to it by its manufacturer. You cannot, however, be
guaranteed that a plugin designed for multiple operating systems has the same name across
all versions.

Example var pName = navigator.plugins[2].name

Value Integer.

Default None.

refresh() NN 3 IE n/a DOM n/a

Instructs the browser to reregister plugins installed in the plugins directory. This allows a
browser to summon a newly installed plugin without forcing the user to quit and relaunch
the browser.

Returned Value

None.

Parameters

None.

plugins NN 3 IE 4 DOM n/a

Navigator and Internet Explorer both have a plugins array, but they are quite different
collections of objects. Navigator’s plugins array is a property of the navigator object.
Each item in the navigator.plugins array represents a plugin that is installed in the
browser (actually just registered with the browser when the browser last loaded). See the
plugin object.

Internet Explorer’s plugins collection belongs to the document object and essentially
mirrors the embeds collection: a collection of all EMBED elements in the document. An
EMBED element may well, indeed, launch a plugin, but not necessarily. Nor does Internet
Explorer provide JavaScript access to the installed plugins in the same way that Navigator
does.

Object Model Reference
NN navigator.plugins

IE document.plugins

Properties

Methods

length

item()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

PRE 691

DOM
 Reference
length NN 3 IE 4 DOM n/a

Read-only

Returns the number of elements in the collection.

Example
var IEhowMany = document.embeds.length
var NNhowMany = navigator.embeds.length

Value Integer.

item() NN n/a IE 4 DOM n/a

item(index[, subindex])

Returns a single object or collection of objects corresponding to the element matching the
index value (or, optionally, the index and subindex values).

Returned Value

One object or collection (array) of objects. If there are no matches to the parameters, the
returned value is null.

Parameters
index When the parameter is a zero-based integer, the returned value is a single

element corresponding to the said numbered item in source code order (nested
within the current element); when the parameter is a string, the returned value
is a collection of elements whose id or name properties match that string.

subindex If you specify a string value for the first parameter, you may use the second
parameter to specify a zero-based integer to retrieve a specific element from the
collection whose id or name properties match the first parameter’s string value.

PRE NN n/a IE 4 DOM 1

The PRE object reflects the PRE element. This object and element has superseded the depre-
cated XMP object and element.

HTML Equivalent
<PRE>

Object Model Reference
IE [window.]document.all.elementID

Properties
className isTextEdit offsetLeft outerHTML sourceIndex
document lang offsetParent outerText style
id language offsetTop parentElement tagName
innerHTML offsetHeight offsetWidth parentTextEdit title
innerText
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

692 Q
Methods

Collections/Arrays

Event Handler Properties

Q NN n/a IE 4 DOM 1

The Q object reflects the Q element.

HTML Equivalent
<Q>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a

className isTextEdit offsetLeft outerHTML sourceIndex
document lang offsetParent outerText style
id language offsetTop parentElement tagName
innerHTML offsetHeight offsetWidth parentTextEdit title
innerText

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

radio 693

DOM
 Reference
Collections/Arrays

Event Handler Properties

radio NN 2 IE 3 DOM 1

The radio object is a form control generated with an INPUT element whose TYPE attribute
is set to "radio". radio objects related to each other are assigned the same name. This
means all like-named radio objects become a collection of radio objects. It may be neces-
sary, therefore, to reference an individual radio button as an item in an array. The entire
array, of course, has a length property you can use to assist in looping through all radio
objects within the group, if necessary:

var radioGrp = document.forms[0].myRadio
for (var i = 0; i < radioGrp.length; i++) {
 alert("The value of button index " + i + " is " + radioGrp [i].value)
}

Properties and methods listed as follows are for individual radio buttons.

HTML Equivalent
<INPUT TYPE="radio">

Object Model Reference
NN [window.]document.formName.elementName[i]

[window.]document.forms[i].elements[i]

IE [window.]document.formName.elementName[i]
[window.]document.forms[i].elements[i]
[window.]document.all.elementID

all[] children[] filters[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

694 radio
Properties

Methods

Collections/Arrays

Event Handler Properties

accessKey NN n/a IE 4 DOM 1

Read/Write

A single character key that “clicks” on the radio button. The browser and operating system
determine whether the user must press a modifier key (e.g., Ctrl, Alt, or Command) with
the access key to “click” the button. In IE 4/Windows, the Alt key is required, and the key is
not case sensitive. Not working in IE 4/Mac.

accessKey document offsetHeight outerText style
checked form offsetLeft parentElement tabIndex
className id offsetParent parentTextEdit tagName
dataFld isTextEdit offsetTop recordNumber title
dataSrc lang offsetWidth sourceIndex type
defaultChecked language outerHTML status value
disabled name

blur() getAttribute() removeAttribute()
click() handleEvent() scrollIntoView()
contains() insertAdjacentHTML() setAttribute()
focus() insertAdjacentText()

all[] children[] filters[]

Handler NN IE DOM
onafterupdate n/a 4 n/a
onbeforeupdate n/a 4 n/a
onblur n/a 4 n/a
onchange n/a 4 n/a
onclick 3 4 n/a
ondblclick n/a 4 n/a
onerrorupdate n/a 4 n/a
onfilterchange n/a 4 n/a
onfocus n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown 4 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup 4 4 n/a
onselect n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

radio 695

DOM
 Reference
Example document.entryForm.myRadio[0].accessKey = "n"

Value Single alphanumeric (and punctuation) keyboard character.

Default None.

checked NN 2 IE 3 DOM 1

Read/Write

Whether the radio button is selected or turned on by the user. To find out whether the form
element is set to be highlighted when the page loads, see the defaultChecked property.

Example
if (document.choiceForm.myRadio[0].checked) {

process for the “monitors” checkbox being checked
}

Value Boolean: true | false.

Default false

dataFld NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to associate a remote data source column name to a radio
button element attribute determined by properties set in the object. A DATASRC attribute
must also be set for the element. Setting both the dataFld and dataSrc properties to
empty strings breaks the binding between element and data source.

Example document.myForm.myRadio[0].dataFld = "linkURL"

Value Case-sensitive identifier of the data source column.

Default None.

dataSrc NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute. Setting both the dataFld and dataSrc prop-
erties to empty strings breaks the binding between element and data source.

Example document.myForm.myRadio[0].dataSrc = "#DBSRC3"

Value Case-sensitive identifier of the data source.

Default None.

defaultChecked NN 2 IE 3 DOM 1

Read/Write

Whether element has the CHECKED attribute set in the tag. You can compare the current
checked property against defaultChecked to see whether the state of the control has
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

696 radio
changed since the document loaded. Changing this property doesn’t affect the current
checked status.

Example
var rBut = document.forms[0].myRadio[0]
if (rBut.checked != rBut.defaultChecked) {

process for changed state
}

Value Boolean value: true | false.

Default Determined by HTML tag attribute.

disabled NN n/a IE 4 DOM 1

Read/Write

Whether the element is available for user interaction. When set to true, the element cannot
receive focus or be modified by the user. It is also not submitted with the form.

Example document.forms[0].myRadio[0].disabled = true

Value Boolean value: true | false.

Default false

form NN 2 IE 3 DOM n/a

Read-only

Returns a reference to the FORM element that contains the current element (if any). This
property is most often passed as a parameter for an event handler, using the this keyword
to refer to the current form control.

Example
<INPUT TYPE="button" VALUE="Validate Form" onClick="doValidate(this.form)">

Value Object reference.

Default None.

name NN 2 IE 3 DOM 1

Read/Write

The identifier associated with the form control. The value of this property is submitted as
one-half of the name/value pair when the form is submitted to the server (the value prop-
erty of the highlighted radio button supplies the value portion). Names are hidden from
user view, since control labels are assigned via other means, depending on the control type.
Form control names may also be used by script references to the objects. Assign the same
name to every radio button in a group whose highlight/unhighlight characteristics are
related.

Example document.orderForm.myRadio[0].name = "Win32"
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

radio 697

DOM
 Reference
Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, can’t begin with a numeral, and should avoid punctuation except for the under-
score character.

Default None.

recordNumber NN n/a IE 4 DOM n/a

Read-only

Used with data binding, returns an integer representing the record within the data set that
generated the element (i.e., an element whose content is filled via data binding). Values of
this property can be used to extract a specific record from an Active Data Objects (ADO)
record set (see recordset property).

Example
<SCRIPT FOR="tableTemplate" EVENT="onclick">
 myDataCollection.recordset.absoluteposition = this.recordNumber
 ...
</SCRIPT>

Value Integer.

Default None.

status NN n/a IE 4 DOM n/a

Read/Write

Whether the element is highlighted/checked. This property is identical to the value
property.

Example
if (document.forms[0].myRadio[0].status) {
 ...
}

Value Boolean value: true | false.

Default None.

tabIndex NN n/a IE 4 DOM 1

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their tabIndex properties are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest tabIndex value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same tabIndex values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the tabIndex property or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A value of -1 removes the element from
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

698 radio
tabbing order altogether. Note that the Macintosh user interface doesn’t provide for giving
focus to elements other than text and password INPUT fields.

Example document.forms[0].myRadio[0].tabIndex = 6

Value Integer.

Default None.

type NN 3 IE 4 DOM 1

Read-only

Returns the type of form control element. The value is returned in all lowercase letters. It
may be necessary to cycle through all form elements in search of specific types to do some
processing on (e.g., emptying all form controls of type "text" while leaving other controls
untouched).

Example
if (document.forms[0].elements[3].type == "radio") {
 ...
}

Value

Any of the following constants (as a string): button | checkbox | file | hidden | image
| password | radio | reset | select-multiple | select-one | submit | text |
textarea.

Default radio

value NN 2 IE 3 DOM 1

Read/Write

Current value associated with the form control that is submitted with the name/value pair
for the group of like-named elements. All values are strings, but they may represent other
kinds of data, including Boolean and numeric values.

Example document.forms[0].myRadio[0].value = "*"

Value String.

Default None.

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.

Parameters

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

reset 699

DOM
 Reference
focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.

handleEvent() NN 4 IE n/a DOM n/a

handleEvent(event)

Instructs the object to accept and process the event whose specifications are passed as the
parameter to the method. The object must have an event handler for the event type to
process the event.

Returned Value

None.

Parameters
event A Navigator 4 event object.

reset NN 2 IE 3 DOM 1

The reset object is a form control generated with an INPUT element whose TYPE attribute
is set to reset. This element is similar to the button object. No script action is necessary
for the reset object to do its job of restoring form controls to their default settings.

HTML Equivalent
<INPUT TYPE="reset">

Object Model Reference
NN [window.]document.formName.elementName

[window.]document.forms[i].elements[i]

IE [window.]document.formName.elementName
[window.]document.forms[i].elements[i]
[window.]document.all.elementID

Properties
accessKey isTextEdit offsetLeft outerText tabIndex
className lang offsetParent parentElement tagName
disabled language offsetTop parentTextEdit title
document name offsetWidth sourceIndex type
form offsetHeight outerHTML style value
id
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

700 reset
Methods

Collections/Arrays

Event Handler Properties

accessKey NN n/a IE 4 DOM 1

Read/Write

A single character key that “clicks” the reset button. The browser and operating system
determine whether the user must press a modifier key (e.g., Ctrl, Alt, or Command) with
the access key to “click” the button. In IE 4/Windows, the Alt key is required, and the key is
not case sensitive. Not working in IE 4/Mac.

Example document.entryForm.myReset.accessKey = "n"

Value Single alphanumeric (and punctuation) keyboard character.

Default None.

disabled NN n/a IE 4 DOM 1

Read/Write

Whether the element is available for user interaction. When set to true, the element cannot
receive focus.

Example document.forms[0].myReset.disabled = true

blur() getAttribute() removeAttribute()
click() handleEvent() scrollIntoView()
contains() insertAdjacentHTML() setAttribute()
focus() insertAdjacentText()

all[] children[] filters[]

Handler NN IE DOM
onblur n/a 4 n/a
onclick 3 4 n/a
ondblclick n/a 4 n/a
onfilterchange n/a 4 n/a
onfocus n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown 4 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup 4 4 n/a
onselect n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

reset 701

DOM
 Reference
Value Boolean value: true | false.

Default false

form NN 2 IE 3 DOM n/a

Read-only

Returns a reference to the FORM element that contains the current element (if any). This
property is most often passed as a parameter for an event handler, using the this keyword
to refer to the current form control.

Example
<INPUT TYPE="button" VALUE="Validate Form" onClick="doValidate(this.form)">

Value Object reference.

Default None.

name NN 2 IE 3 DOM 1

Read/Write

The identifier associated with the form control. Names are hidden from user view, since
control labels are assigned via other means, depending on the control type. Form control
names may also be used by script references to the objects.

Example document.orderForm.myReset.name = "Win32"

Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

tabIndex NN n/a IE 4 DOM 1

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their tabIndex properties are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest tabIndex value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same tabIndex values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the tabIndex property or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A value of -1 removes the element from
tabbing order altogether.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text and password INPUT fields.

Example document.forms[0].myReset.tabIndex = 6
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

702 reset
Value Integer.

Default None.

type NN 3 IE 4 DOM 1

Read-only

Returns the type of form control element. The value is returned in all lowercase letters. It
may be necessary to cycle through all form elements in search of specific types to do some
processing on (e.g., emptying all form controls of type "text" while leaving other controls
untouched).

Example
if (document.forms[0].elements[3].type == "reset") {
 ...
}

Value

Any of the following constants (as a string): button | checkbox | file | hidden | image
| password | radio | reset | select-multiple | select-one | submit | text |
textarea.

Default reset

value NN 2 IE 3 DOM 1

Read/Write

This is the rare time that the value property controls the label of a form control: the text
that appears on the reset button.

Example document.forms[0].myReset.value = "Undo"

Value String.

Default Reset

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.

Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

rows 703

DOM
 Reference
Returned Value

None.

Parameters

None.

handleEvent() NN 4 IE n/a DOM n/a

handleEvent(event)

Instructs the object to accept and process the event whose specifications are passed as the
parameter to the method. The object must have an event handler for the event type to
process the event.

Returned Value

None.

Parameters
event A Navigator 4 event object.

rows NN n/a IE 4 DOM n/a

A collection of all TR elements contained in a single TABLE, TBODY, TFOOT, or THEAD
element. The rows collection of a TABLE element includes all rows of the table, regardless of
how they’re subdivided into row groups. Collection members are sorted in source code order.
Internet Explorer lets you use array notation or parentheses to access a single row in the
collection (e.g., document.all.myTable.rows[0], document.all.myTable .rows (0)).

Object Model Reference
IE document.all.tableOrGroupID.rows(i)

document.all.tableOrGroupID.rows[i]

Properties

Methods

length NN n/a IE 4 DOM n/a

Read-only

Returns the number of elements in the collection.

Example var howMany = document.all.myTable.rows.length

Value Integer.

length

item() tags()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

704 rule
item() NN n/a IE 4 DOM n/a

item(index[, subindex])

Returns a single object or collection of objects corresponding to the element matching the
index value (or, optionally, the index and subindex values).

Returned Value

One object or collection (array) of objects. If there are no matches to the parameters, the
returned value is null.

Parameters
index When the parameter is a zero-based integer, the returned value is a single

element corresponding to the said numbered item in source code order (nested
within the current element); when the parameter is a string, the returned value
is a collection of elements whose id or name properties match that string.

subindex If you specify a string value for the first parameter, you may use the second
parameter to specify a zero-based integer to retrieve a specific element from the
collection whose id or name properties match the first parameter’s string value.

tags() NN n/a IE 4 DOM n/a

tags(tagName)

Returns a collection of objects (among all objects nested within the current element) whose
tags match the tagName parameter.

Returned Value

A collection (array) of objects. If there are no matches to the parameters, the returned value
is an array of zero length.

Parameters
tagName A string of the all-uppercase version of the element tag, as in

document.all.myTable.rows.tags("TR").

rule NN n/a IE 4 DOM n/a

A rule object contains the combination of selector and style attribute/value pairs defined
within a style sheet. While you can obtain the selector directly as a property, a script cannot
quickly derive the style attributes or values assigned in the rule without iterating through all
style attributes.

Object Model Reference
IE document.all.styleSheetID.rules(i)

Properties
readOnly selectorText style
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

SAMP 705

DOM
 Reference
readOnly NN n/a IE 4 DOM n/a

Read-only

Whether the style sheet (and thus the rules therein) can be modified under script control.
Style sheets imported through a LINK element or an @import rule cannot be modified, so
they return a value of true.

Value Boolean value: true | false.

Default false

selectorText NN n/a IE 4 DOM n/a

Read-only

Returns the selector defined for the rule.

Value String

Default None.

rules NN n/a IE 4 DOM n/a

A collection of all rules defined or imported for a styleSheet object. Collection members
are sorted in source code order. Internet Explorer lets you use array notation or paren-
theses to access a single row in the collection (e.g., document.all.myTable.rows[0],
document.all.myTable.rows(0)). Unlike some other collections that have methods for
adding or removing items, a styleSheet object’s rule is added via methods of the
styleSheet object.

Object Model Reference
IE document.all.styleSheetID.rules

Properties

length NN n/a IE 4 DOM n/a

Read-only

Returns the number of elements in the collection.

Example var howMany = document.all.mySheet.rules.length

Value Integer.

S
See B.

SAMP
See ACRONYM.

length
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

706 screen
screen NN 4 IE 4 DOM n/a

The screen object refers to the video display on which the browser is being viewed. Many
video control panel settings influence the property values.

Object Model Reference
NN screen

IE screen

Properties

availHeight, availWidth NN 4 IE 4 DOM n/a

Read-only

Height and width of the content region of the user’s video monitor in pixels. This measure
does not include the 24-pixel taskbar (Windows 95/NT) or 20-pixel system menubar
(Macintosh). IE 4/Macintosh miscalculates the height of the menubar as 24 pixels. To use
these values in creating a maximized window, you also have to adjust the top-left position
of the window.

Example
var newWind = window.open("","","HEIGHT=" + screen.availHeight +
",WIDTH=" + screen.availWidth)

Value Integer of available pixels in vertical and horizontal dimensions.

Default Depends on the user’s monitor size.

availLeft, availTop NN 4 IE n/a DOM n/a

Read-only

Pixel coordinates of the left and top edges of the screen. Always zero, as far as I can tell.

Value Integer.

Default 0

bufferDepth NN n/a IE 4 DOM n/a

Read/Write

Setting of the offscreen bitmap buffer. Path animation smoothness may improve on some
clients if you match the bufferDepth to the colorDepth values. Setting the bufferDepth
to -1 forces IE to buffer at the screen’s pixel depth (as set in the control panel), and
colorDepth is automatically set to that value, as well (plus if a user changes the bits per
pixel, the buffer is adjusted accordingly). A setting to any of the other permitted values (1,
4, 8, 15, 16, 24, or 32) buffers at that pixel depth and sets the colorDepth to that value.
The client’s display must be set to the higher bits-per-pixel values to take advantage of the
higher settings in scripts.

Example screen.bufferDepth = 4

availHeight availTop bufferDepth height updateInterval
availLeft availWidth colorDepth pixelDepth width
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

screen 707

DOM
 Reference
Value Any of the following allowed integers: -1 | 0 | 4 | 8 | 15 | 16 | 24 | 32.

Default 0

colorDepth NN 4 IE 4 DOM n/a

Read-only

Returns the number of bits per pixel used to display color in the video monitor or image
buffer. Although this property is read-only, its value can be influenced by settings of the
bufferDepth property (IE only). You can determine the color depth of the current video
screen and select colors accordingly.

Example
if (screen.colorDepth > 8) {
 document.all.pretty.color = "cornflowerblue"
} else {
 document.all.pretty.color = "blue"
}

Value Integer.

Default Current video control panel setting.

height, width NN 4 IE 4 DOM n/a

Read-only

Returns the number of pixels available vertically and horizontally in the client video
monitor. This is the raw dimension. For the amount of screen space not covered by system
bars, see availHeight and availWidth.

Example
if (screen.height > 480 && screen.width > 640) {
 ...
}

Value Integer of pixel counts.

Default Depends on video monitor.

pixelDepth NN 4 IE n/a DOM n/a

Read-only

Returns the number of bits per pixel used to display color in the video monitor. This value
is similar to the colorDepth property, but it is not influenced by a potential custom color
palette, as colorDepth is.

Example
if (screen.pixelDepth > 8) {
 document.all.pretty.color = "cornflowerblue"
} else {
 document.all.pretty.color = "blue"
}

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

708 SCRIPT
Value Integer.

Default Current video control panel setting.

updateInterval NN n/a IE 4 DOM n/a

Read/Write

The time interval (in milliseconds) between screen updates. A value of zero lets the browser
select an average that usually works best. The longer the interval, the more animation steps
may be buffered and then ignored as the update fires to display the current state.

Example screen.updateInterval = 0

Value Positive integer or zero.

Default 0

width
See height.

SCRIPT NN n/a IE 4 DOM 1

The SCRIPT object reflects the SCRIPT element. Note that the Win32 version of Internet
Explorer chokes on accessing or setting the innerHTML or innerText properties.

HTML Equivalent
<SCRIPT>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Event Handler Properties

className htmlFor isTextEdit readyState tagName
defer id language src text
document innerHTML parentElement sourceIndex title
event innerText parentTextEdit style type

contains() insertAdjacentHTML() removeAttribute()
getAttribute() insertAdjacentText() setAttribute()

Handler NN IE DOM
onerror n/a 4 n/a
onload n/a 4 n/a
onreadystatechange n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

SCRIPT 709

DOM
 Reference
defer NN n/a IE 4 DOM n/a

Read/Write

Whether the browser should proceed with rendering regular HTML content without looking
for the script to generate content as the page loads. This value needs to be set in the
SCRIPT element’s tag at run-time. When this property is set to true by the addition of the
DEFER attribute to the tag, the browser does not have to hold up rendering further HTML
content to parses the content of the SCRIPT element in search of document.write() state-
ments. Changing this property’s value after the document loads does not affect the
performance of the script or browser.

Example document.all.myScript.defer = "true"

Value Boolean value: true | false.

Default false

event NN n/a IE 4 DOM n/a

Read-only

Internet Explorer 4’s event model allows binding of object events to SCRIPT elements with
the help of the EVENT and FOR attributes (see Chapter 6). The event property returns the
setting for the EVENT attribute.

Example
if (document.all.scripts[2].event == "onresize") {
 ...
}

Value Case-sensitive event name.

Default None.

htmlFor NN n/a IE 4 DOM n/a

Read-only

Returns the value (element ID) assigned to the FOR attribute of a SCRIPT element. This
attribute defines the document element to which the script is bound when a specific event
(set by the EVENT attribute) fires for the element.

Example
if (document.all.scripts[3].htmlFor == "helpButton") {
 ...
}

Value String.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

710 SCRIPT
readyState NN n/a IE 4 DOM n/a

Read-only

Returns the current download status of the script being loaded from an external library (.js)
file. This property provides a more granular way of testing whether a particular download-
able element is ready to be run or scripted instead of the onLoad event handler for the
entire document. As the value of this property changes during loading, the system fires an
onReadyStateChange event.

Example
if (document.all.myExternalScript.readyState == "uninitialized") {

statements for alternate handling
}

Value

One of the following values (as strings): complete | interactive | loading | unini-
tialized. Some elements may allow the user to interact with partial content, in which case
the property may return interactive until all loading has completed.

Default None.

src NN n/a IE 4 DOM 1

Read-only

URL of the .js script file imported into the current SCRIPT element.

Example
if (document.all.scripts2.src == "scripts/textlib.js") {
 ...
}

Value Complete or relative URL as a string.

Default None.

text NN n/a IE 4 DOM 1

Read-only

The text content of the element.

Example var scriptText = document.all.script3.text

Value String.

Default None.

type NN n/a IE 4 DOM 1

Read-only

An advisory about the content type of the script statements. The content type should tell the
browser which scripting engine to use to interpret the script statements, such as text/
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

scripts 711

DOM
 Reference
javascript. The TYPE attribute may eventually replace the LANGUAGE attribute as the one
defining the scripting language in which the element’s statements are written.

Example var scriptMIMEtype = document.all.script3.type

Value String.

Default None.

scripts NN n/a IE 4 DOM n/a

A collection of all scripts defined or imported in a document, including those defined in the
HEAD or BODY portion. Collection members are sorted in source code order. Internet
Explorer lets you use array notation or parentheses to access a single row in the collection.

Object Model Reference
IE document.scripts

Properties

Methods

length NN n/a IE 4 DOM n/a

Read-only

Returns the number of elements in the collection.

Example var howMany = document.scripts.length

Value Integer.

item() NN n/a IE 4 DOM n/a

item(index[, subindex])

Returns a single object or collection of objects corresponding to the element matching the
index value (or, optionally, the index and subindex values).

Returned Value

One object or collection (array) of objects. If there are no matches to the parameters, the
returned value is null.

Parameters
index When the parameter is a zero-based integer, the returned value is a single

element corresponding to the said numbered item in source code order (nested
within the current element); when the parameter is a string, the returned value
is a collection of elements whose id or name properties match that string.

length

item()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

712 SELECT
subindex If you specify a string value for the first parameter, you may use the second
parameter to specify a zero-based integer to retrieve a specific element from the
collection whose id or name properties match the first parameter’s string value.

scrollbars
See locationbar.

SELECT NN 2 IE 3 DOM 1

The SELECT object reflects the SELECT element. This element is a form control that contains
OPTION elements. Note that the innerHTML and innerText properties are not available on
the Macintosh version of Internet Explorer 4.

HTML Equivalent
<SELECT>

Object Model Reference
NN [window.]document.formName.selectName

[window.]document.forms[i].elements[i]

IE [window.]document.formName.selectName
[window.]document.forms[i].elements[i]
[window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

accessKey id multiple outerHTML style
className innerHTML name outerText tabIndex
dataFld innerText offsetHeight parentElement tagName
dataSrc isTextEdit offsetLeft parentTextEdit title
disabled lang offsetParent recordNumber type
document language offsetTop selectedIndex value
form length offsetWidth sourceIndex

blur() getAttribute() removeAttribute()
click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
focus()

all[] children[] filters[] options[] tags[]

Handler NN IE DOM
onafterupdate n/a 4 n/a
onbeforeupdate n/a 4 n/a
onblur n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

SELECT 713

DOM
 Reference
accessKey NN n/a IE 4 DOM n/a

Read/Write

A single character key that brings focus to the element. The browser and operating system
determine whether the user must press a modifier key (e.g., Ctrl, Alt, or Command) with
the access key to bring focus to the element. In IE 4/Windows, the Alt key is required, and
the key is not case sensitive. Not working in IE 4/Mac.

Example document.entryForm.mySelect.accessKey = "n"

Value Single alphanumeric (and punctuation) keyboard character.

Default None.

dataFld NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to associate a remote data source column name with the
selectedIndex property of the SELECT object. A DATASRC attribute must also be set for
the element. Setting both the dataFld and dataSrc properties to empty strings breaks the
binding between element and data source.

Example document.forms[0].mySelect.dataFld = "choice"

Value Case-sensitive identifier of the data source column.

Default None.

onchange n/a 4 n/a
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onerrorupdate n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onresize n/a 4 n/a
onrowenter n/a 4 n/a
onrowexit n/a 4 n/a
onselectstart n/a 4 n/a

Handler NN IE DOM
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

714 SELECT
dataSrc NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Setting both the
dataFld and dataSrc properties to empty strings breaks the binding between element and
data source.

Example document.forms[0].mySelect.dataSrc = "#DBSRC3"

Value Case-sensitive identifier of the data source.

Default None.

disabled NN n/a IE 4 DOM 1

Read/Write

Whether the element is available for user interaction. When set to true, the element cannot
receive focus or be modified by the user. It is also not submitted with the form.

Example document.forms[0].elements[3].disabled = true

Value Boolean value: true | false.

Default false

form NN 2 IE 3 DOM n/a

Read-only

Returns a reference to the FORM element that contains the current element (if any). This
property is most often passed as a parameter for an event handler, using the this keyword
to refer to the current form control.

Example <SELECT NAME="units" onChange="recalc(this.form)">

Value Object reference.

Default None.

length NN 2 IE 3 DOM 1

Read/Write

The number of OPTION objects nested inside the SELECT object. You can adjust this value
upward or downward, but there is some browser-specific behavior to watch out for. To
genuinely add options to a SELECT object, you must follow the browser-specific way of
creating new OPTION objects (see the options object for details). If you set this property to
a number smaller than its original value, OPTION objects are deleted from the bottom of the
list. A value of zero does not cause the element to disappear, but there are no selectable
options in the element.

Example document.forms[0].mySelect.length = 3

Value Integer.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

SELECT 715

DOM
 Reference
multiple NN n/a IE 4 DOM 1

Read/Write

Whether the browser should render the SELECT element as a list box and allow users to
make multiple selections from the list of options. By default the size property is set to the
number of nested OPTION elements, but the value may be overridden with the size prop-
erty setting. Users can select contiguous items by Shift-clicking on the first and last items of
the group. To make discontiguous selections, Windows users must Ctrl-click on each item;
Mac users must Command-click on each item. The multiple property has no effect when
size is set to 1 to display a pop-up menu.

Example
if (document.entryForm.list3.multiple) {
 ...
}

Value Boolean value: true | false.

Default false

name NN 2 IE 3 DOM 1

Read/Write

The identifier associated with the form control. The value of this property is submitted as
one-half of the name/value pair when the form is submitted to the server. Names are
hidden from user view, since control labels are assigned via other means, depending on the
control type. Form control names may also be used by script references to the objects.

Example document.orderForm.payment.name = "credcard"

Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

recordNumber NN n/a IE 4 DOM n/a

Read-only

Used with data binding, returns an integer representing the record within the data set that
generated the element (i.e., an element whose content is filled via data binding). Values of
this property can be used to extract a specific record from an Active Data Objects (ADO)
record set (see recordset property).

Example
<SCRIPT FOR="tableTemplate" EVENT="onclick">
 myDataCollection.recordset.absoluteposition = this.recordNumber
 ...
</SCRIPT>
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

716 SELECT
Value Integer.

Default None.

selectedIndex NN 2 IE 3 DOM 1

Read/Write

The zero-based integer of the option selected by the user. If the SELECT element is set to
allow multiple selections, the selectedIndex property returns the index of the first
selected item (see the selected property). You can use this property to gain access to the
value or text of the selected item, as shown in the example.

Example
var list = document.forms[0].selectList
var listValue = list.options[list.selectedIndex].value

Value Positive integer.

Default None.

tabIndex NN n/a IE 4 DOM 1

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their tabIndex properties are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest tabIndex value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same tabIndex values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the tabIndex property or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A value of -1 removes the element from
tabbing order altogether.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text and password INPUT fields.

Example document.forms[0].choices.tabIndex = 6

Value Integer.

Default None.

type NN 3 IE 4 DOM 1

Read-only

Returns the type of form control element. A SELECT object has two possible values,
depending on whether the element is set to be a multiple-choice list. The value is returned
in all lowercase letters. It may be necessary to cycle through all form elements in search of
specific types to do some processing on (e.g., emptying all form controls of type “text”
while leaving other controls untouched).
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

SELECT 717

DOM
 Reference
Example
if (document.forms[0].elements[3].type == "select-multiple") {
 ...
}

Value

Any of the following constants (as a string): button | checkbox | file | hidden | image
| password | radio | reset | select-multiple | select-one | submit | text |
textarea.

Default Depends on value of multiple.

value NN n/a IE 4 DOM 1

Read/Write

Current value associated with the form control that is submitted with the name/value pair
for the element. All values are strings, but they may represent other kinds of data, including
Boolean and numeric values. Internet Explorer automatically stuffs the value property of
the selected OPTION object into the SELECT object’s value property.

Example
if (document.forms[0].medium.value == "CD-ROM") {
 ...
}

Value String.

Default None.

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.

Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

718 selection
options[] NN n/a IE 4 DOM n/a

An array of all OPTION objects contained by the current element. Items in this array are
indexed (zero based) in source code order. For details on using this collection for adding
and removing OPTION elements from a SELECT element in Internet Explorer, see the
options object.

tags[] NN n/a IE 4 DOM n/a

An array of all objects of a specific HTML tag type contained by the current element.

Syntax selectObject.tags("tagName")[i].objectPropertyOrMethod

selection NN n/a IE 4 DOM n/a

The selection object represents zero or more characters that have been either explicitly
selected in a document by the user or selected under script control. All actions on the
content of a selection are done via a TextRange object, which can be created from the
selection object (see the TextRange object). TextRange and selection objects are avail-
able in Navigator 4 only in the Win32 environment. The selection object belongs to the
document object.

Navigator 4 offers script access to the text selected in a document via the
document.getSelection() method.

In all browsers, be aware that clicking on buttons deselects the current text selection.
Therefore, all scripted action involving selections must be triggered by select events or func-
tions invoked by a timer (see the window.setTimeout() method description in
Chapter 11).

Object Model Reference
IE document.selection

Properties

Methods

type NN n/a IE 4 DOM n/a

Read-only

Whether the current selection object has one or more characters selected or is merely an
insertion point.

Example
if (document.selection.type == "Text") {
 ...
}

Value Either of two constant values (as a string): None | Text.

Default None.

type

clear() createRange() empty()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

SPAN 719

DOM
 Reference
clear() NN n/a IE 4 DOM n/a

Deletes the content of the current selection in a document. For example, the event handler
in the following tag deletes any selected text of the P element two seconds after the user
starts making the selection:

<P onSelectStart="setTimeout('document.selection.clear()',2000)">

Returned Value

None.

Parameters

None.

createRange() NN n/a IE 4 DOM n/a

Creates a TextRange object from the current selection object. After a statement like the
following:

var myRange = document.selection.createRange()

scripts can then act on the content of the selected text.

Returned Value

TextRange object.

Parameters

None.

empty() NN n/a IE 4 DOM n/a

Deselects the current selection and sets the selection object’s type property to None. There
is no change to the content that had been selected.

Returned Value

None.

Parameters

None.

SMALL
See B.

SPAN NN n/a IE 4 DOM 1

The SPAN object reflects the SPAN element. This element is used primarily as a container for
assigning styles to inline content elements.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

720 SPAN
HTML Equivalent

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

dataFld NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to associate a remote data source column name with the HTML
content inside a SPAN element. A DATASRC attribute must also be set for the element.
Setting both the dataFld and dataSrc properties to empty strings breaks the binding
between element and data source.

className innerHTML offsetHeight outerHTML scrollTop
dataFld innerText offsetLeft outerText sourceIndex
dataFormatAs isTextEdit offsetParent parentElement style
dataSrc lang offsetTop parentTextEdit tagName
document language offsetWidth scrollLeft title
id

blur() getAttribute() removeAttribute()
click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
focus()

all[] children[] filters[]

Handler NN IE DOM
onblur n/a 4 n/a
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

SPAN 721

DOM
 Reference
Example document.all.mySpan.dataFld = "comment"

Value Case-sensitive identifier of the data source column.

Default None.

dataFormatAs NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding, this property advises the browser whether the source material
arriving from the data source is to be treated as plain text or as tagged HTML.

Example document.forms[0].mySpan.dataFormatAs = "HTML"

Value IE 4 recognizes two possible settings: text | HTML.

Default text

dataSrc NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Setting both the
dataFld and dataSrc properties to empty strings breaks the binding between element and
data source.

Example document.all.mySpan.dataSrc = "#DBSRC3"

Value Case-sensitive identifier of the data source.

Default None.

scrollLeft, scrollTop NN n/a IE 4 DOM n/a

Read/Write

The distance in pixels between the actual left or top edge of the element’s physical content
and the left or top edge of the visible portion of the content. Since a SPAN element is not a
scrollable container, both values are zero. These properties are not available in the Win32
version of Internet Explorer 4.

Value Positive integer or zero.

Default 0

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

722 STYLE
Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.

statusbar
See locationbar.

STRIKE
See B.

STRONG
See ACRONYM.

STYLE NN n/a IE 4 DOM 1

The STYLE object reflects the STYLE element. This object is separate from the style object
associated with virtually every element in a document. The STYLE object is generated in a
document via the <STYLE> tag, which can have a unique ID value assigned to it; the style
object contains all the style properties and their current values as set for a particular
element.

Note that the lang, language, media and title properties are not available on the Macin-
tosh version of Internet Explorer 4.

HTML Equivalent
<STYLE>

Object Model Reference
IE [window.]document.all.elementID

Properties
className isTextEdit media readyState tagName
disabled lang parentElement sourceIndex title
document language parentTextEdit style type
id
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

STYLE 723

DOM
 Reference
Methods

Event Handler Properties

disabled NN n/a IE 4 DOM 1

Read/Write

Whether rules in the style sheet should be applied to their selected elements. Although the
corresponding DISABLED attribute does not work in Internet Explorer 4, setting the
disabled property to true does, in fact, turn off the entire style sheet. During page
authoring, you can create a button that toggles style sheets on and off to see how the page
looks in all types of browsers.

Example document.all.mainStyle.disabled = true

Value Boolean value: true | false..

Default false

media NN n/a IE 4 DOM 1

Read/Write

The intended output device for the rules of the STYLE element. The media property looks
forward to the day when browsers are able to tailor content to specific kinds of devices
such as pocket computers, text-to-speech digitizers, or fuzzy television sets.

Example document.all.myStyle.media = "print"

Value Any one of the following constant values as a string: all | print | screen.

Default all

readyState NN n/a IE 4 DOM n/a

Read-only

Returns the current download status of the document or embedded content. This property
provides a more granular way of testing whether a particular downloadable element is
ready to be run or scripted instead of the onLoad event handler for the entire document. As
the value of this property changes during loading, the system fires an onReadyState-
Change event.

Example
if (document.all.myStyle.readyState == "uninitialized") {
 statements for alternate handling
}

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

Handler NN IE DOM
onerror n/a 4 n/a
onload n/a 4 n/a
onreadystatechange n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

724 style
Value

One of the following values (as strings): complete | interactive | loading | unini-
tialized. Some elements may allow the user to interact with partial content, in which case
the property may return interactive until all loading has completed.

Default None.

type NN n/a IE 4 DOM 1

Read-only

The style sheet syntax specified by the TYPE attribute of the STYLE element. Internet
Explorer 4 knows only the CSS syntax.

Example
if (document.all.myStyle.type == "text/css") {
 ...
}

Value String.

Default None.

style NN n/a IE 4 DOM 1

Almost every object that reflects an HTML element has a style object associated with it (as
you can see from the style property that pervades the object listings in this chapter). The
style object reflects the STYLE attribute set in the element’s tag. If the element is under the
influence of a style sheet rule that is set in a STYLE element (assigned to a selector that
applies to the current element), those style sheet values are not part of the style object.
Even if the element is under the influence of one of these distant style sheet rules, you can
still assign a value to any style object property for any element: the setting is likely to
override (by virtue of the cascading rules described in Chapter 3) styles assigned from a
STYLE element.

From a scripting point of view, it is important to know that while a style object’s property
exhibits a default behavior (a font size or alignment, for example), the default value may
not be reflected in the property unless the value has been explicitly set in the element tag’s
STYLE attribute or assigned by another script statement. The Macintosh version of Internet
Explorer 4 is a bit better in exposing default values, but by and large, a style object’s
property default value is an empty string or null. Therefore, do not expect condition
testing to necessarily reveal the current value of a property unless it has been set
previously.

The properties of the style object correspond to the CSS attributes that are detailed in
Chapter 10. For more information on a particular property, see the corresponding listing in
Chapter 10.

Object Model Reference
IE [window.]document.all.elementID.style
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

style 725

DOM
 Reference
Properties

Methods

background NN n/a IE 4 DOM n/a

Read/Write

The element’s style sheet background attribute. This is a shorthand attribute, so the
scripted property consists of a string of space-delimited values for the backgroundAttach-
ment, backgroundColor, backgroundImage, backgroundPosition, and backgroundRepeat
property values. One or more values may be in the background value, and the individual
values may be in any order.

Example
document.all.tags("DIV").style.background = "url(logo.gif) repeat-y"

background clip paddingRight
backgroundAttachment color paddingTop
backgroundColor cssText pageBreakAfter
backgroundImage cursor pageBreakBefore
backgroundPosition display pixelHeight
backgroundPositionX filter pixelLeft
backgroundPositionY font pixelTop
backgroundRepeat fontFamily pixelWidth
border fontSize posHeight
borderBottom fontStyle position
borderBottomColor fontVariant posLeft
borderBottomStyle fontWeight posTop
borderBottomWidth height posWidth
borderColor left styleFloat
borderLeft letterSpacing textAlign
borderLeftColor lineHeight textDecoration
borderLeftStyle listStyle textDecorationBlink
borderLeftWidth listStyleImage textDecorationLineThrough
borderRight listStylePosition textDecorationNone
borderRightColor listStyleType textDecorationOverline
borderRightStyle margin textDecorationUnderline
borderRightWidth marginBottom textIndent
borderStyle marginLeft textTransform
borderTop marginRight top
borderTopColor marginTop verticalAlign
borderTopStyle overflow visibility
borderTopWidth padding width
borderWidth paddingBottom zIndex
clear paddingLeft

getAttribute() removeAttribute() setAttribute()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

726 style
Value

String of space-delimited values corresponding to one or more individual background style
properties.

Default None.

backgroundAttachment NN n/a IE 4 DOM n/a

Read/Write

Sets how the image is “attached” to the element. The image can either remain fixed within
the viewable area of the element (the viewport) or it may scroll with the element as the
document is scrolled. During scrolling, the fixed attachment looks like a stationary back-
drop to rolling credits of a movie.

Example document.all.tags("DIV").style.backgroundAttachment = "fixed"

Value String of either allowable value: fixed | scroll.

Default scroll

backgroundColor NN n/a IE 4 DOM n/a

Read/Write

Background color of the element. If you also set a backgroundImage, the image overlays
the color. Transparent pixels of the image allow the color to show through.

Example document.all.highlighted.style.backgroundColor = "yellow"

Value Any valid color specification (see description at beginning of the chapter).

Default None.

backgroundImage NN n/a IE 4 DOM n/a

Read/Write

URL of the background image of the element. If you also set a backgroundColor, the
image overlays the color. Transparent pixels of the image allow the color to show through.

Example
document.all.navbar.style.backgroundImage = "images/navVisited.jpg"

Value Any complete or relative URL to an image file.

Default None.

backgroundPosition NN n/a IE 4 DOM n/a

Read/Write

Top and left location of the background image relative to the element’s content region (plus
padding). This property is not properly connected in Internet Explorer 4 for the Macintosh.

Example document.all.div3.style.backgroundPosition = "20 50"
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

style 727

DOM
 Reference
Value

You should be able to specify one or two percentages, which are the percentages of the
block-level element’s box width and height (respectively) at which point the image (or
repeated images) begins. Setting percentage values, however, does not always work in IE 4
for Windows (and it doesn’t work at all on the Mac), even though they are returned as the
default value units. You are safest with pixel values (as space-delimited values inside one
string). None of the allowed constants except top and left are recognized.

Default 0% 0%

backgroundPositionX,
backgroundPositionY NN n/a IE 4 DOM n/a

Read/Write

Top and left locations of the background image relative to the element’s content region
(plus padding). These properties are not properly connected in Internet Explorer 4 for the
Macintosh.

Example
document.all.div3.style.backgroundPositionX = "20"
document.all.table2.style.backgroundPositionY = "10"

Value

You should be able to specify percentage values, which are the percentage of the block-
level element’s box width and height (respectively) at which point the image (or repeated
images) begins. Setting percentage values, however, does not always work in IE 4 for
Windows (and it doesn’t work at all on the Mac), even though they are returned as the
default value units. You are safest with pixel values. None of the allowed constants except
top and left are recognized.

Default 0

backgroundRepeat NN n/a IE 4 DOM n/a

Read/Write

Whether a background image (specified with the backgroundImage property) should
repeat and, if so, along which axes. You can use repeating background images to create
horizontal and vertical bands with some settings.

Example document.all.div3.style.backgroundRepeat = "repeat-y"

Value

With a setting of no-repeat, one instance of the image appears in the location within the
element established by the backgroundPosition property (default is top-left corner).
Normal repeats are performed along both axes, but you can have the image repeat down a
single column (repeat-y) or across a single row (repeat-x).

Default repeat
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

728 style
border NN n/a IE 4 DOM n/a

Read/Write

A shorthand property for getting or setting the borderColor, borderStyle, and/or
borderWidth properties of all four borders around an element in one statement. You must
specify a border style (see borderStyle) for changes of this property to affect the display
of the element’s border. Numerous other properties allow you to set the width, style, and
color of individual edges or groups of edges if you don’t want all four edges to be the
same. Only those component settings explicitly made in the element’s tag attributes are
reflected in the property, but you may assign components not part of the original tag.

Example document.all.announce.style.border = "inset red 4px"

Value

For the borderStyle and borderWidth component values, see the respective properties
in this chapter. For details on the borderColor value, see the section about colors at the
beginning of this chapter.

Default None.

borderBottom, borderLeft,
borderRight, borderTop NN n/a IE 4 DOM n/a

Read/Write

A shorthand property for getting or setting the borderColor, borderStyle, and/or
borderWidth properties for a single edge of an element in one statement. You must
specify a border style (see borderStyle) for changes of this property to affect the display
of the element’s border. If you want all four edges to be the same, see the border attribute.
Only those component settings explicitly made in the element’s tag attributes are reflected
in the property, but you may assign components not part of the original tag.

Example
document.all.announce.style.borderBottom = "inset red 4px"
document.all.announce.style.borderLeft = "solid #20ff00 2px"
document.all.announce.style.borderRight = "double 3px"
document.all.announce.style.borderTop = "outset red 8px"

Value

For the borderEdgeStyle and borderEdgeWidth component values, see the respective
properties in this chapter. For details on the borderEdgeColor value, see the section about
colors at the beginning of this chapter.

Default None.

borderBottomColor, borderLeftColor,
borderRightColor, borderTopColor NN n/a IE 4 DOM n/a

Read/Write

The color of a single border edge of an element. It is easy to abuse these properties by
mixing colors that don’t belong together. See also the borderColor attribute for setting the
color for groups of edges in one statement.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

style 729

DOM
 Reference
Example
document.all.announce.style.borderBottomColor = "red"
document.all.announce.style.borderLeftColor = "#20ff00"
document.all.announce.style.borderRightColor = "rgb(100, 75, 0)"
document.all.announce.style.borderTopColor = "rgb(90%, 0%, 25%)"

Value

For details on color values, see the section about colors at the beginning of this chapter.

Default None.

borderBottomStyle, borderLeftStyle,
borderRightStyle, borderTopStyle NN n/a IE 4 DOM n/a

Read/Write

The line style of a single border edge of an element. The edge-specific attributes let you
override a style that has been applied to all four edges with the border or borderStyle
properties. See also the borderStyle property for setting the style for groups of edges in
one statement.

Example
document.all.announce.style.borderBottomStyle = "groove"
document.all.announce.style.borderLeftStyle = "double"
document.all.announce.style.borderRightStyle = "solid"
document.all.announce.style.borderTopStyle = "inset"

Value

Style values are case-insensitive constants that are associated with specific ways of
rendering border lines. The CSS style constants are: dashed, dotted, double, groove,
hidden, inset, none, outset, ridge, and solid. Not all browsers recognize all the values
in the CSS recommendation. See the border-style attribute listing in Chapter 10 for
complete details on the available border styles.

Default None.

borderBottomWidth, borderLeftWidth,
borderRightWidth, borderTopWidth NN n/a IE 4 DOM n/a

Read/Write

The width of a single border edge of an element. See also the borderWidth property for
setting the width for groups of edges in one statement.

Example
document.all.announce.style.borderBottomWidth= "thin"
document.all.announce.style.borderLeftWidth = "thick"
document.all.announce.style.borderRightWidth = "2px"
document.all.announce.style.borderTopWidth = "0.5em"
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

730 style
Value

Three case-insensitive constants—thin | medium | thick—allow the browser to define
exactly how many pixels are used to show the border. For more precision, you can also
assign a length value (see the discussion of length values at the beginning of this chapter).

Default medium

borderColor NN n/a IE 4 DOM n/a

Read/Write

A shortcut attribute that lets you set multiple border edges to the same or different colors.
For Internet Explorer, you may supply one to four space-delimited color values. The
number of values determines which sides receive the assigned colors.

Example
document.all.announce.style.borderColor = "red"
document.all.announce.style.borderColor = "red green"
document.all.announce.style.borderColor = "black rgb(100, 75, 0) #c0c0c0"
document.all.announce.style.borderColor = "yellow green blue red"

Value

In Internet Explorer, this property accepts one, two, three, or four color values, depending
on how many and which borders you want to set with specific colors. See the border-
color attribute listing in Chapter 10 for complete details on how the number of values
affects this property.

Default The object’s color property (if it is set).

borderStyle NN n/a IE 4 DOM n/a

Read/Write

A shortcut property that lets you set multiple border edges to the same or different style.
For Internet Explorer, you may supply one to four space-delimited style values. The number
of values determines which sides receive the assigned colors.

Example
document.all.announce.style.borderStyle = "solid"
document.all.announce.style.borderStyle = "solid double"
document.all.announce.style.borderStyle = "double groove groove double"

Value

Style values are case-insensitive constants that are associated with specific ways of
rendering border lines. The CSS style constants are: dashed, dotted, double, groove,
hidden, inset, none, outset, ridge, and solid. Not all browsers recognize all the values
in the CSS recommendation. See the border-style attribute listing in Chapter 10 for
complete details on the available border styles.

In Internet Explorer, this property accepts one, two, three, or four style values, depending
on how many and which borders you want to set with specific styles. See the border-
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

style 731

DOM
 Reference
style attribute listing in Chapter 10 for complete details on how the number of values
affects this property.

Default none

borderWidth NN n/a IE 4 DOM n/a

Read/Write

A shortcut property that lets you set multiple border edges to the same or different width.
For Internet Explorer, you may supply one to four space-delimited width length values
(Navigator 4’s property is read-only). The number of values determines which sides receive
the assigned widths.

Example
document.all.founderQuote.style.borderWidth = "3px 5px"

Value

Three case-insensitive constants—thin | medium | thick—allow the browser to define
exactly how many pixels are used to show the border. For more precision, you can also
assign a length value (see the discussion of length values at the beginning of this chapter).

In Internet Explorer, this property accepts one, two, three, or four width values, depending
on how many and which borders you want to set with specific widths. See the border-
width attribute listing in Chapter 10 for complete details on how the number of values
affects this property.

Default medium

clear NN n/a IE 4 DOM n/a

Read/Write

Defines whether the element allows itself to be displayed in the same horizontal band as a
floating element. Typically another element in the vicinity has its float style attribute set to
left or right. To prevent the current element from being in the same band as the floating
block, set the clear property to the same side (left or right). If you aren’t sure where
the potential overlap might occur, set the clear property to both. An element whose
clear property is set to a value other than none is rendered at the beginning of the next
available line below the floating element.

Example document.all.myDiv.style.clear = "both"

Value

Case-insensitive string of any of the following constants: both | left | none | right.

Default none

clip NN n/a IE 4 DOM n/a

Read/Write

Defines a clipping region of a positionable element. The clipping region is the area of the
element layer in which content is visible. Clipping may not work properly in Internet
Explorer 4 for the Macintosh.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

732 style
Example document.all.art2.style.clip = "rect(5px 100px 40px 0)"

Value

Case-insensitive string of either the auto constant or the CSS clip attribute setting that spec-
ifies the shape (rect only for now) and the position of the four clip edges relative to the
original element’s top-left corner. When specifying lengths for each side of the clipping rect-
angle, observe the clockwise order of values: top, right, bottom, left. See the discussion
about length values at the beginning of this chapter. A value of auto sets the clipping
region to the block that contains the content. In Internet Explorer, the width may extend to
the width of the next outermost container (such as the BODY element).

Default None.

color NN n/a IE 4 DOM 1

Read/Write

Sets the foreground (text) color style sheet attribute of the element. For some graphically
oriented elements, such as form controls, the color attribute may also be applied to element
edges or other features. Such extracurricular behavior is browser specific and may not be
the same across browsers.

Example document.all.specialDiv.style.color = "green"

Value

Case-insensitive style sheet color specification (see discussion at beginning of the chapter).

Default black

cssText NN n/a IE 4 DOM n/a

Read-only

Returns a string of the entire CSS style sheet rule applied to the element. If the rule included
shorthand style attribute settings (such as border), the components for each of the four
sides are spelled out (although not down to the most granular specifications). For example,
if you set the STYLE attribute of an element to STYLE="border: groove red 3px", the
cssText property for that element returns:

BORDER-TOP: 3px groove red; BORDER-RIGHT: 3px groove red;
BORDER-BOTTOM: 3px groove red; BORDER-LEFT: 3px groove red

You can assign a shorthand value to the property, however.

Example
document.all.block3.style.cssText = "margin: 2px; font-size: 14pt"

Value String value of semicolon-delimited style attributes.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

style 733

DOM
 Reference
cursor NN n/a IE 4 DOM n/a

Read/Write

The shape of the cursor when the screen pointer is atop the element. The precise look of
cursors depends on the operating system. Before deploying a modified cursor, be sure you
understand the standard ways that the various types of cursors are used within the browser
and operating system. Users expect a cursor design to mean the same thing across all appli-
cations. Figure 10-3 in Chapter 10 offers a gallery of Windows and Macintosh cursors for
each of the cursor constant settings provided by Internet Explorer 4.

Setting this property affects the cursor only when it is atop the current element and does
not set the cursor immediately on a global basis.

Example
if (event.altKey) {
 event.sourceElement.style.cursor = "help"
}

Value

Any one cursor constant as a string: auto | crosshair | default | e-resize | help |
move | n-resize | ne-resize | nw-resize | pointer | s-resize | se-resize | sw-
resize | text | wait.

Default auto

display NN n/a IE 4 DOM n/a

Read/Write

Whether the element should be rendered in the document. Although the property can be
set to a variety of values, there are only two states. When set to none, the element is
hidden, and surrounding content cinches up to fill the space; when set to an empty string
(or any other value), the element is displayed.

Example document.all.instructionDiv.style.display = ""

Value Either none or an empty string ("").

Default None.

filter NN n/a IE 4 DOM n/a

Read/Write

Sets the visual, reveal, or blend filter used to display or change content of an element. A
visual filter can be applied to an element to produce effects such as content flipping, glow,
drop shadow, and many others. A reveal filter is applied to an element when its visibility
changes. The value of the reveal filter determines what visual effect is to be applied to the
transition from hidden to shown (or vice versa). This includes effects such as wipes, blinds,
and barn doors. A blend filter sets the speed at which a transition between states occurs. As
of this writing, the filter property is available in Internet Explorer 4, but does not work in
the Macintosh version.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

734 style
Example document.all.fancy.style.filter= "dropshadow()"

Value

Each filter property may have more than one space-delimited filter type associated with it.
Each filter type is followed by a pair of parentheses, which may convey parameters about
the behavior of the filter for the current element. A parameter generally consists of a name/
value pair, with assignment performed by the equals symbol. See the filter style sheet
attribute listing in Chapter 10 for details on filter settings and parameters.

Default None.

font NN n/a IE 4 DOM n/a

Read/Write

A shorthand property that lets you set one or more font-related properties (fontFamily,
fontSize, fontVariant, and fontWeight) with one assignment statement. A space-
delimited list of values (in any sequence) is applied to the specific font properties for which
the value is a valid type.

Example document.all.subhead.style.font = "bolder small-caps 16pt"

Value

For syntax and examples of value types for font-related properties, see the respective prop-
erty listing.

Default None.

fontFamily NN n/a IE 4 DOM n/a

Read/Write

A prioritized list of font families to be used to render the object’s content. One or more font
family names may be included in a space-delimited list of property values. If a font family
name consists of multiple words, the family name must be inside a set of inner quotes.

Example
document.all.subhead.style.fontFamily = "'Century Schoolbook' Times serif"

Value

Any number of font family names, space delimited. Multiword family names must be
quoted. Recognized generic family names are: serif | sans-serif | cursive | fantasy
| monospace.

Default Browser default.

fontSize NN n/a IE 4 DOM n/a

Read/Write

The font size of the element. The font size can be set in several ways. A collection of
constants (xx-small, x-small, small, medium, large, x-large, xx-large) defines what
are known as absolute sizes. In truth, these are absolute as far as a single browser in a
single operating system goes, since the reference point for these sizes varies with browser
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

style 735

DOM
 Reference
and operating system. But they do let the author have confidence that one element set to
large is rendered larger than medium.

Another collection of constants (larger, smaller) is known as relative sizes. Because the
font-size attribute is inherited from the parent element, these relative sizes are applied to
the parent element to determine the font size of the current element. It is up to the browser
to determine exactly how much larger or smaller the font size is, and a lot depends on how
the parent element’s font size is set. If it is set with one of the absolute sizes (large, for
example), a child’s font size of larger means the font is rendered in the browser’s x-
large size. The increments are not as clear-cut when the parent font size is set with a
length or percentage.

If you elect to use a length value for the fontSize property, choose a unit that makes the
most sense for fonts, such as points (pt) or ems (em). The latter bases its calculation on the
size of the parent element’s font size. Finally, you can set fontSize to a percentage, which
is calculated based on the size of the parent element’s font size.

Example document.all.teeny.style.fontSize = "x-small"

Value

Case-insensitive values from any of the following categories. For an absolute size, one of
the following constants: xx-small | x-small | small | medium | large | x-large |
xx-large. For a relative size, one of the following constants: larger | smaller. For a
length, see the discussion about length values at the beginning of this chapter. For a
percentage, the percentage value and the % symbol.

Default Parent element’s font size.

fontStyle NN n/a IE 4 DOM n/a

Read/Write

Whether the element is rendered in a normal (roman), italic, or oblique font style. If the
fontFamily includes font faces labeled Italic and/or Oblique, the setting of the font-
Style attribute summons those particular font faces from the browser’s system. But if the
specialized font faces are not available in the system, the normal font face is usually algo-
rithmically slanted to look italic. Output sent to a printer with such font settings relies on
the quality of arbitration between the client computer and printer to render an electroni-
cally generated italic font style. While personal computer software typically includes other
kinds of font rendering under the heading of “Style,” see fontVariant and fontWeight
for other kinds of font “styles.”

Example document.all.emphasis.style.fontStyle= "italic"

Value

Internet Explorer 4 recognizes the following string values: normal | italic | oblique,
but treats both italic and oblique as italic.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

736 style
fontVariant NN n/a IE 4 DOM n/a

Read/Write

Whether the element should be rendered in all uppercase letters in such a way that lower-
case letters of the source code are rendered in smaller uppercase letters. If a font family
contains a small caps variant, the browser should use it automatically. More likely, however,
the browser calculates a smaller size for the uppercase letters that take the place of source
code lowercase letters. In practice, Internet Explorer 4 renders the entire source code
content as uppercase letters of the same size as the parent element’s font, regardless of the
case of the source code.

Example document.all.emphasis.style.fontVariant = "small-caps"

Value Any of the following constant values as strings: normal | small-caps.

Default normal

fontWeight NN n/a IE 4 DOM n/a

Read/Write

Sets the weight (boldness) of the element’s font. CSS provides a weight rating scheme that
is more granular than most browsers render on the screen, but the finely tuned weights may
come into play when the content is sent to a printer. The scale is a numeric rating from 100
to 900 at 100-unit increments. Therefore, a fontWeight of 100 would be the least bold that
would be displayed, while 900 would be the boldest. A setting of normal (the default
weight for any font) is equivalent to a fontWeight value of 400; the standard bold setting
is equivalent to 700. Other settings (bolder and lighter) let you specify a weight relative
to the parent element’s weight.

Example document.all.hotStuff.style.fontWeight = "bold"

Value

Any of the following constant values: bold | bolder | lighter | normal | 100 | 200 |
300 | 400 | 500 | 600 | 700 | 800 | 900.

Default normal

height, width NN n/a IE 4 DOM n/a

Read/Write

The height and width (and their units) of the element. Because the values are strings
containing the assigned units, you cannot use these properties for calculation. See pixel-
Height, pixelWidth, posHeight, and posWidth properties. Changes to these properties
may not be visible unless the element has its position style attribute set.

Example document.all.viewArea.style.height = "450px"

Value String consisting of a numeric value and length measure or percentage.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

style 737

DOM
 Reference
left NN n/a IE 4 DOM n/a

Read/Write

For positionable elements, defines the position of the left edge of an element’s box (content
plus left padding, border, and/or margin) relative to the left edge of the next outermost
block content container. When the element is relative-positioned, the offset is based on the
left edge of the inline location of where the element would normally appear in the content.

For calculations on this value, retrieve the pixelLeft or posLeft properties, which return
genuine numeric values.

Example document.all.blockD2.style.left = "45px"

Value

String consisting of a numeric value and length unit measure, a percentage, or auto.

Default auto

letterSpacing NN n/a IE 4 DOM n/a

Read/Write

The spacing between characters within an element. Browsers normally define the character
spacing based on font definitions and operating system font rendering. Assigning a nega-
tive value tightens the spacing, but be sure to test the effect on the selected font for
readability on different operating systems.

Example document.body.style.letterSpacing = "1.1em"

Value

A string of a length value (with unit of measure) or normal. The best results are achieved
by using units that are based on the rendered font size (em and ex). A setting of normal is
how the browser sets the letters without any intervention.

Default normal

lineHeight NN n/a IE 4 DOM n/a

Read/Write

The height of the inline box (the box holding one physical line of content). See the line-
height style attribute in Chapter 10 for details on browser quirks and inheritance traits of
different types of values.

Example document.all.tight.style.lineHeight = "1.1em"

Value A string of a length value (with unit of measure) or normal.

Default normal

listStyle NN n/a IE 4 DOM n/a

Read/Write

A shorthand property for setting up to three list-style properties in one assignment state-
ment. Whichever attributes you don’t explicitly set with this attribute assume their default
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

738 style
values. These properties define display characteristics for the markers automatically
rendered for list items inside OL and UL elements.

Example document.all.itemList.style.listStyle = "square outside none"

Value

See the individual attribute entries for listStyleType, listStylePosition, and list-
StyleImage for details on acceptable values for each. You may include one, two, or all
three values in the list-style attribute setting in any order you wish.

Default None.

listStyleImage NN n/a IE 4 DOM n/a

Read/Write

The URL for an image that is to be used as the marker for a list item. Because this attribute
can be inherited, a setting (including none) for an individual list item can override the same
attribute or property setting in its parent.

Example
document.all.itemList.style.listStyleImage = "images/3DBullet.gif"

Value

Use none (as a string) to override an image assigned to a parent element. Otherwise,
supply any valid full or relative URL to an image file whose MIME type is readable by the
browser.

Default none

listStylePosition NN n/a IE 4 DOM n/a

Read/Write

Whether the marker is inside or outside (outdented) the box containing the list item’s
content. When listStylePosition is set to inside and the content is text, the marker
appears to be part of the text block. In this case, the alignment (indent) of the list item is
the same as normal, but without the outdented marker.

Example document.all.itemList.style.listStylePosition = "inside"

Value Either constant value as a string: inside | outside.

Default outside

listStyleType NN n/a IE 4 DOM n/a

Read/Write

The kind of item marker to be displayed with each item. This attribute is applied only if
listStyleImage is none (or not specified). The constant values available for this attribute
are divided into two categories. One set is used with UL elements to present a filled disc, an
empty circle, or a square (empty on the Macintosh, filled in Windows); the other set is for
OL elements, whose list items can be marked in sequences of arabic numerals, roman
numerals (uppercase or lowercase), or letters of the alphabet (uppercase or lowercase).
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

style 739

DOM
 Reference
Example document.all.itemList.style.listStyleType = "circle"

Value

One constant value as a string that is relevant to the type of list container. For UL: circle |
disc | square. For OL: decimal | lower-alpha | lower-roman | upper-alpha |
upper-roman. OL element sequences are treated as follows:

Default disc (for UL); decimal (for OL).

margin NN n/a IE 4 DOM n/a

Read/Write

A shortcut property that can set the margin widths of up to four edges of an element with
one statement. A margin is space that extends beyond the border of an element to provide
extra empty space between adjacent or nested elements, especially those that have border
attributes set. You may supply one to four space-delimited margin values. The number of
space-delimited values determines which sides receive the assigned margins.

Example document.all.logoWrapper.style.margin = "5px 8px"

Value

This property accepts one, two, three, or four space-delimited values inside one string,
depending on how many and which margins you want to set. See the margin attribute
listing in Chapter 10 for complete details on how the number of values affects this prop-
erty. Values for the margins can be lengths, percentages of the next outermost element size,
or the auto constant.

Default 0

marginBottom, marginLeft,
marginRight, marginTop NN n/a IE 4 DOM n/a

Read/Write

All four properties set the width of a single margin edge of an element. A margin is space
that extends beyond the element’s border and is not calculated as part of the element’s
width or height.

Example
document.all.logoWrapper.style.marginTop = "5px"
document.all.navPanel.style.marginLeft = "10%"

Type Example
decimal 1, 2, 3, ...
lower-alpha a, b, c, ...
lower-roman i, ii, iii, ...
upper-alpha A, B, C, ...
upper-roman I, II, III, ...
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

740 style
Value

Values for margin widths can be length values, percentages of the next outermost element
size, or the auto constant.

Default 0

overflow NN n/a IE 4 DOM n/a

Read/Write

How a positioned element should treat content that extends beyond the boundaries estab-
lished in the style sheet rule. See the discussion of the overflow style sheet attribute in
Chapter 10 for details of how different operating system versions of Internet Explorer 4
respond to the possible settings.

Example document.all.myDiv.style.overflow = "scroll"

Value Any of the following constants as a string: auto | hidden | scroll | visible.

Default visible

padding NN n/a IE 4 DOM n/a

Read/Write

A shortcut property that can set the padding widths of up to four edges of an element with
one statement. Padding is space that extends around the content box of an element up to
but not including any border that may be specified for the element. Padding picks up the
background image or color of its element. As you add padding to an element, you increase
the size of the visible rectangle of the element without affecting the content block size. You
may supply one to four space-delimited padding values. The number of values determines
which sides receive the assigned padding.

Example document.all.logoWrapper.style.padding = "3px 5px"

Value

This property accepts one, two, three, or four space-delimited values inside one string,
depending on how many and which edges you want to pad. See the padding attribute
listing in Chapter 10 for complete details on how the number of values affects this prop-
erty. Values for padding widths can be lengths, percentages of the next outermost element
size, or the auto constant.

Default 0

paddingBottom, paddingLeft,
paddingRight, paddingTop NN n/a IE 4 DOM n/a

Read/Write

All four properties set the width of a single padding edge of an element. Padding is space
that extends between the element’s border and content box. Padding is not calculated as
part of the element’s width or height.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

style 741

DOM
 Reference
Example
document.all.logoWrapper.style.paddingTop = "3px"
document.all.navPanel.style.paddingLeft = "10%"

Value

Values for padding widths can be length values, percentages of the next outermost element
size, or the auto constant.

Default 0

pageBreakAfter, pageBreakBefore NN n/a IE 4 DOM n/a

Read/Write

Defines how content should treat a page break around an element when the document is
sent to a printer. Page breaks are not rendered in the visual browser as they may be in
word processing programs; on screen, long content flows in one continuous scroll. See the
extensive discussion of page breaks in the listing for the page-break-after and page-
break-before style attributes in Chapter 10.

Example
document.all.hardBR.style.pageBreakAfter = "always"
document.all.navPanel.style.paddingLeft = "10%"

Value

Internet Explorer 4 recognizes four constant values (as strings): always | auto | left |
right.

Default auto

pixelHeight, pixelWidth NN n/a IE 4 DOM n/a

Read/Write

The height and width of the element in pixels. Use these properties for calculation instead
of properties such as height and width, which return strings including units. Changes to
these properties may not be visible unless the element has its position style attribute set.

Example var midWidth = document.all.myDIV.style.pixelWidth/2

Value Integer

Default None.

pixelLeft, pixelTop NN n/a IE 4 DOM n/a

Read/Write

For positionable elements, define the position of the left and top edges of an element’s box
(content plus left padding, border, and/or margin) relative to the left and top edges of the
next outermost block content container. When the element is relative-positioned, the
measure is based on the left edge of the inline location of where the element would
normally appear in the content. Use these properties for calculation (including path anima-
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

742 style
tion) instead of the left and top properties, which store their values as strings with the
unit names.

Example document.all.myDIV.style.pixelLeft++

Value Integer.

Default None.

posHeight, posWidth NN n/a IE 4 DOM n/a

Read/Write

The numeric height and width of the element in the units set by the CSS positioning-related
attributes. Use these properties for calculation instead of properties such as height and
width, which return strings including units. All math is in the specified units. Also contrast
these properties with the pixelHeight and pixelWidth properties, which are integer
values for pixel measures only.

Example document.all.myDIV.style.posWidth = 10.5

Value Floating-point number.

Default None.

position NN n/a IE 4 DOM n/a

Read-only

For positionable elements, returns the value assigned to the style sheet position attribute.

Example var posType = document.all.myDIV.style.position

Value Floating-point number.

Default None.

posLeft, posTop NN n/a IE 4 DOM n/a

Read/Write

For positionable elements, define the position of the left and top edges of an element’s box
(content plus left padding, border, and/or margin) relative to the left and top edges of the
next outermost block content container. When the element is relative-positioned, the
measure is based on the left edge of the inline location of where the element would
normally appear in the content. Most importantly, these properties’ values are numeric and
in the unit of measure set in the CSS attribute. Use these properties for calculation
(including path animation) instead of the left and top properties, which store their values
as strings with the unit names. All math is in the specified units. Also contrast these proper-
ties with the pixelLeft and pixelTop properties, which are integer values for pixel
measures only.

Example
document.all.myDIV.style.posLeft = document.all.myDIV.style.posLeft + 1.5

Value Floating-point number.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

style 743

DOM
 Reference
Default None.

styleFloat NN n/a IE 4 DOM n/a

Read/Write

On which side of the containing box the element aligns so that other content wraps around
the element. When the property is set to none, the element appears in its source code
sequence, and at most one line of surrounding text content appears in the same horizontal
band as the element. See the float style attribute in Chapter 10 for more details.

Example document.all.myDIV.style.styleFloat = "right"

Value One of the following constants (as a string): none | left | right.

Default None.

textAlign NN n/a IE 4 DOM n/a

Read/Write

Determines the horizontal alignment of text within an element.

Example document.all.myDIV.style.textAlign = "right"

Value One of the three constants (as a string): center | left | right.

Default Depends on default language of the browser.

textDecoration NN n/a IE 4 DOM n/a

Read/Write

Specifies additions to the text content of the element in the form of underlines,
strikethroughs, overlines, and (in Navigator and CSS) blinking. You may specify more than
one decoration style by supplying values in a space-delimited list. While Internet Explorer 4
accepts the blink value, it does not blink the text. Text decoration has an unusual parent-
child relationship. Values are not inherited, but the effect of a decoration carries over to
nested items. Therefore, unless otherwise overridden, an underlined P element underlines a
nested B element within. Internet Explorer also includes properties for each decoration
type.

Example document.all.emphasis.style.textDecoration = "underline"

Value

In addition to none, any of the following four constants (as a string): blink | line-
through | overline | underline. Multiple values may be included in the string as a
space-delimited list.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

744 style
textDecorationBlink, textDecorationLineThrough,
textDecorationNone, textDecorationOverline,
textDecorationUnderline NN n/a IE 4 DOM n/a

Read/Write

Whether the specified text decoration feature is enabled for the element. Internet Explorer
does not blink text, so the textDecorationBlink property is ignored. Setting textDeco-
rationNone to true sets all other related properties to false. Setting these properties on
the Macintosh version of IE 4 does not alter the content. Use the textDecoration prop-
erty instead.

Example document.all.emphasis.style.textDecorationLineThrough = "true"

Value Boolean value: true | false.

Default false

textIndent NN n/a IE 4 DOM n/a

Read/Write

The size of indenting of the first line of a block of inline text (such as a P element). Only
the first line is affected by this setting. A negative value can be used to outdent the first line,
but be sure the text does not run beyond the left edge of the browser window or frame.

Example document.all.firstGraph.style.textIndent = "0.5em"

Value String value consisting of a number and unit of measure.

Default 0

textTransform NN n/a IE 4 DOM n/a

Read/Write

Controls the capitalization of the element’s text. When a value other than none is assigned
to this attribute, the cases of all letters in the source text are arranged by the style sheet,
overriding the case of the source text characters.

Example document.all.heading.style.textTransform = "capitalize"

Value

A value of none allows the case of the source text to be rendered as is. Other available
constant values (as strings) are: capitalize | lowercase | uppercase. A value of capi-
talize sets the first character of every word to uppercase. Values lowercase and
uppercase render all characters of the element text in their respective cases.

Default None.

top NN n/a IE 4 DOM n/a

Read/Write

For positionable elements, defines the position of the top edge of an element’s box (content
plus top padding, border, and/or margin) relative to the top edge of the next outermost
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

style 745

DOM
 Reference
block content container. When the element is relative-positioned, the offset is based on the
top edge of the inline location of where the element would normally appear in the content.

For calculations on this value, retrieve the pixelTop or posTop properties, which return
genuine numeric values.

Example document.all.blockD2.style.top = "40px"

Value

String consisting of a numeric value and length unit measure, a percentage, or auto.

Default auto

verticalAlign NN n/a IE 4 DOM n/a

Read/Write

The vertical alignment characteristic of the element. This property operates in two spheres,
depending on the selection of values you use. See the in-depth discussion of the
vertical-align style sheet property in Chapter 10 for details.

Example document.all.myDIV.style.verticalAlign = "text-top"

Value

String value of an absolute measure (with units), a percentage (relative to the next outer
box element), or one of the many constant values: bottom | top | baseline | middle |
sub | super | text-bottom | text-top.

Default baseline

visibility NN n/a IE 4 DOM n/a

Read/Write

The state of the positioned element’s visibility. Surrounding content does not close up the
space left by an element whose visibility property is set to hidden.

Example document.all.myDIV.style.visibility = "hidden"

Value One of the constant values (as a string): hidden | inherit | visible.

Default inherit

width
See height.

zIndex NN n/a IE 4 DOM n/a

Read/Write

For a positioned element, the stacking order relative to other elements within the same
parent container. See Chapter 4 for details on relationships of element layering amid
multiple containers.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

746 styleSheet
Example document.all.myDIV.style.zIndex = 3

Value Integer.

Default 0

styleSheet NN n/a IE 4 DOM n/a

The styleSheet object represents a style sheet that may have been created as a STYLE
element or imported with a LINK element or @import statement inside a STYLE element.
This object is different from the STYLE object, which strictly reflects the STYLE HTML
element and its attributes. The styleSheets[] collection contains one or more
styleSheet objects. The only properties that the two kinds of objects have in common are
the id property (only when a stylesheet object is generated via a STYLE element) and
the disabled property.

Object Model Reference
IE [window.]document.styleSheets[i]

Properties

Methods

Collections/Arrays

disabled NN n/a IE 4 DOM n/a

Read/Write

Whether rules in the style sheet should be applied to their selected elements. Although the
corresponding DISABLED attribute does not work in Internet Explorer 4, setting the
disabled property to true does, in fact, turn off the entire style sheet. During page
authoring, you can create a button that toggles style sheets on and off to see how the page
looks in all types of browsers.

Example document.styleSheets[0].disabled = true

Value Boolean value: true | false.

Default false

href NN n/a IE 4 DOM n/a

Read/Write

The URL specified by the element’s HREF attribute. The destination document is an external
style sheet specification.

Example document.styleSheets[1].href = "altStyles.css"

disabled id parentStyleSheet readOnly type
href owningElement

addImport() addRule()

imports[] rules[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

styleSheet 747

DOM
 Reference
Value String of complete or relative URL.

Default None.

owningElement NN n/a IE 4 DOM n/a

Read-only

Returns a reference to the STYLE or LINK element object that defines the current
styleSheet object. Each document maintains a collection of style sheets created with both
the STYLE and LINK elements.

Example var firstStyleID = document.styleSheets[0].owningElement.id

Value Object reference.

Default None.

parentStyleSheet NN n/a IE 4 DOM n/a

Read-only

Returns a reference to the styleSheet (created as a LINK or STYLE element) object that
imported the current style sheet.

Value Element object reference.

Default None.

readOnly NN n/a IE 4 DOM n/a

Read-only

Whether the style sheet can be modified under script control. Style sheets imported through
a LINK element or an @import rule cannot be modified, so they return a value of true.

Value Boolean value: true | false.

Default false

type NN n/a IE 4 DOM n/a

Read-only

The style sheet syntax specified by the TYPE attribute of the STYLE element. Internet
Explorer 4 knows only the CSS syntax.

Example
if (document.styleSheets[0].type == "text/css") {
 ...
}

Value String.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

748 styleSheet
addImport() NN n/a IE 4 DOM n/a

addImport(url, [index])

Adds an external style sheet specification to a styleSheet object.

Returned Value

Integer of the index position within the styleSheets[] collection where the style sheet
was added (in case you omit the second parameter and let the browser find the end
position).

Parameters
url A complete or relative URL to the style sheet (.css) file.

index An optional integer indicating where in the collection the new element should
be placed.

addRule() NN n/a IE 4 DOM n/a

addRule(selector, style, [index])

Adds a new rule for a style sheet. This method offers a scripted way of adding a rule to an
existing styleSheet object:

document.styleSheets[1].addRule("P B","color:red")

You may duplicate a selector that already exists in the styleSheet and, therefore, over-
ride an existing rule for the same element selector. The only prohibition is that you may not
override a rule to convert a plain style rule into one that creates a positionable element. The
new rule is governed by the same cascading rules as all style sheet rules (that includes the
rule’s source code position among other rules with the same selector). Therefore, a new
rule in a styleSheet object does not supersede a style set in an element’s STYLE property.

Returned Value

None.

Parameters
selector The style rule selector as a string.

style One or more style attribute:value pairs. Multiple pairs are semicolon delimited,
just as they are in the regular style sheet definition.

index An optional integer indicating where in the collection the new element should
be placed.

imports[] NN n/a IE 4 DOM n/a

An array of all styleSheet objects that were imported into a style sheet. In a sense, a
styleSheet object contains a collection of other (special) styleSheet objects. All proper-
ties and methods of the styleSheet object can be used on the individual items that are
returned from the imports[] collection.

Syntax document.styleSheets(i).imports(j).objectPropertyOrMethod
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

SUB, SUP 749

DOM
 Reference
rules[] NN n/a IE 4 DOM n/a

An array of all rules defined or imported for a styleSheet object. All properties of the
rule object can be inspected for each item returned from the rules[] collection.

Syntax document.styleSheets(i).rules(j).objectPropertyOrMethod

SUB, SUP NN n/a IE 4 DOM 1

The SUB object reflects the SUB element; the SUP object reflects the SUP element. Browsers
tend to render these objects’ content in a smaller size than surrounding content.

HTML Equivalent
<SUB>
<SUP>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

className isTextEdit offsetLeft outerHTML sourceIndex
document lang offsetParent outerText style
id language offsetTop parentElement tagName
innerHTML offsetHeight offsetWidth parentTextEdit title
innerText

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

750 submit
submit NN 2 IE 3 DOM 1

The submit object is a form control generated with an INPUT element whose TYPE
attribute is set to "submit". This object is similar to the button object, but a submit object
has more implied power. No script action is necessary for the submit object to do its job of
submitting the containing form to the server. If you require a button to perform a script
action, but not an actual form submission, use the button object instead. Otherwise, the
submit object automatically reloads the current document, perhaps destroying important
script variables. To initiate form validation, use the onSubmit event handler of the form
object rather than the onClick event handler of the submit button. If the event handler
evaluates to true, the form is submitted; if it evaluates to false, the submission is
cancelled.

HTML Equivalent
<INPUT TYPE="submit">

Object Model Reference
NN [window.]document.formName.elementName

[window.]document.forms[i].elements[i]

IE [window.]document.formName.elementName
[window.]document.forms[i].elements[i]
[window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

onmouseup n/a 4 n/a
onselectstart n/a 4 n/a

accessKey isTextEdit offsetLeft outerText tabIndex
className lang offsetParent parentElement tagName
disabled language offsetTop parentTextEdit title
document name offsetWidth sourceIndex type
form offsetHeight outerHTML style value
id

blur() getAttribute() removeAttribute()
click() handleEvent() scrollIntoView()
contains() insertAdjacentHTML() setAttribute()
focus() insertAdjacentText()

all[] children[] filters[]

Handler NN IE DOM
onblur n/a 4 n/a
onclick 3 4 n/a

Handler NN IE DOM
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

submit 751

DOM
 Reference
accessKey NN n/a IE 4 DOM 1

Read/Write

A single character key that “clicks” the submit button. The browser and operating system
determine whether the user must press a modifier key (e.g., Ctrl, Alt, or Command) with
the access key to “click” the button. In IE 4/Windows, the Alt key is required, and the key is
not case sensitive. Not working in IE 4/Mac.

Example document.entryForm.mySubmit.accessKey = "s"

Value Single alphanumeric (and punctuation) keyboard character.

Default None.

disabled NN n/a IE 4 DOM 1

Read/Write

Whether the element is available for user interaction. When set to true, the element cannot
receive focus.

Example document.forms[0].mySubmit.disabled = true

Value Boolean value: true | false.

Default false

form NN 2 IE 3 DOM n/a

Read-only

Returns a reference to the FORM element that contains the current element (if any). This
property is most often passed as a parameter for an event handler, using the this keyword
to refer to the current form control.

Example
<INPUT TYPE="button" VALUE="Validate Form" onClick="doValidate(this.form)">

ondblclick n/a 4 n/a
onfilterchange n/a 4 n/a
onfocus n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown 4 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup 4 4 n/a
onselect n/a 4 n/a

Handler NN IE DOM
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

752 submit
Value Object reference.

Default None.

name NN 2 IE 3 DOM 1

Read/Write

The identifier associated with the form control. Names are hidden from user view, since
control labels are assigned via other means, depending on the control type. Form control
names may also be used by script references to the objects.

Example document.orderForm.mySubmit.name = "Win32"

Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

tabIndex NN n/a IE 4 DOM 1

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their tabIndex properties are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest tabIndex value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same tabIndex values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the tabIndex property or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A value of -1 removes the element from
tabbing order altogether. Note that the Macintosh user interface does not provide for giving
focus to elements other than text and password INPUT fields.

Example document.forms[0].mySubmit.tabIndex = 6

Value Integer.

Default None.

type NN 3 IE 4 DOM 1

Read-only

Returns the type of form control element. The value is returned in lowercase letters. You may
have to cycle through all form elements in search of specific types to do some processing on
(e.g., emptying all form controls of type "text", leaving other controls untouched).

Example
if (document.forms[0].elements[3].type == "submit") {
 ...
}

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

submit 753

DOM
 Reference
Value

Any of the following constants (as a string): button | checkbox | file | hidden | image
| password | radio | reset | select-multiple | select-one | submit | text |
textarea.

Default submit

value NN 2 IE 3 DOM 1

Read/Write

This is the rare time that the value property controls the label of a form control: the text
that appears on the submit button.

Example document.forms[0].mySubmit.value = "Send"

Value String.

Default Submit

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.

Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.

handleEvent() NN 4 IE n/a DOM n/a

handleEvent(event)

Instructs the object to accept and process the event whose specifications are passed as the
parameter to the method. The object must have an event handler for the event type to
process the event. See Chapter 6.

Returned Value

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

754 TABLE
Parameters
event A Navigator 4 event object.

SUP
See SUB.

TABLE NN n/a IE 4 DOM 1

The TABLE object reflects the TABLE element. Other objects related to the TABLE object are:
CAPTION, COL, COLGROUP, TBODY, TD, TFOOT, THEAD, and TR.

HTML Equivalent
<TABLE>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

align cols language scrollHeight
background dataFld offsetHeight scrollLeft
bgColor dataPageSize offsetLeft scrollTop
border dataSrc offsetParent scrollWidth
borderColor document offsetTop sourceIndex
borderColorDark frame offsetWidth style
borderColorLight height outerHTML tabIndex
caption id outerText tagName
cellPadding innerHTML parentElement tFoot
cellSpacing innerText parentTextEdit tHead
className isTextEdit recordNumber title
clientHeight lang rules width
clientWidth

blur() insertAdjacentHTML() refresh()
click() insertAdjacentText() removeAttribute()
contains() nextPage() scrollIntoView()
focus() previousPage() setAttribute()
getAttribute()

all[] children[] filters[] rows[] tBodies[]

Handler NN IE DOM
onafterupdate n/a 4 n/a
onbeforeupdate n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TABLE 755

DOM
 Reference
align NN n/a IE 4 DOM 1

Read/Write

Defines the horizontal alignment of the element within its surrounding container.

Example document.all.myTable.align = "center"

Value Any of the three horizontal alignment constants: center | left | right.

Default left

background NN n/a IE 4 DOM n/a

Read/Write

URL of the background image for the table. If you set a backgroundColor to the element
as well, the color appears if the image fails to load; otherwise, the image overlays the color.

Example document.all.myTable.background = "images/watermark.jpg"

Value Complete or relative URL to the background image file.

Default None.

bgColor NN n/a IE 4 DOM 1

Read/Write

Background color of the element. This color setting is not reflected in the style sheet back-
groundColor property. Even if the BGCOLOR attribute or bgColor property is set with a
plain-language color name, the returned value is always a hexadecimal triplet.

onblur n/a 4 n/a
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfocus n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onresize n/a 4 n/a
onrowenter n/a 4 n/a
onrowexit n/a 4 n/a
onscroll n/a 4 n/a
onselectstart n/a 4 n/a

Handler NN IE DOM
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

756 TABLE
Example document.all.myTable.bgColor = "yellow"

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default Varies with browser and operating system.

border NN n/a IE 4 DOM 1

Read/Write

Thickness of the border around the table (in pixels). This is the 3-D border and should not
be confused with borders created with style sheets.

Example document.all.myTable.border = 4

Value

An integer value. A setting of zero removes the border entirely in Internet Explorer 4.

Default 0

borderColor NN n/a IE 4 DOM n/a

Read/Write

Color of the table’s border. Internet Explorer applies the color to all four lines that make up
the interior border of a cell. Therefore, colors of adjacent cells do not collide.

Example document.all.myTable.borderColor = "salmon"

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with operating system.

borderColorDark, borderColorLight NN n/a IE 4 DOM n/a

Read/Write

The 3-D effect of table borders in Internet Explorer is created by careful positioning of light
and dark lines around the page’s background or default color. You can independently
control the colors used for the dark and light lines by assigning values to the borderCol-
orDark (left and top edges of the cell) and borderColorLight (right and bottom edges)
properties.

Typically, you should assign complementary colors to the pair of properties. There is also
no rule that says you must assign a dark color to borderColorDark. The attributes merely
control a well-defined set of lines so you can predict which lines of the border change with
each attribute.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TABLE 757

DOM
 Reference
Example
document.all.myTable.borderColorDark = "blue"
document.all.myTable.borderColorLight = "cornflowerblue"

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with operating system.

caption NN n/a IE 4 DOM

Read-only

Returns a reference to a CAPTION element nested inside the table. From this reference you
can access properties and methods of the CAPTION object. This property is available only in
the Win32 version of Internet Explorer 4.

Example var capText = document.all.myTable.caption.innerHTML

Value Object reference.

Default None.

cellPadding NN n/a IE 4 DOM 1

Read/Write

The amount of empty space between the border of a table cell and the content of the cell.
Note that this property applies to space inside a cell. Minor adjustments to this property are
not as noticeable when the table does not also display borders (in which case the cell-
Spacing property can assist in adjusting the space between cells).

Example document.all.myTable.cellPadding = "15"

Value A string value for a length in a variety of units or percentage.

Default 0

cellSpacing NN n/a IE 4 DOM 1

Read/Write

The amount of empty space between the outer edges of each table cell. If the table has a
border, the effect of setting cellSpacing is to define the thickness of borders rendered
between cells. Even without a visible border, the readability of a table often benefits from
cell spacing.

Example document.all.myTable.cellSpacing = "5"

Value A string value for a length in a variety of units or percentage.

Default 0 (with no table border); 2 (with table border).
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

758 TABLE
clientHeight, clientWidth NN n/a IE 4 DOM n/a

Read/Write

According to Microsoft’s developer documentation, these properties reflect the height and
width (in pixels) of the element’s content. But see the section “About client- and offset-
Properties” at the beginning of this chapter for details.

Example var midHeight = document.all.myTable.clientHeight/2

Value Integer pixel value.

Default None.

cols NN n/a IE 4 DOM 1

Read/Write

The number of columns of the table. The corresponding COLS attribute assists the browser
in preparation for rendering the table. Without this attribute, the browser relies on its inter-
pretation of all downloaded TR and TD elements to determine how the table is to be
divided.

Example document.all.myTable.cols = 5

Value Any positive integer.

Default None.

dataFld NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to associate a remote data source column name with indi-
vidual TD elements inside the table. A DATASRC attribute must also be set for the element.
Setting both the dataFld and dataSrc properties to empty strings breaks the binding
between element and data source.

Example document.all.inventoryTable.dataFld = "unit_price"

Value Case-sensitive identifier of the data source column.

Default None.

dataPageSize NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding, this property advises the browser how many instances of a
table row must be rendered to accommodate the number of data source records set by this
attribute. See nextPage() and previousPage() methods for navigating through groups of
records.

Example document.all.inventoryTable.dataPageSize = 10

Value Positive integer.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TABLE 759

DOM
 Reference
dataSrc NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute in individual TD elements. A block of contig-
uous records can be rendered in the table when you also set the DATAPAGESIZE attribute of
the table. Setting both the dataFld and dataSrc properties to empty strings breaks the
binding between element and data source.

Example document.all.inventoryTable.dataSrc = "#DBSRC3"

Value Case-sensitive identifier of the data source.

Default None.

frame NN n/a IE 4 DOM 1

Read/Write

Which (if any) sides of a table’s outer border (set with the BORDER attribute or border
property) are rendered. This property does not affect the interior borders between cells.

Example document.all.orderForm.frame = "hsides"

Value

Any one case-insensitive frame constant (as a string):

above Renders border along top edge of table only

below Renders border along bottom edge of table only

border Renders all four sides of the border (default in IE)

box Renders all four sides of the border (same as border)

hsides Renders borders on top and bottom edges of table only (a nice look)

lhs Renders border on left edge of table only

rhs Renders border on right edge of table only

void Hides all borders (default in HTML 4.0)

vsides Renders borders on left and right edges of table only

Default void (when BORDER=0); border (when BORDER is any other value)

height, width NN n/a IE 4 DOM n/a

Read/Write

The height and width in pixels of the element. Changes to these values are immediately
reflected in reflowed content on the page.

Example document.all.myTable.height = 250

Value Integer.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

760 TABLE
recordNumber NN n/a IE 4 DOM n/a

Read-only

Used with data binding, returns an integer representing the record within the data set that
generated the element (e.g., a TABLE element whose content is filled via data binding).
Values of this property can be used to extract a specific record from an Active Data Objects
(ADO) record set.

Example
<SCRIPT FOR="tableTemplate" EVENT="onclick">
 myDataCollection.recordset.absoluteposition = this.recordNumber
 ...
</SCRIPT>

Value Integer.

Default None.

rules NN n/a IE 4 DOM 1

Read/Write

Where (if at all) interior borders between cells are rendered by the browser. In addition to
setting the table to draw borders to turn the cells into a matrix, you can set borders to be
drawn only to separate borders, columns, or any sanctioned cell grouping (THEAD, TBODY,
TFOOT, COLGROUP, or COL). The BORDER attribute must be present—either as a Boolean or
set to a specific border size—for any cell borders to be drawn. Do not confuse this prop-
erty with the rules[] collection of styleSheet objects.

Example document.all.myTable.rules = "groups"

Value

Any one case-insensitive rules constant (as a string):

all Renders borders around each cell

cols Renders borders between columns only

groups Renders borders between cell groups as defined by THEAD, TFOOT, TBODY,
COLGROUP, or COL elements

none Hides all interior borders

rows Renders borders between rows only

Default None (when BORDER=0); all (when BORDER is any other value).

scrollHeight, scrollWidth NN n/a IE 4 DOM n/a

Read-only

The meaning of these two properties is ambiguous based on Microsoft’s description and the
way they’re implemented in the Windows and Macintosh versions of Internet Explorer 4.
My best guess is that these properties are intended to measure the height and width (in
pixels) of the content of an element even when some of the content cannot be seen unless
scrolled with scrollbars. The Macintosh version of the browser interprets this to mean the
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TABLE 761

DOM
 Reference
amount of the content that you can see at any one time. The important point is that for key
elements, such as the BODY, the properties mean different things and can disrupt cross-plat-
form operation.

Example var midPoint = document.all.myTable.scrollHeight/2

Value Positive integer or zero.

Default None.

scrollLeft, scrollTop NN n/a IE 4 DOM n/a

Read/Write

The distance in pixels between the actual left or top edge of the element’s physical content
and the left or top edge of the visible portion of the content. Setting these properties allows
you to use scripts to adjust the scroll of content within a scrollable container, such as text in
a TEXTAREA element or an entire document in the browser window or frame. When the
content is not scrolled, both values are zero. Setting the scrollTop property to 15 scrolls
the document upward by 15 pixels in the window; the scrollLeft property is unaffected
unless explicitly changed. The property values change as the user adjusts the scrollbars.

Example document.all.myTable.scrollTop = 40

Value Positive integer or zero.

Default 0

tabIndex NN n/a IE 4 DOM 1

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their tabIndex properties are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest tabIndex value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same tabIndex values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the tabIndex property or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A value of -1 removes the element from
tabbing order altogether.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text and password INPUT fields.

Example document.all.myTable.tabIndex = 6

Value Integer.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

762 TABLE
tFoot NN n/a IE 4 DOM n/a

Read-only

Returns a reference to the TFOOT object if one has been defined for the table. If no TFOOT
element exists, the value is null. You can access TFOOT element properties and methods
through this reference if you like. This property is available only on the Win32 version of
Internet Explorer 4.

Example var tableFootTxt = document.all.myTable.tFoot.innerText

Value TFOOT object reference.

Default null

tHead NN n/a IE 4 DOM n/a

Read-only

Returns a reference to the THEAD object if one has been defined for the table. If no THEAD
element exists, the value is null. You can access THEAD element properties and methods
through this reference if you like. This property is available only on the Win32 version of
Internet Explorer 4.

Example var tableHeadTxt = document.all.myTable.tHead.innerText

Value THEAD object reference.

Default null

width
See height.

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.

Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

tags 763

DOM
 Reference
Parameters

None.

nextPage(), previousPage() NN n/a IE 4 DOM n/a

Advises the data binding facilities to load the next or previous group of records from the
data source to fill the number of records established with the dataPageSize property.

Returned Value

None.

Parameters

None.

refresh() NN n/a IE 4 DOM n/a

Advises the data binding facilities to reload the current page of data from the data source. If
your table is retrieving frequently changing data from a database, you can create a
setTimeout() loop to invoke document.all.myTable.refresh() as often as users
would want updated information from the database.

Returned Value

None.

Parameters

None.

rows() NN n/a IE 4 DOM n/a

An array of all rows of the table. This collection includes all individual rows from row
groups (THEAD, TBODY, and TFOOT elements) in the table.

Syntax document.all.myTable.rows(i).objectPropertyOrMethod

tBodies[] NN n/a IE 4 DOM n/a

A collection of TBODY objects on the table. By default, there is at least one TBODY object,
even if none is explicitly created with an HTML tag. You can access properties and methods
of each TBODY object through this reference if you like. But if you also specify an explicit
TBODY element, you can go directly to the element via its ID. This collection is available
only on the Win32 version of Internet Explorer 4.

Syntax document.all.myTable.tBodies(i).objectPropertyOrMethod

tags NN 4 IE n/a DOM n/a

The tags object is used by JavaScript syntax for style sheets. As a property of the docu-
ment object, this tags object is used in building references to particular HTML elements to
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

764 TBODY
get or set their style-related properties. The direct properties of the tags object are all
HTML element types. For example:

[document.]tags.P
[document.]tags.H1

There is no need to repeat a list of all HTML elements as properties for this object. These
references are usable inside STYLE elements whose TYPE is set to text/javascript.
That’s where you assign values to style sheet properties with JavaScript syntax, as in the
following examples:

tags.P.color = "green"
tags.H1.fontSize = "14pt"

The properties in the following list are not properties of the tags object per se, but rather
of the style sheet associated with an element, class, or ID singled out by a JavaScript syntax
assignment statement. The properties are listed here for convenience. Properties dedicated
to element positioning are listed separately from regular style properties. A cross reference
between these JavaScript properties and their CSS attribute counterparts can be found in
Chapter 3 (and Chapter 4 for positioning properties). For information about these property
values, consult the CSS reference chapter, where you can find details of all style sheet prop-
erties listed by CSS syntax.

Style Properties

Position Properties

TBODY NN n/a IE 4 DOM 1

The TBODY object reflects the TBODY element. By default, Internet Explorer creates a TBODY
object for every table, but you can access its properties and methods only if you explicitly
create a TBODY element (or access it via the tBodies[] collection of a table in the Win32
version). Note that the innerHTML, innerText, and outerHTML properties are not avail-
able on the Macintosh version of Internet Explorer 4.

HTML Equivalent
<TBODY>

Object Model Reference
IE [window.]document.all.elementID

[window.]document.all.tableID.tBodies[i] (IE/Win32 only)

backgroundColor borderWidths() marginBottom paddings
backgroundImage color marginLeft paddingTop
borderBottomWidth display marginRight textAlign
borderColor fontFamily margins() textDecoration
borderLeftWidth fontSize marginTop textTransform
borderRightWidth fontStyle paddingBottom verticalAlign
borderStyle fontWeight paddingLeft whiteSpace
borderTopWidth listStyleType paddingRight

background clip top visibility zIndex
bgColor left
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TBODY 765

DOM
 Reference
Properties

Methods

Collections/Arrays

Event Handler Properties

align NN n/a IE 4 DOM n/a

Read/Write

Defines the horizontal alignment of content within all cells contained by the TBODY
element.

Example document.all.myTBODY.align = "center"

Value Any of the three horizontal alignment constants: center | left | right.

Default left

align innerHTML offsetHeight outerHTML style
bgColor innerText offsetLeft outerText tagName
className isTextEdit offsetParent parentElement title
document lang offsetTop parentTextEdit vAlign
id language offsetWidth sourceIndex

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[] rows[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

766 TD
bgColor NN n/a IE 4 DOM n/a

Read/Write

Background color of the cells contained by the TBODY element. This color setting is not
reflected in the style sheet backgroundColor property in Internet Explorer. Even if the
BGCOLOR attribute or bgColor property is set with a plain-language color name, the
returned value is always a hexadecimal triplet.

Example document.all.myTBODY.bgColor = "yellow"

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default Varies with browser and operating system.

vAlign NN n/a IE 4 DOM n/a

Read/Write

The manner of vertical alignment of text within the cells contained by the TBODY element.

Example document.all.myTBODY.vAlign = "baseline"

Value

Case-insensitive constant (as a string): baseline | bottom | middle | top.

Default middle

rows[] NN n/a IE 4 DOM n/a

An array of all rows contained by the TBODY element.

Syntax document.all.myTBODY.rows(i).objectPropertyOrMethod

TD NN n/a IE 4 DOM 1

The TD object reflects the TD element. While a TD element may inherit a number of visual
properties from containers (e.g., the bgColor of a TBODY or TR element), those inherited
property values are not automatically assigned to the TD object. Therefore, just because a
cell may have a yellow background color doesn’t mean its bgColor property is set at all.
The following items aren’t available in the Macintosh version of Internet Explorer 4: outer-
Text and outerHTML properties; insertAdjacentHTML() and insertAdjacentText()
methods.

HTML Equivalent
<TD>

Object Model Reference
IE [window.]document.all.elementID
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TD 767

DOM
 Reference
Properties

Methods

Collections/Arrays

Event Handler Properties

align clientWidth language parentElement
background colSpan noWrap parentTextEdit
bgColor document offsetHeight rowSpan
borderColor height offsetLeft sourceIndex
borderColorDark id offsetParent style
borderColorLight innerHTML offsetTop tagName
cellIndex innerText offsetWidth title
className isTextEdit outerHTML vAlign
clientHeight lang outerText width

blur() getAttribute() removeAttribute()
click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
focus()

all[] children[] filters[]

Handler NN IE DOM
onafterupdate n/a 4 n/a
onbeforeunload n/a 4 n/a
onblur n/a 4 n/a
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onresize n/a 4 n/a
onrowenter n/a 4 n/a
onrowexit n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

768 TD
align NN n/a IE 4 DOM 1

Read/Write

Defines the horizontal alignment of content within the cell.

Example document.all.myTD.align = "center"

Value Any of the three horizontal alignment constants: center | left | right.

Default left

background NN n/a IE 4 DOM n/a

Read/Write

URL of the background image for the cell. If you set a bgColor to the element as well, the
color appears if the image fails to load; otherwise the image overlays the color.

Example document.all.myTD.background = "images/watermark.jpg"

Value Complete or relative URL to the background image file.

Default None.

bgColor NN n/a IE 4 DOM 1

Read/Write

Background color of the table cell. This color setting is not reflected in the style sheet
backgroundColor property. Even if the BGCOLOR attribute or bgColor property is set with
a plain-language color name, the returned value is always a hexadecimal triplet.

Example document.all.myTD.bgColor = "yellow"

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default Varies with browser and operating system.

borderColor NN n/a IE 4 DOM n/a

Read/Write

Color of the element’s border. Internet Explorer applies the color to all four lines that make
up the interior border of a cell. Therefore, colors of adjacent cells do not collide.

Example document.all.myTD.borderColor = "salmon"

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with operating system.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TD 769

DOM
 Reference
borderColorDark, borderColorLight NN n/a IE 4 DOM n/a

Read/Write

The 3-D effect of table borders in Internet Explorer is created by careful positioning of light
and dark lines around the page’s background or default color. You can independently
control the colors used for the dark and light lines by assigning values to the borderCol-
orDark (left and top edges of the cell) and borderColorLight (right and bottom edges)
properties.

Typically, you should assign complementary colors to the pair of properties. There is also
no rule that says you must assign a dark color to borderColorDark. The attributes merely
control a well-defined set of lines so you can predict which lines of the border change with
each attribute.

Example
document.all.myTD.borderColorDark = "blue"
document.all.myTD.borderColorLight = "cornflowerblue"

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with operating system.

cellIndex NN n/a IE 4 DOM n/a

Read-only

Returns a zero-based integer representing the position of the current cell among all other TD
elements in the same row. The count is based on the source code order of the TD elements
within a TR element. This property is not available in the Macintosh version of Internet
Explorer 4.

Example var whichCell = document.all.myTD.cellIndex

Value Integer.

Default None.

clientHeight, clientWidth NN n/a IE 4 DOM n/a

Read/Write

According to Microsoft’s developer documentation, these properties reflect the height and
width (in pixels) of the element’s content. But see the section “About client- and offset-
Properties” at the beginning of this chapter for details.

Example var midHeight = document.all.myTD.clientHeight/2

Value Integer pixel value.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

770 TD
colSpan NN n/a IE 4 DOM 1

Read/Write

The number of columns across which the current table cell should extend itself. For each
additional column included in the colSpan count, one less TD element is required for the
table row. If you set the align property to center or right, the alignment is calculated
on the full width of the TD element across the specified number of columns. Unless the
current cell also specifies a ROWSPAN attribute, the next table row returns to the original
column count.

Example document.all.myTD.colSpan = 2

Value Any positive integer, usually 2 or larger.

Default 1

height, width NN n/a IE 4 DOM n/a

Read/Write

The height and width in pixels of the element. Changes to these values are immediately
reflected in reflowed content on the page. These properties are read-only in the Macintosh
version of Internet Explorer 4.

Example document.all.myTD.height = 250

Value Integer.

Default None.

noWrap NN n/a IE 4 DOM 1

Read/Write

Whether the browser should render the cell as wide as is necessary to display a line of
nonbreaking text on one line. Abuse of this attribute can force the user into a great deal of
inconvenient horizontal scrolling of the page to view all of the content.

Example document.all.myTD.noWrap = "true"

Value Boolean value: true | false.

Default false

rowSpan NN n/a IE 4 DOM 1

Read/Write

The number of rows through which the current table cell should extend itself downward.
For each additional row included in the rowSpan count, one less TD element is required for
the next table row. If you set the vAlign property to middle, the alignment is calculated
on the full height of the TD element across the specified number of rows.

Example document.all.myTD.rowSpan = 12

Value Any positive integer, usually 2 or larger.

Default 1
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

text 771

DOM
 Reference
vAlign NN n/a IE 4 DOM 1

Read/Write

The manner of vertical alignment of text within the element’s content box.

Example document.all.myTD.vAlign = "baseline"

Value Case-insensitive constant (as a string): baseline | bottom | middle | top.

Default middle

width
See height.

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.

Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.

text NN 2 IE 3 DOM 1

The text object is a form control generated with an INPUT element whose TYPE attribute is
set to "text". This object is the primary way of getting a user to enter single lines of text
for submission to the server.

HTML Equivalent
<INPUT TYPE="text">

Object Model Reference
NN [window.]document.formName.elementName

[window.]document.forms[i].elements[i]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

772 text
IE [window.]document.formName.elementName
[window.]document.forms[i].elements[i]
[window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

accessKey NN n/a IE 4 DOM 1

Read/Write

A single character key that brings focus to the element. The browser and operating system
determine whether the user must press a modifier key (e.g., Ctrl, Alt, or Command) with

accessKey form offsetHeight parentElement style
className id offsetLeft parentTextEdit tabIndex
dataFld isTextEdit offsetParent readOnly tagName
dataSrc lang offsetTop recordNumber title
defaultValue language offsetWidth size type
disabled maxLength outerHTML sourceIndex value
document name outerText

blur() getAttribute() removeAttribute()
click() handleEvent() scrollIntoView()
contains() insertAdjacentHTML() select()
createTextRange() insertAdjacentText() setAttribute()
focus()

all[] children[] filters[]

Handler NN IE DOM
onblur 2 3 n/a
onchange 2 3 n/a
onclick n/a 4 n/a
ondblclick n/a 4 n/a
onfocus 2 3 n/a
onhelp n/a 4 n/a
onkeydown 4 4 n/a
onkeypress 4 4 n/a
onkeyup 4 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselect 2 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

text 773

DOM
 Reference
the access key to bring focus to the element. In IE 4/Windows, the Alt key is required, and
the key is not case sensitive. Not working in IE 4/Mac.

Example document.entryForm.myText.accessKey = "n"

Value Single alphanumeric (and punctuation) keyboard character.

Default None.

dataFld NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to associate a remote data source column name to a text
object’s value property. A DATASRC attribute must also be set for the element. Setting both
the dataFld and dataSrc properties to empty strings breaks the binding between element
and data source.

Example document.myForm.myText.dataFld = "linkURL"

Value Case-sensitive identifier of the data source column.

Default None.

dataSrc NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute. Setting both the dataFld and dataSrc prop-
erties to empty strings breaks the binding between element and data source.

Example document.myForm.myText.dataSrc = "#DBSRC3"

Value Case-sensitive identifier of the data source.

Default None.

defaultValue NN 2 IE 3 DOM 1

Read-only

The default text for the text input element, as established by the VALUE attribute.

Example
var txtObj = document.forms[0].myText
if (txtObj.value != txtObj.defaultValue) {
 ...
}

Value Any string value.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

774 text
disabled NN n/a IE 4 DOM 1

Read/Write

Whether the element is available for user interaction. When set to true, the element cannot
receive focus or be modified by the user. It is also not submitted with the form.

Example document.forms[0].myText.disabled = true

Value Boolean value: true | false.

Default false

form NN 2 IE 3 DOM n/a

Read-only

Returns a reference to the FORM element that contains the current element (if any). This
property is most often passed as a parameter for an event handler, using the this keyword
to refer to the current form control.

Example <INPUT TYPE="text" NAME="zip" onChange="doValidate(this.form)">

Value Object reference.

Default None.

maxLength NN n/a IE 4 DOM n/a

Read/Write

The maximum number of characters that may be typed into a text INPUT element. In prac-
tice, browsers beep or otherwise alert users when a typed character would exceed the
maxLength value. There is no innate correlation between the maxLength and size proper-
ties. If the maxLength allows for more characters than fit within the specified width of the
element, the browser provides horizontal scrolling (albeit awkward for many users) to allow
entry and editing of the field.

Example document.entryForm.myText.maxLength = 35

Value Positive integer value.

Default Unlimited.

name NN 2 IE 3 DOM 1

Read/Write

The identifier associated with the form control. The value of this property is submitted as
one-half of the name/value pair when the form is submitted to the server. Names are
hidden from user view, since control labels are assigned via other means, depending on the
control type. Form control names may also be used by script references to the objects.

Example document.orderForm.myText.name = "Win32"
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

text 775

DOM
 Reference
Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

readOnly NN n/a IE 4 DOM n/a

Read-only

Whether the form element can be edited on the page by the user. A form control whose
readOnly property is true may still be modified by scripts, even though the user may not
alter the content.

Example document.forms[0].myText.readOnly = "true"

Value Boolean value: true | false.

Default false

recordNumber NN n/a IE 4 DOM n/a

Read-only

Used with data binding, returns an integer representing the record within the data set that
generated the element (i.e., an element whose content is filled via data binding). Values of
this property can be used to extract a specific record from an Active Data Objects (ADO)
record set (see recordset property).

Example
<SCRIPT FOR="tableTemplate" EVENT="onclick">
 myDataCollection.recordset.absoluteposition = this.recordNumber
 ...
</SCRIPT>

Value Integer.

Default None.

size NN n/a IE 4 DOM 1

Read/Write

Roughly speaking, the width in characters that the input box should be sized to accommo-
date. In practice, the browser does not always accurately predict the proper width. See
details in the SIZE attribute discussion for the INPUT element in Chapter 8. There is no
interaction between the size and maxLength properties for this object.

Example document.forms[0].myText.size = 12

Value Positive integer.

Default 20
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

776 text
tabIndex NN n/a IE 4 DOM 1

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their tabIndex properties are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest tabIndex value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same tabIndex values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the tabIndex property or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A value of -1 removes the element from
tabbing order altogether.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text and password INPUT fields.

Example document.forms[0].myText.tabIndex = 6

Value Integer.

Default None.

type NN 3 IE 4 DOM 1

Read-only

Returns the type of form control element. The value is returned in all lowercase letters. It
may be necessary to cycle through all form elements in search of specific types to do some
processing on (e.g., emptying all form controls of type "text" while leaving other controls
untouched).

Example
if (document.forms[0].elements[3].type == "text") {
 ...
}

Value

Any of the following constants (as a string): button | checkbox | file | hidden | image
| password | radio | reset | select-multiple | select-one | submit | text |
textarea.

Default text

value NN 2 IE 3 DOM 1

Read/Write

Current value associated with the form control that is submitted with the name/value pair
for the element. All values are strings, which means that scripts using text field values for
some math operations (especially addition) have to convert the strings to numbers via the
parseInt() or parseFloat() functions before performing the math. If you assign a
number to a text field’s value property, the browser automatically converts its data type to
a string.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

text 777

DOM
 Reference
Example document.forms[0].myText.value = "franken"

Value String.

Default None.

blur() NN 2 IE 3 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.

Parameters

None.

createTextRange() NN n/a IE 4 DOM n/a

Creates a TextRange object from the content of the text object. See the TextRange object
for details.

Returned Value

TextRange object.

Parameters

None.

focus() NN 2 IE 3 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.

handleEvent() NN 4 IE n/a DOM n/a

handleEvent(event)

Instructs the object to accept and process the event whose specifications are passed as the
parameter to the method. The object must have an event handler for the event type to
process the event.

Returned Value

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

778 TEXTAREA
Parameters
event A Navigator 4 event object.

select() NN 2 IE 3 DOM n/a

Selects all the text displayed in the form element.

Returned Value

None.

Parameters

None.

TEXTAREA NN 2 IE 3 DOM 1

The TEXTAREA object reflects the TEXTAREA element and is used as a form control. This
object is the primary way of getting a user to enter multiple lines of text for submission to
the server. Note that the innerHTML property is not available on the Macintosh version of
Internet Explorer 4.

HTML Equivalent
<TEXTAREA>

Object Model Reference
NN [window.]document.formName.elementName

[window.]document.forms[i].elements[i]

IE [window.]document.formName.elementName
[window.]document.forms[i].elements[i]
[window.]document.all.elementID

Properties

Methods

accessKey defaultValue name parentElement sourceIndex
className disabled offsetHeight parentTextEdit style
clientHeight document offsetLeft readOnly tabIndex
clientLeft form offsetParent rows tagName
clientTop id offsetTop scrollHeight title
clientWidth isTextEdit offsetWidth scrollLeft type
cols lang outerHTML scrollTop value
dataFld language outerText scrollWidth wrap
dataSrc

blur() getAttribute() removeAttribute()
click() handleEvent() scrollIntoView()
contains() insertAdjacentHTML() select()
createTextRange() insertAdjacentText() setAttribute()
focus()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TEXTAREA 779

DOM
 Reference
Collections/Arrays

Event Handler Properties

accessKey NN n/a IE 4 DOM 1

Read/Write

A single character key that brings focus to the element. The browser and operating system
determine whether the user must press a modifier key (e.g., Ctrl, Alt, or Command) with
the access key to bring focus to the element. In IE 4/Windows, the Alt key is required, and
the key is not case sensitive. Not working in IE 4/Mac.

Example document.entryForm.myTextArea.accessKey = "n"

Value Single alphanumeric (and punctuation) keyboard character.

Default None.

all[] children[] filters[]

Handler NN IE DOM
onafterupdate n/a 4 n/a
onbeforeunload n/a 4 n/a
onblur 2 3 n/a
onchange 2 3 n/a
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onerrorupdate n/a 4 n/a
onfilterchange n/a 4 n/a
onfocus 2 3 n/a
onhelp n/a 4 n/a
onkeydown 4 4 n/a
onkeypress 4 4 n/a
onkeyup 4 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onrowenter n/a 4 n/a
onrowexit n/a 4 n/a
onscroll n/a 4 n/a
onselect 2 3 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

780 TEXTAREA
clientHeight, clientWidth NN n/a IE 4 DOM n/a

Read/Write

According to Microsoft’s developer documentation, these properties reflect the height and
width (in pixels) of the element’s content. But see the section “About client- and offset-
Properties” at the beginning of this chapter for details.

Example var midHeight = document.forms[0].myTextArea.clientHeight/2

Value Integer pixel value.

Default None.

clientLeft, clientTop NN n/a IE 4 DOM n/a

Read-only

According to Microsoft’s developer documentation, these properties reflect the distance
between the “true” left and top edges of the document area and the edges of the element.
But see the section “About client- and offset- Properties” at the beginning of this chapter for
details. To get or set the pixel position of an element in the document, use the pixelLeft
and pixelTop properties.

Value A string value for a length in a variety of units or percentage.

Default None.

cols NN n/a IE 4 DOM 1

Read/Write

The width of the editable space of the TEXTAREA element. The value represents the number
of monofont characters that are to be displayed within the width. When the font size can be
influenced by style sheets, the actual width changes accordingly.

Example document.forms[0].comments.cols = 60

Value Any positive integer.

Default Varies with browser and operating system.

dataFld NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to associate a remote data source column name to a TEXTAREA
object’s value property. A DATASRC attribute must also be set for the element. Setting both
the dataFld and dataSrc properties to empty strings breaks the binding between element
and data source.

Example document.myForm.myTextArea.dataFld = "linkURL"

Value Case-sensitive identifier of the data source column.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TEXTAREA 781

DOM
 Reference
dataSrc NN n/a IE 4 DOM n/a

Read/Write

Used with IE 4 data binding to specify the name of the remote ODBC data source (such as
an Oracle or SQL Server database) to be associated with the element. Content from the data
source is specified via the DATAFLD attribute. Setting both the dataFld and dataSrc prop-
erties to empty strings breaks the binding between element and data source.

Example document.myForm.myTextArea.dataSrc = "#DBSRC3"

Value Case-sensitive identifier of the data source.

Default None.

defaultValue NN 2 IE 3 DOM 1

Read-only

The default text for the TEXTAREA element, as established by the VALUE attribute.

Example
var txtAObj = document.forms[0].myTextArea
if (txtAObj.value != txtAObj.defaultValue) {
 ...
}

Value Any string value.

Default None.

disabled NN n/a IE 4 DOM 1

Read/Write

Whether the element is available for user interaction. When set to true, the element cannot
receive focus or be modified by the user. It is also not submitted with the form.

Example document.forms[0].myTextArea.disabled = true

Value Boolean value: true | false.

Default false

form NN 2 IE 3 DOM n/a

Read-only

Returns a reference to the FORM element that contains the current element (if any). This
property is most often passed as a parameter for an event handler, using the this keyword
to refer to the current form control.

Example <TEXTAREA NAME="comment" onChange="doValidate(this.form)">

Value Object reference.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

782 TEXTAREA
name NN 2 IE 3 DOM 1

Read/Write

The identifier associated with the form control. The value of this property is submitted as
one-half of the name/value pair when the form is submitted to the server. Names are
hidden from user view, since control labels are assigned via other means, depending on the
control type. Form control names may also be used by script references to the objects. The
handling of carriage returns inside the element is governed by the setting of the wrap
property.

Example document.orderForm.myTextArea.name = "Win32"

Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

readOnly NN n/a IE 4 DOM n/a

Read-only

Whether the form element can be edited on the page by the user. A form control whose
readOnly property is true may still be modified by scripts, even though the user may not
alter the content.

Example document.forms[0].myTextArea.readOnly = "true"

Value Boolean value: true | false.

Default false

rows NN n/a IE 4 DOM 1

Read/Write

The height of the TEXTAREA element based on the number of lines of text that are to be
displayed without scrolling. The value represents the number of monofont character lines
that are to be displayed within the height before the scrollbar becomes active. When the
font size can be influenced by style sheets, the actual height changes accordingly.

Example document.forms[0].comments.rows = 6

Value Integer.

Default 2 (IE 4/Windows); 4 (IE 4/Macintosh).

scrollHeight, scrollWidth NN n/a IE 4 DOM n/a

Read-only

The meaning of these two properties is ambiguous based on Microsoft’s description and the
way they’re implemented in the Windows and Macintosh versions of Internet Explorer 4.
My best guess is that these properties are intended to measure the height and width (in
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TEXTAREA 783

DOM
 Reference
pixels) of the content of an element even when some of the content cannot be seen unless
scrolled with scrollbars. The Macintosh version of the browser interprets this to mean the
amount of the content that you can see at any one time. The important point is that for key
elements, such as the BODY, the properties mean different things and can disrupt cross-plat-
form operation.

Example var midPoint = document.all.myTextArea.scrollHeight/2

Value Positive integer or zero.

Default None.

scrollLeft, scrollTop NN n/a IE 4 DOM n/a

Read/Write

The distance in pixels between the actual left or top edge of the element’s physical content
and the left or top edge of the visible portion of the content. Setting these properties allows
you to use scripts to adjust the scroll of content within a scrollable container, such as text in
a TEXTAREA element or an entire document in the browser window or frame. When the
content is not scrolled, both values are zero. Setting the scrollTop property to 15 scrolls
the document upward by 15 pixels in the window; the scrollLeft property is unaffected
unless explicitly changed. The property values change as the user adjusts the scrollbars.

Example document.all.myTextArea.scrollTop = 40

Value Positive integer or zero.

Default 0

tabIndex NN n/a IE 4 DOM 1

Read/Write

A number that indicates the sequence of this element within the tabbing order of all focus-
able elements in the document. Tabbing order follows a strict set of rules. Elements that
have values other than zero assigned to their tabIndex properties are first in line when a
user starts tabbing in a page. Focus starts with the element with the lowest tabIndex value
and proceeds in order to the highest value, regardless of physical location on the page or in
the document. If two elements have the same tabIndex values, the element that comes
earlier in the document receives focus first. Next come all elements that either don’t support
the tabIndex property or have the value set to zero. These elements receive focus in the
order in which they appear in the document. A value of -1 removes the element from
tabbing order altogether.

Note that the Macintosh user interface does not provide for giving focus to elements other
than text and password INPUT fields.

Example document.forms[0].myTextArea.tabIndex = 6

Value Integer.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

784 TEXTAREA
type NN 3 IE 4 DOM 1

Read-only

Returns the type of form control element. The value is returned in all lowercase letters. It
may be necessary to cycle through all form elements in search of specific types to do some
processing on (e.g., emptying all form controls of type "text" while leaving other controls
untouched).

Example
if (document.forms[0].elements[3].type == "textarea") {
 ...
}

Value

Any of the following constants (as a string): button | checkbox | file | hidden | image
| password | radio | reset | select-multiple | select-one | submit | text |
textarea.

Default textarea

value NN 2 IE 3 DOM 1

Read/Write

Current value associated with the form control that is submitted with the name/value pair
for the element. All values are strings.

Example var comment = document.forms[0].myTextArea.value

Value String.

Default None.

wrap NN n/a IE 4 DOM 1

Read/Write

Whether the browser should wrap text in a TEXTAREA element and whether wrapped text
should be submitted to the server with soft returns converted to hard carriage returns. A
value of physical engages word wrapping and converts soft returns to CR-LF characters in
the value submitted to the server. A value of virtual turns on word wrapping, but does
not include the CR-LF characters in the text submitted with the form. A value of off turns
word wrapping off. The Win32 version of Internet Explorer 4 returns a value of soft when
the WRAP attribute is set to virtual.

Example document.forms[0].comments.wrap = "wrap"

Value One of the constant values (as a string): physical | off | virtual.

Default off

blur() NN 2 IE 3 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TEXTAREA 785

DOM
 Reference
Returned Value

None.

Parameters

None.

createTextRange() NN n/a IE 4 DOM n/a

Creates a TextRange object from the content of the TEXTAREA object. See the TextRange
object for details.

Returned Value

TextRange object.

focus() NN 2 IE 3 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.

handleEvent() NN 4 IE n/a DOM n/a

handleEvent(event)

Instructs the object to accept and process the event whose specifications are passed as the
parameter to the method. The object must have an event handler for the event type to
process the event.

Returned Value

None.

Parameters
event A Navigator 4 event object.

select() NN 2 IE 3 DOM n/a

Selects all the text displayed in the form element.

Returned Value

None.

Parameters

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

786 TextRange
TextRange NN n/a IE 4 DOM n/a

The TextRange object represents the text of zero or more characters in a document. When
a text range consists of zero characters, it represents an insertion point between two charac-
ters (or before the first or after the last character).

A TextRange object is created via the createTextRange() method associated with the
BODY, BUTTON, text, or TEXTAREA objects. Once a text range is created, use its methods to
adjust its start and end point to encompass a desired segment of the text (such as text that
matches a search string). Once the range has been narrowed to the target text, assign values
to its htmlText and text properties to change, remove, or insert text. A library of direct
commands that perform specific textual modifications can also be invoked to act on the text
range. See Chapter 5, Making Content Dynamic, for details and examples of using the
TextRange object.

Note that the TextRange object and all associated facilities are available only in the Win32
version of Internet Explorer 4.

Object Model Reference
IE objectRef.createTextRange()

Properties

Methods

boundingHeight, boundingWidth NN n/a IE 4 DOM n/a

Read-only

Returns the pixel measure of the imaginary space occupied by the TextRange object.
Although you do not see a TextRange object in the document (unless a script selects it),
the area of a TextRange object is identical to the area that a selection highlight would
occupy. These values cinch up to measure only as wide or tall as the widest and tallest part
of the range.

Example
var rangeWidth =
document.forms[0].myTextArea.createTextRange().boundingWidth

boundingHeight boundingTop boundingWidth htmlText text
boundingLeft

collapse() move() queryCommandIndeterm()
compareEndPoints() moveEnd() queryCommandState()
duplicate() moveStart() queryCommandSupported()
execCommand() moveToBookmark() queryCommandText()
expand() moveToElementText() queryCommandValue()
findText() moveToPoint() scrollIntoView()
getBookmark() parentElement() select()
inRange() pasteHTML() setEndPoint()
isEqual() queryCommandEnabled()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TextRange 787

DOM
 Reference
Value Integer.

Default None.

boundingLeft, boundingTop NN n/a IE 4 DOM n/a

Read-only

Returns the pixel distance between the top or left of the browser window or frame and the
top or left edges of the imaginary space occupied by the TextRange object. Although you
do not see a TextRange object in the document (unless a script selects it), the area of a
TextRange object is identical to the area that a selection highlight would occupy. Values
for these properties are measured from the fixed window or frame edges and not the top
and left of the document, which may scroll out of view. Therefore, as a document scrolls,
these values change.

Example
var rangeOffH =
document.forms[0].myTextArea.createTextRange().boundingLeft

Value Integer.

Default None.

htmlText NN n/a IE 4 DOM n/a

Read-only

All HTML of the document for a given element when that element is used as the basis for a
TextRange object. For example, if you create a TextRange for the BODY element
(document.body.createTextRange()), the htmlText property contains all HTML
content between (but not including) the BODY element tags.

Example var rangeHTML = document.body.createTextRange().htmlText

Value String.

Default None.

text NN n/a IE 4 DOM n/a

Read/Write

The text contained by the text range. In the case of a TextRange object of a BODY element,
this consists of only the text that is rendered, but none of the HTML tags behind the scenes.

Example var rangeText = document.body.createTextRange().text

Value String.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

788 TextRange
collapse() NN n/a IE 4 DOM n/a

collapse([start])

Reduces the TextRange object to a length of zero (creating an insertion point) at the begin-
ning or end of the text range before it collapsed.

Returned Value

None.

Parameters
start Optional Boolean value controls whether the insertion point goes to the begin-

ning (true) of the original range or the end (false). The default value is
true.

compareEndPoints() NN n/a IE 4 DOM n/a

compareEndPoints(type, comparisonRange)

Compares the relative position of the boundary (start and end) points of two ranges (the
current range and one that had been previously saved to a variable). The first parameter
defines which boundary points in each range you wish to compare. If the result of the
comparison is that the first point is earlier in the range than the other point, the returned
value is -1; if the result shows both points to be in the same location, the returned value is
0; if the result shows the first point to be later in the range than the other point, the
returned value is 1. For example, if you have saved the first range to a variable r1 and
created a new range as r2, you can see the physical relationship between the end of r2
and the start of r1:

r1.compareEndPoints("EndToStart", r2)

If r1 ends where r2 starts (the insertion point between two characters), the returned value
is 0.

Returned Value

-1, 0, or 1.

Parameters
type One of the following constants (as a string): StartToEnd | StartToStart |

EndToStart | EndToEnd.

comparisonRange
A TextRange object created earlier and saved to a variable.

duplicate() NN n/a IE 4 DOM n/a

Creates a new TextRange object with the same values as the current range. The new object
is an independent object (the old and new do not equal each other), but their values are
initially identical (until you start modifying one range or the other).

Returned Value

TextRange object.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TextRange 789

DOM
 Reference
Parameters

None.

execCommand() NN n/a IE 4 DOM n/a

execCommand("commandName"[, UIFlag[, value]])

Executes the named command on the current TextRange object. Many commands work
best when the TextRange object is an insertion point. See Appendix D for a list of
commands.

Returned Value

Boolean value: true if command is successful; false if unsuccessful.

Parameters
commandName

A case-insensitive string value of the command name. See Appendix D.

UIFlag Optional Boolean value: true to display any user interface triggered by the
command (if any); false to prevent such display.

value A parameter value for the command.

expand() NN n/a IE 4 DOM n/a

expand(unit)

Expands the current text range to encompass the textual unit passed as a parameter. For
example, if someone selects some characters from a document, you can create the range
and expand it to encompass the entire sentence in which the selection takes place:

var rng = document.selection.createRange()
rng.expand("sentence")

If the starting range extends across multiple units, the expand() method expands the range
outward to the next nearest unit.

Returned Value

Boolean value: true if method is successful; false if unsuccessful.

Parameters
unit A case-insensitive string value of the desired unit: character | word |

sentence | textedit. The textedit value expands the range to the entire
original range.

findText() NN n/a IE 4 DOM n/a

findText(string)

Searches the current TextRange object for a match of a string passed as a parameter.
Matching is done on a case-insensitive basis. If there is a match, the TextRange object
repositions its start and end points to surround the found text. To continue searching in the
document, you must reposition the start point of the text range to the end of the found
string (with collapse()).
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

790 TextRange
Returned Value

Boolean value: true if a match is found; false if unsuccessful.

Parameters
string A case-insensitive string to be searched.

getBookmark(), moveToBookmark() NN n/a IE 4 DOM n/a

getBookmark()

moveToBookmark(bookmarkString)

These two methods work together as a way to temporarily save a text range specification
and restore it when needed. The getBookmark() method returns an opaque string
(containing binary data that is of no value to human users). Once that value is stored in a
variable, the range can be modified as needed for the script. Some time later, the book-
marked text range can be restored with the moveToBookmark() method:

var rangeMark = myRange.getBookmark()
...
myRange.moveToBookmark(rangeMark)

Returned Value

Boolean value: true if the operation is successful; false if unsuccessful.

Parameters
bookmarkString

An opaque string returned by the getBookmark() method.

inRange() NN n/a IE 4 DOM n/a

inRange(comparisonRange)

Determines whether the comparison range is within or equal to the physical range of the
current text range.

Returned Value

Boolean value: true if the comparison range is in or equal to the current range; false if
not.

Parameters
comparisonRange

TextRange object created earlier and saved to a variable.

isEqual() NN n/a IE 4 DOM n/a

isEqual(comparisonRange)

Determines whether the comparison range is identical to the current text range.

Returned Value

Boolean value: true if the comparison range is equal to the current range; false if not.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TextRange 791

DOM
 Reference
Parameters
comparisonRange

A TextRange object created earlier and saved to a variable.

move() NN n/a IE 4 DOM n/a

move(unit[, count])

Collapses the current text range to an insertion point at the end of the current range and
moves it forward or backward from the current position by one or more units.

Returned Value

Integer of the number of units moved.

Parameters
unit A case-insensitive string value of the desired unit: character | word |

sentence | textedit. The textedit value moves the insertion pointer to the
start or end of the entire original range.

count An optional integer of the number of units to move the insertion pointer. Posi-
tive values move the pointer forward; negative values move the pointer
backward. Default value is 1.

moveEnd(), moveStart() NN n/a IE 4 DOM n/a

moveEnd(unit[, count])

moveStart(unit[, count])

Moves only the end or start point (respectively) of the current text range by one or more
units. An optional parameter lets you specify both the number of units and direction. To
shift the start point of a text range toward the beginning of the original range, be sure to
specify a negative value. When moving the end point to the right by word units, be aware
that a word ends with a white-space character (including a period). Therefore, if a
findText() method sets the range to a found string that does not end in a space, the first
moveEnd("word") method moves the ending point to the spot past the space after the
found string rather than to the following word.

Returned Value

Integer of the number of units moved.

Parameters
unit A case-insensitive string value of the desired unit: character | word |

sentence | textedit. The textedit value moves the insertion pointer to the
start or end of the entire original range.

count An optional integer of the number of units to move the insertion pointer. Posi-
tive values move the pointer forward; negative values move the pointer
backward. Default value is 1.

moveToBookmark()
See getBookmark().
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

792 TextRange
moveToElementText() NN n/a IE 4 DOM n/a

moveToElementText(elementObject)

Moves the current TextRange object’s start and end points to encase the specified HTML
element object. The resulting text range includes the HTML for the element, as well.

Returned Value

None.

Parameters
elementObject

A scripted reference to the object. This can be in the form of a direct reference
(document.all.elementID) or a variable containing the same kind of value.

moveToPoint() NN n/a IE 4 DOM n/a

moveToPoint(x, y)

Collapses the text range to an insertion pointer and sets its location to the spot indicated by
the horizontal and vertical coordinates in the browser window or frame. This is as if the
user had clicked on a spot in the window to define an insertion point. Use methods such as
expand() to enlarge the text range to include a character, word, sentence, or entire text
range.

Returned Value

None.

Parameters
x Horizontal coordinate of the insertion point in pixels relative to the left edge of

the window or frame.

y Vertical coordinate of the insertion point in pixels relative to the top edge of
the window or frame.

parentElement() NN n/a IE 4 DOM n/a

Returns an object reference to the next outermost element that fully contains the
TextRange object.

Returned Value

Object reference.

Parameters

None.

pasteHTML() NN n/a IE 4 DOM n/a

pasteHTML(HTMLText)

Replaces the current text range with the HTML content supplied as a parameter string. Typi-
cally this method is used on a zero-length text range object acting as an insertion pointer.
All tags are rendered as if they were part of the original source code.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TextRange 793

DOM
 Reference
Returned Value

None.

Parameters
HTMLText Document source code to be inserted into the document.

queryCommandEnabled() NN n/a IE 4 DOM n/a

queryCommandEnabled("commandName")

Whether the command can be invoked in light of the current state of the document or
selection. Available only in the Win32 platform for IE 4.

Returned Value

Boolean value: true if enabled; false if not.

Parameters
commandName

A case-insensitive string value of the command name. See Appendix D.

queryCommandIndeterm() NN n/a IE 4 DOM n/a

queryCommandIndeterm("commandName")

Whether the command is in an indeterminate state. Available only in the Win32 platform for
IE 4.

Returned Value

Boolean value: true | false.

Parameters
commandName

A case-insensitive string value of the command name. See Appendix D.

queryCommandState() NN n/a IE 4 DOM n/a

queryCommandState("commandName")

Determines the current state of the named command. Available only in the Win32 platform
for IE 4.

Returned Value

true if the command has been completed; false if the command has not completed; null
if the state cannot be accurately determined.

Parameters
commandName

A case-insensitive string value of the command name. See Appendix D.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

794 TextRange
queryCommandSupported() NN n/a IE 4 DOM n/a

queryCommandSupported("commandName")

Determines whether the named command is supported by the document object. Available
only in the Win32 platform for IE 4.

Returned Value

Boolean value: true | false.

Parameters
commandName

A case-insensitive string value of the command name. See Appendix D.

queryCommandText() NN n/a IE 4 DOM n/a

queryCommandText("commandName")

Returns text associated with the command. Available only in the Win32 platform for IE 4.

Returned Value

String.

Parameters
commandName

A case-insensitive string value of the command name. See Appendix D.

queryCommandValue() NN n/a IE 4 DOM n/a

queryCommandValue("commandName")

Returns the value associated with the command, such as the name font of the selection.
Available only in the Win32 platform for IE 4.

Returned Value

Depends on the command.

Parameters
commandName

A case-insensitive string value of the command name. See Appendix D.

select() NN n/a IE 4 DOM n/a

Selects all the text that is included in the current TextRange object. This method brings
some visual confirmation to users that a script knows about a particular block of text. For
example, if you were scripting a search with the findText() method, you would then use
the scrollIntoView() and select() methods on that range to show the user where the
matching text is.

Returned Value

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TFOOT 795

DOM
 Reference
Parameters

None.

setEndPoint() NN n/a IE 4 DOM n/a

setEndPoint(type, comparisonRange)

Sets the end point of the current TextRange object to the end point of another range that
had previously been preserved as a variable reference.

Returned Value

None.

Parameters
type One of the following constants (as a string): StartToEnd | StartToStart |

EndToStart | EndToEnd.

comparisonRange
A TextRange object created earlier and saved to a variable.

TFOOT NN n/a IE 4 DOM 1

The TFOOT object reflects the TFOOT element. Note that the following items are not avail-
able in the Macintosh version of Internet Explorer 4: innerHTML, innerText, and
outerText properties; insertAdjacentHTML() and insertAdjacentText() methods;
the rows[] collection.

HTML Equivalent
<TFOOT>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

align innerHTML offsetHeight outerHTML style
bgColor innerText offsetLeft outerText tagName
className isTextEdit offsetParent parentElement title
document lang offsetTop parentTextEdit vAlign
id language offsetWidth sourceIndex

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[] rows[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

796 TFOOT
Event Handler Properties

align NN n/a IE 4 DOM n/a

Read/Write

Defines the horizontal alignment of content within all cells contained by the TFOOT
element.

Example document.all.myTFOOT.align = "center"

Value Any of the three horizontal alignment constants: center | left | right.

Default left

bgColor NN n/a IE 4 DOM n/a

Read/Write

Background color of the cells contained by the TFOOT element. This color setting is not
reflected in the style sheet backgroundColor property in Internet Explorer. Even if the
BGCOLOR attribute or bgColor property is set with a plain-language color name, the
returned value is always a hexadecimal triplet.

Example document.all.myTFOOT.bgColor = "yellow"

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default Varies with browser and operating system.

vAlign NN n/a IE 4 DOM 1

Read/Write

The manner of vertical alignment of text within the cells contained by the TFOOT element.

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TH 797

DOM
 Reference
Example document.all.myTFOOT.vAlign = "baseline"

Value Case-insensitive constant (as a string): baseline | bottom | middle | top.

Default middle

rows[] NN n/a IE 4 DOM n/a

An array of all rows contained by the TFOOT element.

Syntax document.all.myTFOOT.rows(i).objectPropertyOrMethod

TH NN n/a IE 4 DOM 1

The TH object reflects the TH element. While a TH element may inherit a number of visual
properties from containers (e.g., the bgColor of a THEAD element), those inherited prop-
erty values are not automatically assigned to the TH object. Therefore, just because a header
cell may have a yellow background color doesn’t mean that its bgColor property is set at
all.

HTML Equivalent
<TH>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

align clientWidth language parentElement
background colSpan noWrap parentTextEdit
bgColor document offsetHeight rowSpan
borderColor height offsetLeft sourceIndex
borderColorDark id offsetParent style
borderColorLight innerHTML offsetTop tagName
cellIndex innerText offsetWidth title
className isTextEdit outerHTML vAlign
clientHeight lang outerText width

blur() getAttribute() removeAttribute()
click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
focus()

all[] children[] filters[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

798 TH
Event Handler Properties

align NN n/a IE 4 DOM 1

Read/Write

Defines the horizontal alignment of content within the cell.

Example document.all.myTH.align = "center"

Value

Any of the three horizontal alignment constants: center | left | right.

Default left

background NN n/a IE 4 DOM n/a

Read/Write

URL of the background image for the cell. If you set a bgColor to the element as well, the
color appears if the image fails to load; otherwise, the image overlays the color.

Example document.all.myTH.background = "images/watermark.jpg"

Value Complete or relative URL to the background image file.

Default None.

Handler NN IE DOM
onafterupdate n/a 4 n/a
onbeforeunload n/a 4 n/a
onblur n/a 4 n/a
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onresize n/a 4 n/a
onrowenter n/a 4 n/a
onrowexit n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TH 799

DOM
 Reference
bgColor NN n/a IE 4 DOM 1

Read/Write

Background color of the table cell. This color setting is not reflected in the style sheet
backgroundColor property. Even if the BGCOLOR attribute or bgColor property is set with
a plain-language color name, the returned value is always a hexadecimal triplet.

Example document.all.myTH.bgColor = "yellow"

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default Varies with browser and operating system.

borderColor NN n/a IE 4 DOM n/a

Read/Write

Color of the element’s border. Internet Explorer applies the color to all four lines that make
up the interior border of a cell. Therefore, colors of adjacent cells do not collide.

Example document.all.myTH.borderColor = "salmon"

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with operating system.

borderColorDark, borderColorLight NN n/a IE 4 DOM n/a

Read/Write

The 3-D effect of table borders in Internet Explorer is created by careful positioning of light
and dark lines around the page’s background or default color. You can independently
control the colors used for the dark and light lines by assigning values to the borderCol-
orDark (left and top edges of the cell) and borderColorLight (right and bottom edges)
properties.

Typically, you should assign complementary colors to the pair of properties. There is also
no rule that says you must assign a dark color to borderColorDark. The attributes merely
control a well-defined set of lines so you can predict which lines of the border change with
each attribute.

Example
document.all.myTH.borderColorDark = "blue"
document.all.myTH.borderColorLight = "cornflowerblue"

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

800 TH
Default Varies with operating system.

cellIndex NN n/a IE 4 DOM n/a

Read-only

Returns a zero-based integer representing the position of the current cell among all other TH
elements in the same row. The count is based on the source code order of the TH elements
within a TR element. This property is not available in the Macintosh version of Internet
Explorer 4.

Example var whichCell = document.all.myTH.cellIndex

Value Integer.

Default None.

clientHeight, clientWidth NN n/a IE 4 DOM n/a

Read/Write

According to Microsoft’s developer documentation, these properties reflect the height and
width (in pixels) of the element’s content. But see the section “About client- and offset-
Properties” at the beginning of this chapter for details.

Example var midHeight = document.all.myTH.clientHeight/2

Value Integer pixel value.

Default None.

colSpan NN n/a IE 4 DOM 1

Read/Write

The number of columns across which the current table cell should extend itself. For each
additional column included in the colSpan count, one less TH or TD element is required for
the table row. If you set the align property to center or right, the alignment is calcu-
lated on the full width of the TH element across the specified number of columns. Unless
the current cell also specifies a ROWSPAN attribute, the next table row returns to the original
column count.

Example document.all.myTH.colSpan = 2

Value Any positive integer, usually 2 or larger.

Default 1

height, width NN n/a IE 4 DOM n/a

Read/Write

The height and width in pixels of the element. Changes to these values are immediately
reflected in reflowed content on the page. These properties are read-only in the Macintosh
version of Internet Explorer 4.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TH 801

DOM
 Reference
Example document.all.myTH.height = 250

Value Integer.

Default None.

noWrap NN n/a IE 4 DOM 1

Read/Write

Whether the browser should render the cell as wide as is necessary to display a line of
nonbreaking text on one line. Abuse of this attribute can force the user into a great deal of
inconvenient horizontal scrolling of the page to view all of the content.

Example document.all.myTH.noWrap = "true"

Value Boolean value: true | false.

Default false

rowSpan NN n/a IE 4 DOM 1

Read/Write

The number of rows through which the current table cell should extend itself downward.
For each additional row included in the rowSpan count, one less TH or TD element is
required for the next table row. If you set the vAlign property to middle, the alignment is
calculated on the full height of the TH element across the specified number of rows.

Example document.all.myTH.rowSpan = 12

Value Any positive integer, usually 2 or larger.

Default 1

vAlign NN n/a IE 4 DOM 1

Read/Write

The manner of vertical alignment of text within the element’s content box.

Example document.all.myTH.vAlign = "baseline"

Value Case-insensitive constant (as a string): baseline | bottom | middle | top.

Default middle

width
See height.

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

802 THEAD
Returned Value

None.

Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.

THEAD NN n/a IE 4 DOM 1

The THEAD object reflects the THEAD element. Note that the following items are not avail-
able in the Macintosh version of Internet Explorer 4: innerHTML, innerText, and
outerText properties; insertAdjacentHTML() and insertAdjacentText() methods;
the rows[] collection.

HTML Equivalent
<THEAD>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

align innerHTML offsetHeight outerHTML style
bgColor innerText offsetLeft outerText tagName
className isTextEdit offsetParent parentElement title
document lang offsetTop parentTextEdit vAlign
id language offsetWidth sourceIndex

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[] rows[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

THEAD 803

DOM
 Reference
Event Handler Properties

align NN n/a IE 4 DOM n/a

Read/Write

Defines the horizontal alignment of content within all cells contained by the THEAD
element.

Example document.all.myTHEAD.align = "center"

Value Any of the three horizontal alignment constants: center | left | right.

Default left

bgColor NN n/a IE 4 DOM n/a

Read/Write

Background color of the cells contained by the THEAD element. This color setting is not
reflected in the style sheet backgroundColor property in Internet Explorer. Even if the
BGCOLOR attribute or bgColor property is set with a plain-language color name, the
returned value is always a hexadecimal triplet.

Example document.all.myTHEAD.bgColor = "yellow"

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default Varies with browser and operating system.

vAlign NN n/a IE 4 DOM 1

Read/Write

The manner of vertical alignment of text within the cells contained by the THEAD element.

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

804 TITLE
Example document.all.myTHEAD.vAlign = "baseline"

Value Case-insensitive constant (as a string): baseline | bottom | middle | top.

Default middle

rows[] NN n/a IE 4 DOM n/a

An array of all rows contained by the THEAD element.

Syntax document.all.myTHEAD.rows(i).objectPropertyOrMethod

TITLE NN n/a IE 4 DOM 1

The TITLE object reflects the TITLE element. The Win32 version of Internet Explorer 4 may
exhibit problems when referencing the TITLE object by its element ID. Use the tags[]
collection reference instead.

HTML Equivalent
<TITLE>

Object Model Reference
IE [window.]document.all.elementID

[window.]document.all.tags("HEAD")[0]

Properties

Methods

Collections/Arrays

text NN n/a IE 4 DOM n/a

Read-only

The text content of the element. For the TITLE element, this is the text between the start
and end tags that also appears in the browser window’s titlebar (usually along with some
identification of the browser brand). Changes you make to this property do not appear in
the source code you view from the browser.

Example document.all.tags("HEAD")[0].text = "Welcome, Dave!"

Value String.

Default None.

className isTextEdit parentElement style text
document lang parentTextEdit tagName title
id language sourceIndex

contains() removeAttribute() setAttribute()
getAttribute()

all[] children[] filters[]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TR 805

DOM
 Reference
toolbar
See locationbar.

TR NN n/a IE 4 DOM 1

The TR object reflects the TR element. Note that the following items are not available in the
Macintosh version of Internet Explorer 4: innerHTML, innerText, and outerText proper-
ties; insertAdjacentHTML() and insertAdjacentText() methods.

HTML Equivalent
<TR>

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

align document offsetLeft rowIndex
bgColor id offsetParent selectionRowIndex
borderColor innerHTML offsetTop sourceIndex
borderColorDark innerText offsetWidth style
borderColorLight isTextEdit outerHTML tagName
className lang outerText title
clientHeight language parentElement vAlign
clientWidth offsetHeight parentTextEdit

blur() getAttribute() removeAttribute()
click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
focus()

all[] cells[] children[] filters[]

Handler NN IE DOM
onblur n/a 4 n/a
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

806 TR
align NN n/a IE 4 DOM 1

Read/Write

Defines the horizontal alignment of content within all cells of the row.

Example document.all.myTR.align = "center"

Value Any of the three horizontal alignment constants: center | left | right.

Default left

bgColor NN n/a IE 4 DOM 1

Read/Write

Background color of the table cells in the current row. This color setting is not reflected in
the style sheet backgroundColor property. Even if the BGCOLOR attribute or bgColor
property is set with a plain-language color name, the returned value is always a hexadec-
imal triplet.

Example document.all.myTR.bgColor = "yellow"

Value

A hexadecimal triplet or plain-language color name. See Appendix A for acceptable plain-
language color names.

Default Varies with browser and operating system.

borderColor NN n/a IE 4 DOM n/a

Read/Write

Color of the element’s border. Internet Explorer applies the color to all four lines that make
up the interior border of a cell. Therefore, colors of adjacent cells do not collide.

Example document.all.myTR.borderColor = "salmon"

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with operating system.

onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onmouseup n/a 4 n/a
onselectstart n/a 4 n/a

Handler NN IE DOM
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

TR 807

DOM
 Reference
borderColorDark, borderColorLight NN n/a IE 4 DOM n/a

Read/Write

The 3-D effect of table borders in Internet Explorer is created by careful positioning of light
and dark lines around the page’s background or default color. You can independently
control the colors used for the dark and light lines by assigning values to the borderCol-
orDark (left and top edges of the cell) and borderColorLight (right and bottom edges)
properties.

Typically, you should assign complementary colors to the pair of properties. There is also
no rule that says you must assign a dark color to borderColorDark. The attributes merely
control a well-defined set of lines so you can predict which lines of the border change with
each attribute.

Example
document.all.myTR.borderColorDark = "blue"
document.all.myTR.borderColorLight = "cornflowerblue"

Value

A hexadecimal triplet or plain-language color name. A setting of empty is interpreted as
"#000000" (black). See Appendix A for acceptable plain-language color names.

Default Varies with operating system.

clientHeight, clientWidth NN n/a IE 4 DOM n/a

Read/Write

According to Microsoft’s developer documentation, these properties reflect the height and
width (in pixels) of the element’s content. But see the section “About client- and offset-
Properties” at the beginning of this chapter for details. The Macintosh version of Internet
Explorer 4 returns a value of zero for both properties.

Example var midHeight = document.all.myTR.clientHeight/2

Value Integer pixel value.

Default None.

rowIndex NN n/a IE 4 DOM n/a

Read-only

Returns a zero-based integer representing the position of the current row among all other
TR elements in the entire table. The count is based on the source code order of the TR
elements.

Example var whichRow = document.all.myTR.rowIndex

Value Integer.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

808 TR
sectionRowIndex NN n/a IE 4 DOM n/a

Read-only

Returns a zero-based integer representing the position of the current row among all other
TR elements in the row grouping. A row grouping can be one of the following elements:
THEAD, TBODY, TFOOT. The count is based on the source code order of the TR elements.

Example var whichRow = document.all.myTR.sectionRowIndex

Value Integer.

Default None.

vAlign NN n/a IE 4 DOM n/a

Read/Write

The manner of vertical alignment of text within the cells of the current row.

Example document.all.myTR.vAlign = "baseline"

Value

Case-insensitive constant (as a string): baseline | bottom | middle | top.

Default middle

blur() NN n/a IE 4 DOM n/a

Removes focus from the current element and fires an onBlur event (in IE). No other
element necessarily receives focus as a result.

Returned Value

None.

Parameters

None.

focus() NN n/a IE 4 DOM n/a

Gives focus to the current element and fires the onFocus event (in IE). If another element
had focus at the time, it receives an onBlur event.

Returned Value

None.

Parameters

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

UL 809

DOM
 Reference
cells[] NN n/a IE 4 DOM n/a

An array of all TD element objects contained by the current TR object. Items in this array are
indexed (zero based) in source code order. Each item of the array is an object whose prop-
erties and methods may be accessed as if the object were referenced directly.

Syntax TRobject.cells(index).objectPropertyOrMethod

TT
See B.

U
See B.

UL NN n/a IE 4 DOM 1

The UL object reflects the UL element.

HTML Equivalent

Object Model Reference
IE [window.]document.all.elementID

Properties

Methods

Collections/Arrays

Event Handler Properties

className innerText offsetLeft outerText style
compact isTextEdit offsetParent parentElement tagName
document lang offsetTop parentTextEdit title
id language offsetWidth sourceIndex type
innerHTML offsetHeight outerHTML start

click() insertAdjacentHTML() scrollIntoView()
contains() insertAdjacentText() setAttribute()
getAttribute() removeAttribute()

all[] children[] filters[]

Handler NN IE DOM
onclick n/a 4 n/a
ondblclick n/a 4 n/a
ondragstart n/a 4 n/a
onfilterchange n/a 4 n/a
onhelp n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

810 userProfile
compact NN n/a IE 4 DOM 1

Read/Write

When set to true, the compact property should instruct the browser to render items in the
list in a more compact format. This property has no effect in Internet Explorer 4 and is
completely unavailable in the Macintosh version.

Example document.all.myUL.compact = true

Value Boolean value: true | false.

Default false

type NN n/a IE 4 DOM 1

Read/Write

The manner in which the leading item markers in the list are displayed.

Example document.all.myUL.type = "square"

Value Any one of the constant values (as a string): circle | disc | square.

Default disc

userProfile NN n/a IE 4 DOM n/a

The userProfile object reflects numerous pieces of information stored in the browser’s
user profile for the current user. This object has four methods that:

• Let you queue requests for individual fields of the profile (items such as name, mailing
address, phone numbers, and so on)

• Display the request dialog that lets users see what you’re asking for and disallow spe-
cific items or the whole thing

• Grab the information

• Clear the request queue

Once the information is retrieved (with the user’s permission), it can be slipped into form
elements (visible or hidden) for submission to the server. Further details are available from
Microsoft in the Internet Client Software Developer’s Kit. This object’s methods are not fully
supported in the Macintosh version of Internet Explorer 4.

onkeydown n/a 4 n/a
onkeypress n/a 4 n/a
onkeyup n/a 4 n/a
onmousedown n/a 4 n/a
onmousemove n/a 4 n/a
onmouseout n/a 4 n/a
onmouseover n/a 4 n/a
onselectstart n/a 4 n/a

Handler NN IE DOM
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

userProfile 811

DOM
 Reference
Example
navigator.userProfile.addReadRequest("vcard.displayname")
navigator.userProfile.doReadRequest("3", "MegaCorp Customer Service")
var custName = navigator.userProfile.getAttribute("vcard.displayname")
navigator.userProfile.clearRequest()
if (custName) {
 ...
}

Object Model Reference
IE navigator.userProfile

Methods

addReadRequest() NN n/a IE 4 DOM n/a

addReadRequest(attributeName)

Adds a request to inspect a particular user profile attribute to a queue that must be
executed separately (via the doReadRequest() and getAttribute() methods). Items
added to the queue are displayed to the user to select which item(s) can be submitted to a
server. For multiple attributes, use multiple invocations of the addReadRequest() method.

Returned Value

None.

Parameters
attributeName

One of the following case-insensitive attribute names as a string:

addReadRequest() clearRequest() doReadRequest()
getAttribute()

vCard.Business.City vCard.Home.City
vCard.Business.Country vCard.Home.Country
vCard.Business.Fax vCard.Home.Fax
vCard.Business.Phone vCard.Home.Phone
vCard.Business.State vCard.Home.State
vCard.Business.StreetAddress vCard.Home.StreetAddress
vCard.Business.URL vCard.Home.Zipcode
vCard.Business.Zipcode vCard.Homepage
vCard.Cellular vCard.JobTitle
vCard.Company vCard.LastName
vCard.Department vCard.MiddleName
vCard.DisplayName vCard.Notes
vCard.Email vCard.Office
vCard.FirstName vCard.Pager
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

812 userProfile
clearRequest() NN n/a IE 4 DOM n/a

Empties the queue of attribute names to be retrieved. Use this after your script has success-
fully retrieved the required information. This prepares the queue for the next list.

Returned Value

None.

Parameters

None.

doReadRequest() NN n/a IE 4 DOM n/a

doReadRequest(usageCode[, friendlyName[, domain[, path[, expiration]]]])

Based on the items in the queue, this method inspects the browser to see whether the user
has given permission to inspect these attributes in the past. If not (for some or all), the
method displays a dialog box (the Profile Assistant window) that lets users turn off the
items that should not be exposed to the server. Parameters provide information for the
dialog and for maintenance of the permission (similar to the ways that cookies are
managed). Only one doReadRequest() method is required, regardless of the number of
attributes in the queue.

Returned Value

In Win32, the method returns no value, regardless of how the user responds to the Profile
Assistant dialog box). On the Macintosh (which does not support this object fully), the
method does not display the Profile Assistant dialog box and returns false.

Parameters
usageCode One of the following code integers that display human-readable messages

defined by the Internet Privacy Working Group:

Code Meaning
0 Used for system administration.
1 Used for research and/or product development.
2 Used for completion and support of current transaction.
3 Used to customize the content and design of a site.
4 Used to improve the content of the site, including advertisements.
5 Used for notifying visitors about updates to the site.
6 Used for contacting visitors for marketing of services or products.
7 Used for linking other collected information.
8 Used by site for other purposes.
9 Disclosed to others for customization or improvement of the content and design

of the site.
10 Disclosed to others who may contact you for marketing of services and/or prod-

ucts.
11 Disclosed to others who may contact you for marketing of services and/or prod-

ucts, but you have the opportunity to ask a site not to do this.
12 Disclosed to others for any other purpose.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

window 813

DOM
 Reference
friendlyName
An optional string containing an identifiable name (and URL) that the user
recognizes as the source of the request. This may be a corporate identity.

domain An optional string containing the domain of the server making the request. If
an expiration date is set, this information is stored with the requested attributes
to prevent future requests from this domain from interrupting the user with the
Profile Assistant dialog box.

path An optional string containing the path of the server document making the
request. If an expiration date is set, this information is stored with the requested
attributes to prevent future requests from this domain from interrupting the user
with the Profile Assistant dialog box.

expiration
An optional string containing the date on which the user’s permissions settings
expire. Not recognized in Internet Explorer 4.

getAttribute() NN n/a IE 4 DOM n/a

getAttribute(attributeName)

Returns the value of the attribute, provided the user has given permission to do so. If that
permission was denied, the method returns null. Use one getAttribute() method for
each attribute value being retrieved.

Returned Value

In Win32, the method returns no value, regardless of how the user responds to the Profile
Assistant dialog box). On the Macintosh (which does not support this object fully), the
method does not display the Profile Assistant dialog box and returns false.

Parameters
attributeName

One of the vCard attribute names listed in the addReadRequest() method
description.

VAR
see ACRONYM.

window NN 2 IE 3 DOM n/a

The window object represents the browser window or frame in which document content is
displayed. The window object plays a vital role in scripting when scripts must communicate
with document objects located in other frames or subwindows. Internet Explorer 4 includes
a special kind of subwindow called a modal dialog window. Modal dialog windows have
most, but not all, window object properties and methods available to them.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

814 window
Object Model Reference
NN window

self
top
parent

IE window
self
top
parent

Properties

Methods

Collections/Arrays

Event Handler Properties

clientInformation event navigator returnValue
closed history offscreenBuffering screen
defaultStatus innerHeight opener scrollbars
dialogArguments innerWidth outerHeight self
dialogHeight length outerWidth status
dialogLeft location pageXOffset statusbar
dialogTop locationbar pageYOffset toolbar
dialogWidth menubar parent top
document name personalbar

alert() focus() resizeBy()
back() forward() resizeTo()
blur() handleEvent() routeEvent()
captureEvents() home() scroll()
clearInterval() moveBy() scrollBy()
clearTimeout() moveTo() scrollTo()
close() navigate() setInterval()
confirm() open() setTimeout()
disableExternalCapture() print() showHelp()
enableExternalCapture() prompt() showModalDialog()
execScript() releaseEvents() stop()
find()

frames[]

Handler NN IE DOM
onbeforeunload n/a 4 n/a
onblur 3 4 n/a
ondragdrop 4 n/a n/a
onerror 3 4 n/a
onfocus 3 4 n/a
onhelp n/a 4 n/a
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

window 815

DOM
 Reference
clientInformation NN n/a IE 4 DOM n/a

Read-only

Returns the navigator object. The navigator object is named after a specific browser
brand; the clientInformation property is a nondenominational way of accessing impor-
tant environment variables that have historically been available through properties and
methods of the navigator object. In Internet Explorer, you can substitute
window.clientInformation for any reference that begins with navigator.

Example
if (parseInt(window.clientInformation.appVersion) >= 4) {

process code for IE 4 or later
}

Value The navigator object.

Default The navigator object.

closed NN 3 IE 4 DOM n/a

Read-only

Boolean value that says whether the referenced window is closed. A value of true means
the window is no longer available for referencing its objects or script components. This is
used most often to check whether a user has closed a subwindow generated by the
window.open() method.

Example
if (!newWindow.closed) {
 newWindow.document.write("<HTML><BODY><H1>Howdy!</H1></BODY></HTML>")
 newWindow.document.close()
}

Value Boolean value: true | false.

Default None.

defaultStatus NN 2 IE 3 DOM n/a

Read/Write

The default message displayed in the browser window’s status bar when no browser
loading activity is occurring. To temporarily change the message (during mouse rollovers,
for example), set the window’s status property. Most scriptable browsers and versions
have difficulty managing the setting of the defaultStatus property. Expect odd behavior.

onload 2 3 n/a
onmove 4 n/a n/a
onresize 4 4 n/a
onscroll n/a 4 n/a
onunload n/a 4 n/a

Handler NN IE DOM
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

816 window
Example window.defaultStatus = "Make it a great day!"

Value Any string value.

Default None.

dialogArguments NN n/a IE 4 DOM n/a

Read-only

String or other data type passed as extra arguments to a modal dialog window created with
the showModalDialog() method. This property is best accessed by a script in the docu-
ment occupying the modal dialog to retrieve whatever data is passed to the new window as
arguments. It is up to your script to parse the data if you include more than one argument
nugget separated by whatever argument delimiter you choose.

Example
var allArgs = window.dialogArguments
var firstArg = allArgs.substring(0, allArgs.indexOf(";"))

Value String, number, or array.

Default None.

dialogHeight, dialogWidth NN n/a IE 4 DOM n/a

Read/Write

Length values of height and width of a modal dialog window created with the
showDialog() method. Although Internet Explorer 4 does not balk at modifying these
properties (in a script running in the modal dialog window), the changed values are gener-
ally not reflected in a resized dialog window. Initial values are set as parameters to the
showDialog() method.

Example var outerWidth = window.dialogWidth

Value String including the unit value.

Default None.

dialogLeft, dialogTop NN n/a IE 4 DOM n/a

Read/Write

Offset distance of left and top edges of a modal dialog window (created with the
showDialog() method) relative to the top-left corner of the video screen. Although
Internet Explorer 4 does not balk at modifying these properties (in a script running in the
modal dialog window), the changed values are generally not reflected in a repositioned
dialog window. Initial values are set as parameters to the showDialog() method.

Example var outerLeft = window.dialogLeft

Value String including the unit value.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

window 817

DOM
 Reference
event NN n/a IE 4 DOM n/a

Read-only

Internet Explorer 4’s event model generates an event object for each user or system event.
This event object is a property of the window object. For details about the IE event object,
see Chapter 6 and the listing of the event object in this chapter.

Example
if (event.altKey) {

handle case of Alt key down
}

Value event object reference.

Default None.

history NN 2 IE 3 DOM n/a

Read-only

Contains the history object for the current window or frame. For details, see the discus-
sion of the history object.

Example
if (self.history.length > 4) {
 ...
}

Value history object reference.

Default Current history object.

innerHeight, innerWidth NN 4 IE n/a DOM n/a

Read/Write

The pixel measure of the height and width of the content region of a browser window or
frame. This area is where the document content appears, exclusive of all window “chrome.”

Example
window.innerWidth = 600
window.innerHeight = 400

Value Integer.

Default None.

length NN n/a IE 4 DOM n/a

Read-only

The number of frames (if any) nested within the current window. This value is the same as
that returned by window.frames.length. When no frames are defined for the window,
the value is zero.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

818 window
Example
if (window.length > 0) {
 ...
}

Value Integer.

Default 0

location NN 2 IE 3 DOM n/a

Read/Write

The URL of the document currently loaded in the window or frame. To navigate to another
page, you assign a URL to the location.href property (or see the navigate() method
for an IE-only alternative).

Example top.location = "index.html"

Value A full or relative URL as a string.

Default Document URL.

locationbar, menubar, personalbar,
scrollbars, statusbar, toolbar NN 4 IE n/a DOM n/a

Read-only

Each property returns a reference to the object of the same name. These objects are indi-
vidual components of a window’s “chrome” whose visibility can be adjusted either when
creating a new window (with the window.open() method) or anytime. Signed scripts are
needed to gain permission to alter the visibility of these items for a window that already
exists.

Example window.personalbar.visibility = false

Value Object reference.

Default Respective object references.

name NN 2 IE 3 DOM 1

Read/Write

The identifier associated with a frame or subwindow for use as the value assigned to
TARGET attributes or as script references to the frame/subwindow. For a frame, the value is
usually assigned via the NAME attribute of the FRAME tag, but it can be modified by a script
if necessary. The name of a subwindow is assigned as a parameter to the window.open()
method. The primary browser window does not have a name by default.

Example
if (parent.frames[1].name == "main") {
 ...
}

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

window 819

DOM
 Reference
Value

Case-sensitive identifier that follows the rules of identifier naming: it may contain no
whitespace, cannot begin with a numeral, and should avoid punctuation except for the
underscore character.

Default None.

navigator NN n/a IE 4 DOM n/a

Read-only

Returns a reference to the navigator object. Internet Explorer treats the navigator object
as a property of the window, even though the scope of the navigator object transcends
all windows or frames currently existing in the browser. Since the window reference is
optional, syntax without the window reference works on Internet Explorer and Navigator.

Example var theBrowser = navigator.appName

Value Object reference.

Default navigator object.

offscreenBuffering NN n/a IE 4 DOM n/a

Read/Write

Whether the browser should use offscreen buffering to improve path animation perfor-
mance. This property applies only to the Windows 95/NT operating system platforms.
When the document loads, the property is set to auto. After that, a script may turn buff-
ering on and off by assigning a Boolean value to this property.

Example window.offscreenBuffering = "true"

Value Boolean value: true | false.

Default auto

opener NN 3 IE 3 DOM n/a

Read/Write

Object reference to the window (or frame) that used a window.open() method to generate
the current window. This property allows subwindows to assemble references to objects,
variables, and functions in the originating window. To access document objects in the
creating window, a reference can begin with opener and work its way through the regular
document object hierarchy from there, as shown in the left side of the following example
statement. The relationship between the opening window and the opened window is not
strictly parent-child. The term “parent” has other connotations in scripted window and
frame references.

Example
opener.document.forms[0].importedData.value = document.forms[0].entry.value

Value window object reference.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

820 window
Default None.

outerHeight, outerWidth NN 4 IE n/a DOM n/a

Read/Write

The pixel measure of the height and width of the browser window or frame, including (for
the top window) all toolbars, scollbars and other visible window “chrome.”

Example
window.outerWidth = 80
window.outerHeight = 600

Value Integer.

Default None.

pageXOffset, pageYOffset NN 4 IE n/a DOM n/a

Read-only

The pixel measure of the amount of the page’s content that has been scrolled upward and/
or to the left. For example, if a document has been scrolled so that the topmost 100 pixels
of the document (the “page”) are not visible because the window is scrolled, the pageY-
Offset value for the window is 100. When a document is not scrolled, both values are
zero.

Example var vertScroll = self.pageYOffset

Value Integer.

Default 0

parent NN 2 IE 3 DOM n/a

Read-only

Returns a reference to the parent window object whose document defined the frameset in
which the current frame is specified. Use parent in building a reference from one child
frame to variables or methods in the parent document or to variables, methods, and objects
in another child frame. For example, if a script in one child frame must reference the
content of a text input form element in the other child frame (named “content”), the refer-
ence would be:

parent.content.document.forms[0].entryField.value

For more deeply nested frames, you can access the parent of a parent with syntax such as:
parent.parent.frameName.

Example parent.frames[1].document.forms[0].companyName.value = "MegaCorp"

Value window object reference.

Default None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

window 821

DOM
 Reference
returnValue NN n/a IE 4 DOM n/a

Read/Write

A value to be returned to the main window when the IE modal dialog window closes. The
value assigned to this property in a script running in the dialog window is returned as the
value to the showModalDialog() method in the main window. For example the docu-
ment in the modal dialog window may have a statement that sets the returnValue
property with information from the dialog:

window.returnValue = window.document.forms[0].userName.value

The dialog is created in the main document with a statement like the following:

var userName = showModalDialog("userNamePrompt.html")

Whatever value is assigned to returnValue in the dialog is then assigned to userName
when the dialog box closes and script execution continues.

Value Any scriptable data type.

Default None.

screen NN n/a IE 4 DOM n/a

Read-only

Returns a reference to the screen object. Internet Explorer treats the screen object as a
property of the window, even though the scope of the screen object transcends all
windows or frames currently existing in the browser. Since the window reference is
optional, syntax without the window reference works on Internet Explorer and Navigator
when a common property is accessed.

Example var howDeep = screen.availHeight

Value Object reference.

Default screen object.

self NN 2 IE 3 DOM n/a

Read-only

A reference to the current window or frame. This property is synonymous with window, but
is sometimes used to improve clarity in a complex script that refers to many windows or
frames. Never use the reference window.self to refer to the current window or frame.

Example self.focus()

Value window object reference.

Default Current window.

status NN 2 IE 3 DOM n/a

Read/Write

Text of the status bar of the browser window. Setting the status bar to some message is
recommended only for temporary messages, such as for mouse rollovers atop images, areas,
or links. Double or single quotes in the message must be escaped (\'). Many users don’t
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

822 window
look for the status bar, so avoid putting mission-critical information there. Temporary
messages conflict with browser-driven use of the status bar for loading progress and other
purposes. To set the default status bar message (when all is at rest), see the default-
Status property.

Example
<...onMouseOver="window.status='Table of Contents';return true"
onMouseOut = "window.status = '';return true">

Value String.

Default Empty string.

top NN 2 IE 3 DOM n/a

Read-only

Object reference to the browser window. Script statements from inside nested frames can
refer to the browser window properties and methods or to variables or functions stored in
the document loaded in the topmost position. Do not begin a reference with window.top,
just top. To replace a frameset with a new document that occupies the entire browser
window, assign a URL to the top.location.href property.

Example top.location.href = "tableOfContents.html"

Value window object reference.

Default Browser window.

alert() NN 2 IE 3 DOM n/a

alert(message)

Displays an alert dialog box with a message of your choice. A single button lets the user
close the dialog. The title bar of the window (and the “JavaScript Alert” legend in earlier
browser versions) cannot be altered by script.

Returned Value

None.

Parameters
message Any string.

back() NN 4 IE n/a DOM n/a

Navigates one step backward through the history list of the window or frame.

Returned Value

None.

Parameters

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

window 823

DOM
 Reference
blur() NN 3 IE 4 DOM n/a

Removes focus from the window and fires an onBlur event (in IE). No other element
necessarily receives focus as a result.

Returned Value

None.

Parameters

None.

captureEvents() NN 4 IE n/a DOM n/a

captureEvents(eventTypeList)

Instructs the browser to grab events of a specific type before they reach their intended
target objects. The object invoking this method must then have event handlers defined for
the given event types to process the event. See Chapter 6.

Returned Value

None.

Parameters
eventTypeList

A comma-separated list of case-sensitive event types as derived from the avail-
able Event object constants, such as Event.CLICK or Event.MOUSEMOVE.

clearInterval() NN 4 IE 4 DOM n/a

clearInterval(intervalID)

Turns off the interval looping action referenced by the intervalID parameter. See
setInterval() for how to initiate such a loop.

Returned Value

None.

Parameters
intervalID

An integer created as the return value of a setInterval() method.

clearTimeout() NN 2 IE 3 DOM n/a

clearTimeout(timeoutID)

Turns off the timeout delay counter referenced by the timeoutID parameter. See
setTimeout() for how to initiate such a delay.

Returned Value

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

824 window
Parameters
timeoutID

An integer created as the return value of a setTimeout() method.

close() NN 2 IE 3 DOM n/a

Closes the current window. Navigator does not allow the main window to be closed from a
subwindow without receiving the user’s explicit permission from a security dialog box.

Returned Value

None.

Parameters

None.

confirm() NN 2 IE 3 DOM n/a

confirm(message)

Displays a dialog box with a message and two clickable buttons. One button indicates a
Cancel operation; the other button indicates the user’s approval (OK or Yes). The text of the
buttons is not scriptable. The message should ask a question to which either button would
be a logical reply. A click of the Cancel button returns a value of false; a click of the OK
button returns a value of true.

Because this method returns a Boolean value, you can use this method inside a condition
expression:

if (confirm("Reset the entire form?")) {
 document.forms[0].reset()
}

Returned Value

Boolean value: true | false.

Parameters
message Any string, usually in the form of a question.

disableExternalCapture(),
enableExternalCapture() NN 4 IE n/a DOM n/a

With signed scripts and the user’s permission, a script can capture events in other windows
or frames that come from domains other than the one that served the document with event-
capturing scripts.

Returned Value

None.

Parameters

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

window 825

DOM
 Reference
execScript() NN n/a IE 4 DOM n/a

execScript(expressionList [, language])

Evaluates one or more script expressions in any scripting language embedded in the
browser. Expressions must be contained within a single string; multiple expressions are
delimited with semicolons:

window.execScript("var x = 3; alert(x * 3)")

The default script language is JavaScript. If you need to see results of the script execution,
provide for the display of resulting data in the script expressions. The execScript()
method itself returns no value.

Returned Value

None.

Parameters
expressionList

String value of one or more semicolon-delimited script expressions.

language String value for a scripting language: JavaScript | JScript | VBS |
VBScript.

find() NN 4 IE n/a DOM n/a

find(searchString [, matchCase[, searchUpward]])

Searches the document body text for a string and selects the first matching string. Option-
ally, you can specify whether the search should be case sensitive or search upward in the
document. With the found text selected, you can use the document.getSelection()
method to grab a copy of the found text. You don’t, however, have nearly the dynamic
content abilities afforded by Internet Explorer 4’s TextRange object (for Win32).

Returned Value

Boolean value: true if a match was found; false if not.

Parameters
searchString

String for which to search the document.

matchCase
Boolean value: true to allow only exact, case-sensitive matches; false
(default) to use case-insensitive search.

searchUpward
Boolean value: true to search from the current selection position upward
through the document; false (default) to search forward from the current
selection position.

focus() NN 3 IE 4 DOM n/a

Brings the window to the front of all regular browser windows and fires the onFocus event
(in IE). If another window had focus at the time, that other window receives an onBlur
event.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

826 window
Returned Value

None.

Parameters

None.

forward() NN 4 IE n/a DOM n/a

Navigates one step forward through the history list of the window or frame. If the forward
history has no entries, no action takes place.

Returned Value

None.

Parameters

None.

handleEvent() NN 4 IE n/a DOM n/a

handleEvent(event)

Instructs the object to accept and process the event whose specifications are passed as the
parameter to the method. The object must have an event handler for the event type to
process the event.

Returned Value

None.

Parameters
event A Navigator 4 event object.

home() NN 4 IE n/a DOM n/a

Navigates to the URL designated as the home page for the browser. This is the same as the
user clicking on the Home button.

Returned Value

None.

Parameters

None.

moveBy() NN 4 IE n/a DOM n/a

moveBy(deltaX, deltaY)

A convenience method that shifts the location of the window by specified pixel amounts
along both axes. To shift along only one axis, set the other value to zero. Positive values for
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

window 827

DOM
 Reference
deltaX shift the window to the right; negative values to the left. Positive values for deltaY
shift the window downward; negative values upward.

Returned Value

None.

Parameters
deltaX Positive or negative pixel count of the change in horizontal direction of the

window.

deltaY Positive or negative pixel count of the change in vertical direction of the
window.

moveTo() NN 4 IE n/a DOM n/a

moveTo(x, y)

Convenience method that shifts the location of the current window to a specific coordinate
point. The moveTo() method uses the screen coordinate system.

Returned Value

None.

Parameters
x Positive or negative pixel count relative to the top of the screen.

y Positive or negative pixel count relative to the left edge of the screen.

navigate() NN n/a IE 3 DOM n/a

navigate(URL)

Loads a new document into the window or frame. This is the IE-specific way of assigning a
value to the window.location.href property.

Returned Value

None.

Parameters
URL A complete or relative URL as a string.

open() NN 2 IE 3 DOM n/a

open(URL, windowName[, windowFeatures])

Opens a new window (without closing the original one). You can specify a URL to load
into that window or set that parameter to an empty string to allow scripts to
document.write() into that new window. The windowName parameter lets you assign a
name that can be used by TARGET attributes. This name is not to be used in script refer-
ences as frame names are. Instead, a script reference to a subwindow must be to the
window object returned by the window.open() method. Therefore, if your scripts must
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

828 window
communicate with a window opened in this manner, it is best to save the returned value as
a global variable so that future statements can use it.

A potential problem with subwindows is that they can be buried under the main window if
the user clicks on the main window (or a script gives it focus). Any script that opens a
subwindow should also include a focus() method for the subwindow (in Navigator 3 and
later, and in IE 4 and later) to make sure it comes to the front in case it is already open.
Subsequent invocations of the window.open() method whose windowName parameter is
the same as an earlier call automatically address the previously opened window, even if it is
underneath the main window.

The optional third parameter gives you control over various physical attributes of the
subwindow. The windowFeatures parameter is a single string consisting of a comma-
delimited list (without spaces between items) of attribute/value pairs:

newWindow = window.open("someDoc.html","subWind",
"statusbar,menubar,HEIGHT=400,WIDTH=300)
newWindow.focus()

By default, all window attributes are turned on and the subwindow opens to the same size
that the browser would use to open a new window from the File menu. But if your script
specifies even one attribute, all settings are turned off. Therefore, use the windowFeatures
parameter to specify those features that you want turned on.

Returned Value

Window object reference.

Parameters
URL A complete or relative URL as a string. If an empty string, no document loads

into the window.

windowName
An identifier for the window to be used by TARGET attributes. This is different
from the TITLE attribute of the document that loads into the window.

windowFeatures
A string of comma-delimited features to be turned on in the new window. Do
not put spaces after the comma delimiters. The list of possible features is long,
but a number of them are specific to Navigator 4 and require signed scripts
because they are potentially a privacy and security concern to unsuspecting
users. The features are listed as follows. To turn on a window feature, simply
include its case-insensitive name in the comma-separated list. Only attributes
specifying dimensions require values be assigned.

Attribute NN IE Description
alwaysLowered 4 - Always behind all other browser windows. Signed script

required.
alwaysRaised 4 - Always in front of all other browser windows. Signed

script required.
copyhistory 2 3 Copy history listing from opening window to new

window.
dependent 4 - Subwindow closes if the window that opened it closes.
directories 2 3 Display directory buttons.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

window 829

DOM
 Reference
print() NN 4 IE n/a DOM n/a

Starts the printing process for the window or frame. A user must still confirm the print
dialog box to send the document to the printer. This method is the same as clicking the
Print button or selecting Print from the File menu.

Returned Value

None.

Parameters

None.

prompt() NN 2 IE 3 DOM n/a

prompt(message, defaultReply)

Displays a dialog box with a message, a one-line text entry field, and two clickable buttons.
The message should urge the user to enter a specific kind of answer. One button indicates
a Cancel operation; the other button indicates the user’s approval of the text entered into

height 2 3 Window height in pixels.
hotkeys 4 - Disables menu keyboard shortcuts (except Quit and

Security Info).
innerHeight 4 - Content region height. Signed script required for very

small measures.
innerWidth 4 - Content region width. Signed script required for very

small measures.
location 2 3 Display location of text field.
menubar 2 3 Display menubar (a menubar of some kind is always

visible on the Macintosh).
outerHeight 4 - Total window height. Signed script required for very

small measures.
outerWidth 4 - Total window width. Signed script required for very

small measures.
resizable 2 3 Allow window resizing (always allowed on the Macin-

tosh).
screenX 4 - Offset of window’s left edge from left edge of screen.

Signed script required to move window offscreen.
screenY 4 - Offset of window’s top edge from top edge of screen.

Signed script required to move window offscreen.
scrollbars 2 3 Display scrollbars if document is too large for window.
status 2 3 Display status bar.
titlebar 4 - Displays titlebar. Set this value to no to hide the titlebar.

Signed script required.
toolbar 2 3 Display toolbar (with Back, Forward, and other buttons).
width 2 3 Window width in pixels.
z-lock 4 - New window is fixed below browser windows. Signed

script required.

Attribute NN IE Description
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

830 window
the field (OK or Yes). The text of the buttons is not scriptable. A click of the Cancel button
returns a value of null; a click of the OK button returns a string of whatever is in the text
entry field at the time (including the possibility of an empty string). It is up to your scripts
to test for the type of response (if any) supplied by the user.

Returned Value

When clicking the OK button, a string of the text entry field; when clicking Cancel, null.

Parameters
message Any string.

defaultReply
Any string that suggests an answer. Always supply a value, even if an empty
string.

releaseEvents() NN 4 IE n/a DOM n/a

releaseEvents(eventTypeList)

The opposite of window.captureEvents(), this method turns off event capture at the
window level for one or more specific events named in the parameter list. See Chapter 6.

Returned Value

None.

Parameters
eventTypeList

A comma-separated list of case-sensitive event types as derived from the avail-
able Event object constants, such as Event.CLICK or Event.MOUSEMOVE.

resizeBy() NN 4 IE n/a DOM n/a

resizeBy(deltaX, deltaY)

A convenience method that shifts the width and height of the window by specified pixel
amounts. To adjust along only one axis, set the other value to zero. Positive values for
deltaX make the window wider; negative values make the window narrower. Positive
values for deltaY make the window taller; negative values make the window shorter. The
top and bottom edges remain fixed; only the right and bottom edges are moved.

Returned Value

None.

Parameters
deltaX Positive or negative pixel count of the change in horizontal dimension of the

window.

deltaY Positive or negative pixel count of the change in vertical dimension of the
window.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

window 831

DOM
 Reference
resizeTo() NN 4 IE n/a DOM n/a

resizeTo(x, y)

Convenience method that adjusts the height and width of the window to specific pixel
sizes. The top and left edges of the window remain fixed, while the bottom and right edges
move in response to this method.

Returned Value

None.

Parameters
x Width in pixels of the window.

y Height in pixels of the window.

routeEvent() NN 4 IE n/a DOM n/a

routeEvent(event)

Used inside an event handler function, this method directs Navigator to let the event pass to
its intended target object.

Returned Value

None.

Parameters
event A Navigator 4 event object.

scroll() NN 3 IE 4 DOM n/a

scroll(x, y)

Sets the scrolled position of the document inside the current window or frame. To return
the document to its unscrolled position, set both parameters to zero.

Returned Value

None.

Parameters
x Horizontal measure of scrolling within the window.

y Vertical measure of scrolling within the window.

scrollBy() NN 4 IE 4 DOM n/a

scrollBy(deltaX, deltaY)

Scrolls the document in the window by specified pixel amounts along both axes. To adjust
along only one axis, set the other value to zero. Positive values for deltaX scroll the docu-
ment upward (so the user sees content lower in the document); negative values scroll the
document downward. Positive values for deltaY scroll the document to the left (so the
user sees content to the right in the document); negative values scroll the document to the
right. Scrolling does not continue past the zero coordinate points (except in Navigator 4 for
the Macintosh).
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

832 window
Returned Value

None.

Parameters
deltaX Positive or negative pixel count of the change in horizontal scroll position.

deltaY Positive or negative pixel count of the change in vertical scroll position.

scrollTo() NN 4 IE n/a DOM n/a

scrollTo(x, y)

Scrolls the document in the window to a specific scrolled position.

Returned Value

None.

Parameters
x Horizontal position in pixels of the window.

y Vertical position in pixels of the window.

setInterval() NN 4 IE 4 DOM n/a

setInterval(expression, msecs[, args | language])

Starts a timer that continually invokes the expression every msecs. Other scripts can run
in the time between calls to expression. This method is useful for starting animation
sequences that must reposition an element along a path at a fixed rate of speed. The
expression might be a function that moves the element by a fixed pixel distance along
one axis. The function would be invoked at an interval set by the msecs parameter. This
method returns an ID that should be saved as a global variable and be available as the
parameter for the clearInterval() method to stop the looping timer.

Navigator and Internet Explorer diverge in the use of the third parameter. Navigator lets you
pass one or more parameters (as a comma-delimited list in a string) for the function acting
as the expression parameter. Internet Explorer lets you specify the scripting language of
the expression (if it is not the default JavaScript).

Returned Value

Integer acting as an identifier.

Parameters
expression

Any script expression as a string, but most commonly a function. The function
name with parentheses is placed inside the parameter’s quoted string.

msecs The time in milliseconds between invocations of the expression.

args An optional comma-delimited list of parameters to be passed to a function used
as the expression parameter.

language An optional scripting language specification of the expression parameter
(default is JavaScript).
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

window 833

DOM
 Reference
setTimeout() NN 2 IE 3 DOM n/a

setTimeout(expression, msecs[, args | language])

Starts a one-time timer that invokes the expression after a delay of msecs. Other scripts
can run while the browser waits to invoke the expression. This method returns an ID that
should be saved as a global variable and be available as the parameter for the
clearTimeout() method to stop the timer before it expires and invokes the expression.

Navigator and Internet Explorer diverge in the use of the third parameter. Navigator lets you
pass one or more parameters (as a comma-delimited list in a string) for the function acting
as the expression parameter. Internet Explorer lets you specify the scripting language of
the expression (if it is not the default JavaScript).

The setTimeout() method can be made to behave like the setInterval() method in
some constructions. If you place a setTimeout() method as the last statement of a func-
tion and direct the method to invoke the very same function, you can create looping
execution with a timed delay between executions. This is how earlier browsers (before the
setInterval() method was available) scripted repetitive tasks, such as displaying updated
digital clock displays in form fields or the status bar.

Returned Value

Integer acting as an identifier.

Parameters
expression

Any script expression as a string, but most commonly a function. The function
name with parentheses is placed inside the parameter’s quoted string.

msecs The time in milliseconds that the browser waits before invoking the
expression.

args An optional comma-delimited list of parameters to be passed to a function used
as the expression parameter.

language An optional scripting language specification of the expression parameter
(default is JavaScript).

showHelp() NN n/a IE 4 DOM n/a

showHelp(URL)

Displays a WinHelp window with the document specified with the URL parameter. This
method works only in the Windows version of Internet Explorer 4.

Returned Value

None.

Parameters
URL A complete or relative URL as a string.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

834 window
showModalDialog() NN n/a IE 4 DOM n/a

showModalDialog(URL[, arguments[, features]])

Displays a special window that remains atop all browser windows until the user explicitly
closes the dialog window. This kind of window is different from the browser windows
generated with the window.open() method. A modal dialog has no scriptable relationship
with its opening window once the dialog window is opened. All values necessary for
displaying content must be in the HTML document that loads into the window or be passed
as parameters. The modal dialog may then have a script set its returnValue property,
which becomes the value returned to the original script statement that opened the modal
dialog box as the returned value of the showModalDialog() method.

You can pass arguments to the modal dialog by creating a data structure that best suits the
data. For a single value, a string will do. For multiple values, you can create a string with a
unique delimiter between values, or create an array and specify the array as the second
parameter for the showModalDialog() method. A script in the document loaded into the
modal dialog can then examine the window.dialogArguments property and parse the
arguments as needed for its scripting purposes. See the dialogArguments property for an
example.

The third optional parameter lets you set physical characteristics of the dialog window.
These characteristics are specified in a CSS-style syntax. Dimensions for dialogWidth,
dialogHeight, dialogLeft, and dialogTop should be specified in pixels. An example of
a call to a modal dialog is as follows:

var answer = window.showModalDialog("subDoc.html",argsVariable,
"dialogWidth:300px; dialogHeight:200px; center:yes")

None of the third parameter characteristics are recognized by the Macintosh version of
Internet Explorer 4, which creates a full-size modal dialog.

Returned Value

The value (if any) assigned to the window.returnValue property in the document loaded
into the modal dialog window.

Parameters
URL A complete or relative URL as a string.

arguments
Data as a number, string, or array to be passed to the scripts in the document
loaded into the modal dialog.

features A string of semicolon-delimited style attributes and values to set the physical
characteristics of the modal dialog. Available attributes are: center,
dialogHeight, dialogLeft, dialogTop, dialogWidth. Values for the
center attribute are: yes | no | 1 | 0.

stop() NN n/a IE 4 DOM n/a

Halts the download of external data of any kind. This method is the same as clicking the
browser’s Stop button.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

XMP 835

DOM
 Reference
Returned Value

None.

Parameters

None.

frames[] NN 2 IE 3 DOM n/a

An array of frames defined in the window. Typically, this is used within a reference to a
window that contains a framesetting document and, therefore, has frames nested within.

Syntax
parent.frames(index).objectPropertyOrMethod
top.frames(index).objectPropertyOrMethod

XMP
See PRE.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

836
Dynamic HTML: The Definitive Reference
Copyright © 1999 Danny Goodman. Al
Chapter 10CSS sRefer-
ence

10.

ery style sheet attribute that is
well as those specified in the
oth Level 1 (CSS1) and Level 2
articular entry applies to the
panies each term listed in the
version of Navigator, Internet

erm was first introduced. One
lthough IE 3 provided support
10

Style Sheet Attribute
Reference
The purpose of this chapter is to provide a list of ev
implemented in Navigator and Internet Explorer, as
W3C recommendations for Cascading Style Sheets, b
(CSS2). So that you can readily see whether a p
browser(s) you must support, a version table accom
following pages. This table tells you at a glance the
Explorer, and W3C CSS specification in which the t
important exception concerns Internet Explorer 3. A
for many style sheet attributes later incorporated into Internet Explorer 4 and CSS1,
the baseline version for this chapter is IE 4. The assumption here is that if you are
authoring serious DHTML content, you are aiming for an audience whose mini-
mum Internet Explorer browser version is Version 4.

This chapter is organized alphabetically by CSS attribute name. For each attribute,
you can see at a glance what the value types are, whether there is a JavaScript
style sheet syntax equivalent (for Navigator only), an example of real-life source
code, and how to address the attribute from the JavaScript language (if the
attribute is scriptable). Be aware that only a handful of CSS2 attributes have been
implemented in the Version 4 browsers. Also, the version of CSS2 used as a
resource for this chapter was the Working Draft of January 28, 1998, in which sev-
eral attributes or details were preliminary.

CSS2 became final in May of 1998, so you’ll need to check the specification (http://
www.w3.org/TR/REC-CSS2/) for resolution on items that are marked preliminary
here.
, eMatter Edition
l rights reserved.

Attribute Value Types 837

CSS sReference
Attribute Value Types
Many element attributes share similar data requirements. For the sake of brevity in
the reference listings, this section describes a few common attribute value types in
more detail than is possible within each listing. Whenever you see one of these
attribute value types associated with an attribute, consult this section for a descrip-
tion of the type.

Length

A length value defines a linear measure of document real estate. Length units may
be relative or absolute. A relative unit depends upon variables such as the dot
pitch or pixel density of the video display that shows a document. Relative units in
CSS are pixels (px), ems (em), and exes (ex). An em is the actual height of the ele-
ment’s font as rendered on a given display device; an ex is the height of a lower-
case “x” under the same conditions. The exception to this rule is when em and ex
units are used to define the font-size attribute, in which case the units are rela-
tive to the font size of the parent element.

There is a special case when a relative value is to be inherited by a child element.
In those circumstances, the child element inherits the computed value of the
attribute (computed at the time of the attribute definition), rather than an adjusted
value. For example, if a BODY element specifies a font-size of 10pt and a
text-indent of 2em (equaling 20pt), the text-indent value inherited by P or
other elements within the BODY element is equal to 20pt, regardless of what the
current font-size of the other element may be. To override the inherited value,
the P or other element needs to reassign a text-indent attribute for that ele-
ment (or other outer container that intervenes from the BODY).

Absolute length units are intended for output media whose physical properties are
constant (such as a PostScript printer). Although there is nothing preventing you
from using absolute or relative units interchangeably, you need to be aware of the
consequences given your audience. Absolute length units in CSS are inches (in),
centimeters (cm), millimeters (mm), picas (pi), and points (pt).

URI and URL

The term Universal Resource Identifier (URI) is a broad term for an address of con-
tent on the Web. A Universal Resource Locator (URL) is a type of URI. For most
web authoring, you can think of them as one and the same, because most web
browsers restrict their focus to URLs. A URL may be complete (including the
protocol, host, domain, and the rest) or may be relative to the URL of the current
document. In the latter case, this means the URL may consist of an anchor, file, or
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

838 Attribute Value Types
pathname. The CSS attribute syntax prescribes a special format for specifying a
URI attribute value, as follows:

attributeName: url(actualURL)

This format allows a browser to distinguish a URI value from another type of string
value, especially when the attribute can accept a variety of value types.

Colors

A color value can be assigned either via an RGB (red-green-blue) value or plain-
language equivalent (see Appendix A, Color Names and RGB Values). For style
sheet RGB values, you have a choice of three formats: hexadecimal triplet, deci-
mal values, or percentage values. A hexadecimal triplet consists of three pairs of
hexadecimal (base 16) numbers that range between values of 00 and FF, corre-
sponding to the red, green, and blue components of the color. The three pairs of
numbers are bunched together and preceded by a pound sign (#). Therefore, the
reddest of reds has all red (FF) and none (00) of the other two colors: #FF0000;
pure blue is #0000FF. Letters A through F can also be lowercase letters.

The other types of RGB values require a prefix of rgb() with a comma-delimited
list of red, green, and blue values in the parentheses. As decimal values, each
color can range from 0 through 255, with zero meaning the complete absence of a
particular color. You can also specify each value by a percentage. The following
examples show four different ways of specifying pure green:

color: green
color: #00FF00
color: rgb(0, 255, 0)
color: rgb(0%, 100%, 0%)

If you exceed the maximum allowable values in the last two examples, the
browser trims the values back to their maximums.

These numbering schemes obviously lead to a potentially huge number of combi-
nations (over 16 million), but not all video monitors are set to distinguish among
millions of colors. Therefore, you may wish to limit yourself to a more modest pal-
ette of colors known as the web palette. A fine reference of colors that work well
on all browsers at popular bit-depth settings can be found at http://
www.lynda.com/hexh.html.

The CSS2 specification adds another dimension to color naming: you can specify
colors that the user has assigned to specific user interface items in the operating
system’s control panel. Such colors are typically adjustable for items like button
label text, scrollbars, 3-D shadows, and so on. A color-blind user, for example,
may have a carefully crafted set of colors that provide necessary contrast to see
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Pseudo-Elements and Pseudo-Classes 839

CSS sReference
screen elements. To link those colors to a style, use any of the following key-
words in place of the color attribute value:

Pseudo-Elements and Pseudo-Classes
Most style sheet rules are associated with distinct HTML elements or groups of ele-
ments identified via style sheet selectors, such as classes, IDs, and contextual
selectors (see Chapter 3, Adding Style Sheets to Documents). In rare instances, you
might want to assign a style to a well-defined component of an element or to all
elements that exhibit a particular state. CSS2 recommends that browsers expose
the first letter and first line of a paragraph so that a style sheet rule can focus only
on that portion of the element. For example, by careful application of attributes,
you can create a drop cap initial letter for a paragraph with the following defini-
tion:

P:first-letter {font-size: 36pt; font-weight: 600;
 font-family: Rune serif; float: left}

This kind of subcomponent is called a pseudo-element. A pseudo-element is con-
nected to an element by virtue of the colon delimiter.

The A element has readily distinguishable states: a link that has not been visited, a
link being clicked on, a link that has been visited in recent history. These states
are called pseudo-classes; they work like class selector definitions but don’t have to
be labeled as such in their element tags.

Table 10-1provides a summary of pseudo-elements supported in CSS2. None of
these are implemented in the Version 4 browsers but will likely be available in
future browsers.

activeborder highlight scrollbar
activecaption highlighttext threeddarkshadow
appworkspace inactiveborder threedface
background inactivecaption threedhighlight
buttonface inactivecaptiontext threedlightshadow
buttonhighlight infobackground threedshadow
buttontext infotext window
captiontext menu windowframe
graytext menutext windowtext

Table 10-1. CSS2 Pseudo-Elements

Name NN IE CSS Description
:after - - 2 The space immediately after an element

(see content attribute)
:before - - 2 The space immediately before an element

(see content attribute)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

840 At-Rules
Table 10-2 provides a summary of pseudo-classes supported by CSS2. Several of
these are implemented in Internet Explorer 4.

At-Rules
CSS2 defines an extensible structure for declarations or directives (commands, if
you will) that are part of style sheet definitions. They are called at-rules because
the rule starts with the “at” symbol (@) followed by an identifier for the
declaration. Each at-rule may then include one or more descriptors that define the
characteristics of the rule. In a simplified example of an at-rule for embedding a
downloadable font, the format for making the at-rule declaration and assigning
descriptors is as follows:

<STYLE TYPE="text/css">
@font-face {font-family: stylish; url(fonts/stylish.eot)}
</STYLE>

This example merely downloads the font and associates it with a font family name.
Other style sheet rules can then apply that font family name to the font-family
style attribute.

The CSS2 specification includes a few at-rules of its own, for tasks such as direct-
ing a browser to import a style sheet from an external file or preparing page

:first-letter - - 2 The first letter of a P element
:first-line - - 2 The first line of a P element

Table 10-2. CSS2 Pseudo-Classes

Name NN IE CSS Description
:active - 4 2 An A element being clicked on by the user
:first - - 2 First page of a document (with @page declaration)
:first-child - - 2 Any element that is the first child of another element
:hover - 4 2 An A element that has a cursor on top of it
:left - - 2 A left-facing page (with @page declaration)
:link - 4 2 An A element that has not yet been visited
:right - - 2 A right-facing page (with @page declaration)
:visited - 4 2 An A element that has been visited within the

browser’s history

Table 10-1. CSS2 Pseudo-Elements (continued)

Name NN IE CSS Description
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Conventions 841

CSS sReference
output for printers. Each browser can add its own at-rules as needed. Table 10-3
provides a summary of the at-rules supported by CSS.

Conventions
The CSS syntax descriptions shown throughout this chapter adhere to the follow-
ing guidelines:

• Words in the Constant Width font are keywords or constant values to be
used as-is.

• Words in the Constant Width Italic font are placeholders for values.

• A value contained by square brackets ([]) is optional.

• A series of two or more values separated by a pipe symbol (|) represent items
in a list of acceptable values to be used in the position shown.

• A few listings show numbers in brackets ({1,2}) after a value. The numbers
indicate the minimum and maximum number of space-delimited values you
can specify.

• A double-pipe symbol (||) indicates that the value to the right of the symbol
is optional.

The category listing for JavaScript Equivalent is provided only when such an
equivalent exists in Navigator 4 JavaScript Style Sheets.

The Applies To category advises which HTML elements can be influenced by the
style attribute. Some style attributes can be applied only to block-level, inline, or

Table 10-3. CSS2 At-Rules

Name NN IE CSS Description
@font-face - 4 1 Font description to assist in font-matching between an

embedded font and the client system font (or down-
loaded font). CSS2 defines nearly two dozen finely
detailed descriptors that may be of interest to authors
who are concerned about the extremely accurate
representation of a font in a document (primarily for
printing).

@import - 4 1 Imports an external style sheet. See Chapter 3 for the
impact on the cascade.

@media - - 2 Defines an output media type for one or more style
sheet rules. Rules assigned to the same selectors but
inside different @media rules (e.g., @media print or
@media screen) adhere to media-specific rules when
the document is rendered in the specified medium.

@page - - 2 Defines the page box’s size, margins, orientation, crop
marks, and other page-related attributes governing the
printing of the document.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

842 azimuth
replaced elements. A block-level element is one that always starts on a new line
and forces a new line after the end of the element (H1 and P elements, for exam-
ple). An inline element is one that you can place in the middle of a text line with-
out disturbing the content flow (EM elements, for example). A replaced element is
a block-level or inline element whose content may be changed dynamically with-
out requiring any reflow of surrounding content. The IMG element falls into this
category because you can swap image source files within an IMG element’s rect-
angular space.

A listing category called Initial Value serves the same purpose as the Default cate-
gory in other reference chapters. The terminology used in this chapter conforms
with the terminology of the CSS specification.

Alphabetical Attribute Reference

azimuth NN n/a IE n/a CSS 2

Inherited: Yes

Given a listener at the center of a circular sound space (like in a surround-sound-equipped
theater), azimuth sets the horizontal angle of the source of the sound (for example, in a
text-to-speech browser). See also the elevation attribute.

CSS Syntax
azimuth: angle | angleConstant || direction

Value

Up to two values. One represents the angle, clockwise from straight ahead; the second is a
20-degree incremental movement to the left or right. An angle value is any value in the
range of -360 to +360 (inclusive) plus the letters “deg”, as in 90deg. The value 0deg is
directly in front of the listener. To set the angle to the left of the listener, the value can be
either -90deg or 270deg. Optionally, you can choose an angleConstant value from a
large library of descriptions that correspond to fixed points around the circle. If you add the
behind modifier, the values shift from in front of the listener to behind the listener.

Value Equals Value Equals
center 0deg center behind 180deg
center-right 20deg center-right behind 160deg
right 40deg right behind 140deg
far-right 60deg far-right behind 120deg
right-side 90deg right-side behind 90deg
left-side 270deg left-side behind 270deg
far-left 300deg far-left behind 240deg
left 320deg left behind 220deg
center-left 340deg center-left behind 200deg
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

background-attachment 843

CSS sReference
For the direction value, you can choose from two constants: leftwards | rightwards.
These settings shift the sound 20 degrees in the named direction.

Initial Value

center

Example
H1 {azimuth: 45deg}
P.aside {azimuth: center-right behind}

Applies To

All elements.

background NN n/a IE 4 CSS 1

Inherited: No

A shortcut attribute that lets you set up to five separate (but related) background-style
attributes in one attribute statement. Values can be in any order, each one delimited by a
space. Although the attribute is not officially available in Navigator 4, some combinations of
values may work with it. It is a convenient attribute, so it may be worth experimenting with
it in Navigator if you need cross-browser settings.

CSS Syntax
background: background-attachment || background-color || background-image ||
background-position || background-repeat

Value

Any combination of the five background-style attribute values, in any order. Any attribute
not specified is assigned its initial value. See each attribute for details about the expected
values.

Initial Value

None.

Example BODY {background: url(watermark.jpg) repeat fixed}

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.background

background-attachment NN n/a IE 4 CSS 1

Inherited: No

When an image is applied to the element background (with the background-image
attribute), the background-attachment attribute sets how the image is attached to the
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

844 background-color
document. The image can remain fixed within the viewable area of the element (the view-
port), or it may scroll with the element as the document is scrolled. During scrolling, a fixed
attachment looks like a stationary backdrop to rolling credits of a movie.

CSS Syntax
background-attachment: fixed | scroll

Value

The fixed value keeps the image stationary in the element viewport; the scroll value lets
the image scroll with the document content.

Initial Value

scroll

Example BODY {background-attachment: fixed}

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.backgroundAttachment

background-color NN 4 IE 4 CSS 1

Inherited: No

Sets the background color for the element. Although it may appear as though a nested
element’s background-color attribute is inherited, in truth the initial value is transparent,
which lets the next outermost colored element show through whitespace of the current
element.

CSS Syntax
background-color: color

JavaScript Equivalent
backgroundColor

Value

Any valid color specification (see description at beginning of the chapter) or transparent.

Initial Value

transparent

Example
.highlighter {background-color: yellow}

Applies To

All elements.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

background-position 845

CSS sReference
Object Model Reference
IE [window.]document.all.elementID.style.backgroundColor

background-image NN 4 IE 4 CSS 1

Inherited: No

Sets the background image (if any) for the element. If you set a background-color for the
element as well, the color appears if the image fails to load; otherwise, the image overlays
the color. Transparent pixels of the image allow a background color to show through. See
also the background-attachment attribute.

CSS Syntax
background-image: uri | none

JavaScript Equivalent
backgroundImage

Value

To specify a URL, use the url() wrapper for the attribute value. You can omit the attribute
or specify none to prevent an image from loading into the element’s background.

Initial Value

none

Example H1 {background-image: url(watermark.jpg)}

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.backgroundImage

background-position NN n/a IE 4 CSS 2

Inherited: No

Establishes the location of the left and top edges of the background image specified with
the background-image attribute. The behavior of this attribute can be erratic in Internet
Explorer 4 for the Macintosh.

CSS Syntax
background-position: [percentage | length] {1,2} |
 [top |center |bottom] ||[left | center | right]

Value

You can specify one or two percentages, which are the percentage of the block-level
element’s box width and height (respectively) at which the image (or repeated images)
begins. If you supply only one percentage value, it applies to the horizontal measure, and
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

846 background-repeat
the vertical measure is automatically set to 50%. Instead of percentages, you can specify
length values (in the unit of measure that best suits the medium). You can also mix a
percentage with a length. In lieu of the numerical values, you can create combinations of
values with the two sets of constant values. Select one from each collection, as in top left,
top right, or bottom center. Whenever you specify two values, they must be separated
by a space.

Initial Value

0% 0%

Example
DIV.marked {background-image: url(watermark.jpg);
 background-position: center top}

Applies To

Block-level and replaced elements.

Object Model Reference
IE [window.]document.all.elementID.style.backgroundPosition

background-repeat NN n/a IE 4 CSS 1

Inherited: No

Sets whether a background image (specified with the background-image attribute) should
repeat and if so, along which axes. You can use repeating background images to create
horizontal and vertical bands.

CSS Syntax
background-repeat: no-repeat | repeat | repeat-x | repeat-y

Value

With a setting of no-repeat, one instance of the image appears in the location within the
element established by the background-position attribute (default is the top-left corner).
Normal repeats are performed along both axes, but you can have the image repeat down a
single column (repeat-y) or across a single row (repeat-x).

Initial Value

repeat

Example
BODY {background-image: url(icon.gif); background-repeat: repeat-y}

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.backgroundRepeat
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

border-bottom, border-left, border-right, border-top 847

CSS sReference
border NN n/a IE 4 CSS 1

Inherited: No

A shorthand attribute for setting the width, style, and/or color of all four borders around an
element in one assignment statement. Whichever attributes you don’t explicitly set with this
attribute assume their initial values. Numerous other attributes allow you to set the width,
style, and color of individual edges or groups of edges, if you don’t want all four edges to
be the same.

Due to differences in the way browsers define their default behavior with regard to borders,
every style sheet border rule should include the width and style settings. Failure to specify
both attributes may result in the border not being seen in one browser or the other.

CSS Syntax
border: border-width || border-style || color

Value

For the border-width and border-style attribute values, see the respective attributes in
this chapter. For details on the color value, see the section about colors at the beginning
of this chapter.

Initial Value

None.

Example P {border: groove darkred 3px}

Applies To

All elements (CSS); block and replaced elements (IE).

Object Model Reference
IE [window.]document.all.elementID.style.border

border-bottom, border-left,
border-right, border-top NN n/a IE 4 CSS 1

Inherited: No

All four attributes are shorthand attributes for setting the width, style, and/or color of a
single border edge of an element in one assignment statement. Whichever attributes you
don’t explicitly set with this attribute assume their initial values.

CSS Syntax
border-bottom: border-bottom-width || border-bottom-style || color
border-left: border-left-width || border-left-style || color
border-right: border-right-width || border-right-style || color
border-top: border-top-width || border-top-style || color
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

848 border-bottom-color, border-left-color, border-right-color, border-top-color
Value

For the width and style attribute values, see the border-bottom-width and border-
bottom-style attributes in this chapter. For details on the color value, see the section
about colors at the beginning of this chapter.

Initial Value

None.

Example
P {border-bottom: solid lightgreen 3px}
P {border-left: solid lightgreen 6px}
P {border-right: solid lightgreen 3px}
P {border-top: solid lightgreen 6px}

Applies To

All elements (CSS); block and replaced elements (IE).

Object Model Reference
IE [window.]document.all.elementID.style.borderBottom

[window.]document.all.elementID.style.borderLeft
[window.]document.all.elementID.style.borderRight
[window.]document.all.elementID.style.borderTop

border-bottom-color, border-left-color,
border-right-color, border-top-color NN n/a IE 4 CSS 2

Inherited: No

Each attribute sets the color of a single border edge of an element. This power is easy to
abuse by mixing colors that don’t belong together. See also the border-color attribute for
setting the color of multiple edges in one statement.

CSS Syntax
border-bottom-color: color
border-left-color: color
border-right-color: color
border-top-color: color

Value

For details on the color value, see the section about colors at the beginning of this
chapter.

Initial Value

None.

Example
P {border-bottom-color: gray}
DIV {border-left-color: #33c088}
P.special {border-right-color: rgb(150, 75, 0)}
H3 {border-top-color: rgb(100%, 50%, 21%)}
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

border-bottom-style, border-left-style, border-right-style, border-top-style 849

CSS sReference
Applies To

All elements (CSS); block and replaced elements (IE).

Object Model Reference
IE [window.]document.all.elementID.style.borderBottomColor

[window.]document.all.elementID.style.borderLeftColor
[window.]document.all.elementID.style.borderRightColor
[window.]document.all.elementID.style.borderTopColor

border-bottom-style, border-left-style,
border-right-style, border-top-style NN n/a IE 4 CSS 2

Inherited: No

Each attribute sets the line style of a single border edge of an element. The edge-specific
attributes let you override a style that has been applied to all four edges with the border or
border-style attributes, but the edge-specific setting must come after the other one (in
source code order) in the style sheet rule. See also the border-style attribute for setting
the style of multiple edges in one statement.

CSS Syntax
border-bottom-style: style
border-left-style: style
border-right-style: style
border-top-style: style

Value

Style values are constants that are associated with specific ways of rendering border lines.
Not all browsers recognize all of the values in the CSS recommendation. Style support is as
follows:

*Although not officially supported in Internet Explorer 4, the Mac version renders dashed and dotted bor-
ders accurately; the Windows version treats them as solid borders.

The precise manner in which browsers interpret the definitions of the style values is far
from universal. Figure 10-1 shows a gallery of all styles as rendered by Windows and
Macintosh versions of both Navigator 4 and Internet Explorer 4. Do not expect the exact
same look in all browsers.

Value NN IE CSS
dashed - -* 1
dotted - -* 1
double 4 4 1
groove 4 4 1
hidden - - 2
inset 4 4 1
none 4 4 1
outset 4 4 1
ridge 4 4 1
solid 4 4 1
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

850 border-bottom-width, border-left-width, border-right-width, border-top-width
Initial Value

none

Example
P {border-style: solid; border-bottom-style: none}
DIV {border-left-style: ridge}

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.borderBottomStyle

[window.]document.all.elementID.style.borderLeftStyle
[window.]document.all.elementID.style.borderRightStyle
[window.]document.all.elementID.style.borderTopStyle

border-bottom-width, border-left-width,
border-right-width, border-top-width NN 4 IE 4 CSS 1

Inherited: No

Each attribute sets the width of a single border edge of an element. Note that Navigator’s
initial value is zero, which means that you must set the width for all border attribute settings

Figure 10-1. border-style gallery

NN 4/Mac NN 4/Win IE 4/Mac IE 4/Win
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

border-collapse 851

CSS sReference
if you expect to see the border in Navigator. See also the border-width attribute for
setting the width of multiple edges in one statement.

CSS Syntax
border-bottom-width: thin | medium | thick | length
border-left-width: thin | medium | thick | length
border-right-width: thin | medium | thick | length
border-top-width: thin | medium | thick | length

JavaScript Equivalent
borderBottomWidth
borderLeftWidth
borderRightWidth
borderTopWidth

Value

Three constants—thin | medium | thick—allow the browser to define exactly how many
pixels are used to show the border. For more precision, you can also assign a length value
(see the discussion of length values at the beginning of this chapter).

Initial Value

medium (IE); 0 (NN).

Example
H2 {border-bottom-width: 2px}
DIV {border-left-width: thin}
P.special {border-right-width: 0.5em}

Applies To

All elements (CSS and NN); block and replaced elements (IE).

Object Model Reference
IE [window.]document.all.elementID.style.borderBottomWidth

[window.]document.all.elementID.style.borderLeftWidth
[window.]document.all.elementID.style.borderRightWidth
[window.]document.all.elementID.style.borderTopWidth

border-collapse NN n/a IE n/a CSS 2

Inherited: No

Sets whether borders of adjacent table elements (cells, row groups, column groups) are
rendered separately or collapsed (merged) to ignore any padding or margins between adja-
cent borders.

CSS Syntax
border-collapse: collapse | separate

Value Constant values: collapse | separate
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

852 border-color
Initial Value

separate

Applies To

Table elements.

border-color NN 4 IE 4 CSS 1

Inherited: No

A shortcut attribute that lets you set multiple border edges to the same or different colors.
Navigator 4 allows only a single value, which applies to all four edges. For Internet
Explorer (and the CSS specification), you may supply one to four space-delimited color
values. The number of values determines which sides receive the assigned colors.

CSS Syntax
border-color: color {1,4}

JavaScript Equivalent
borderColor

Value

For Navigator, one color value only.

In Internet Explorer, this attribute accepts one, two, three, or four color values, depending
on how many and which borders you want to set with specific colors. Value quantities and
positions are interpreted as follows:

Initial Value

The element’s color property.

Example
H2 {border-color: red blue red}
DIV {border-color: red rgb(0,0,255) red}

Applies To

All elements (CSS and NN); block and replaced elements (IE).

Object Model Reference
IE [window.]document.all.elementID.style.borderColor

Number
of Values Effect
1 All four borders set to value
2 Top and bottom borders set to the first value, right and left borders set to the

second value
3 Top border set to first value, right and left borders set to second value,

bottom border set to third value
4 Top, right, bottom, and left borders set, respectively
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

border-style 853

CSS sReference
border-style NN 4 IE 4 CSS 1

Inherited: No

A shortcut attribute that lets you set multiple border edges to the same or different style.
Navigator 4 allows only a single value, which applies to all four edges. For Internet
Explorer (and the CSS specification), you may supply one to four space-delimited border
style values. The number of values determines which sides receive the assigned colors.

CSS Syntax
border-style: borderStyle {1,4}

JavaScript Equivalent
borderStyle

Value

Style values are constants that are associated with specific ways of rendering border lines.
Not all browsers recognize all of the values in the CSS recommendation. Style support is as
follows:

*Although not officially supported in Internet Explorer 4, the Mac version renders dashed and dotted bor-
ders accurately; the Windows version treats them as solid borders.

The precise manner in which browsers interpret the definitions of the style values is far
from universal. Figure 10-1 showed a gallery of all styles as rendered by Windows and
Macintosh versions of both Navigator 4 and Internet Explorer 4. Do not expect the exact
same look in all browsers.

For Navigator, you may apply one style value only.

In Internet Explorer, this attribute accepts one, two, three, or four borderStyle values,
depending on how many and which borders you want to set with specific styles. Value
quantities and positions are interpreted as follows:

Value NN IE CSS
dashed - -* 1
dotted - -* 1
double 4 4 1
groove 4 4 1
hidden - - 2
inset 4 4 1
none 4 4 1
outset 4 4 1
ridge 4 4 1
solid 4 4 1

Number
of Values Effect
1 All four borders set to value
2 Top and bottom borders set to the first value, right and left borders set to the

second value
3 Top border set to first value, right and left borders set to second value,

bottom border set to third value
4 Top, right, bottom, and left borders set, respectively
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

854 border-width
Initial Value

none

Example
H1 {border-style: ridge; border-width: 3px}
DIV {border-style: solid double; border-width: 4px}

Applies To

All elements (CSS and NN); block and replaced elements (IE).

Object Model Reference
IE [window.]document.all.elementID.style.borderStyle

border-width NN 4 IE 4 CSS 1

Inherited: No

A shortcut attribute that lets you set multiple border edges to the same or different width.
For both browsers, you may supply one to four space-delimited width length values. The
number of values determines which sides receive the assigned widths.

CSS Syntax
border-width: thin | medium | thick | length {1,4}

JavaScript Equivalent
borderWidths()

Value

Three constants—thin | medium | thick—allow the browser to define exactly how many
pixels are used to show the border. For more precision, you can also assign a length value
(see the discussion of length values at the beginning of this chapter).

This attribute accepts one, two, three, or four borderStyle values, depending on how
many and which borders you want to set with specific styles. Value quantities and posi-
tions are interpreted as follows:

Initial Value

medium (IE); 0 (NN)

Example
H1 {border-style: ridge; border-width: 3px 5px 3px}
DIV {border-style: solid double; border-width: 4px}

Number
of Values Effect
1 All four borders set to value
2 Top and bottom borders set to the first value, right and left borders set to the

second value
3 Top border set to first value, right and left borders set to second value,

bottom border set to third value
4 Top, right, bottom, and left borders set, respectively
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

caption-side 855

CSS sReference
Applies To

All elements (CSS and NN); block and replaced elements (IE).

Object Model Reference
IE [window.]document.all.elementID.style.borderStyle

bottom NN n/a IE n/a CSS 2

Inherited: No

For positionable elements, defines the position of the bottom edge of an element content
(exclusive of borders and margins) relative to the bottom edge of the next outermost block
content container. When the element is absolute-positioned, the offset takes the place of a
bottom margin setting for the element (although padding may still be set). When the
element is relative-positioned, the offset is based on the bottom edge of the inline location
of where the element would normally appear in the content.

CSS Syntax
bottom: length | percentage | auto

Value

See the discussion about length values at the beginning of this chapter. Negative lengths
may be allowed in some contexts, but be sure to test the results on all browsers. You may
also specify a percentage value, which is calculated based on the height of the next outer-
most container. The setting of auto lets the browser determine the bottom offset of the
element box on its naturally flowing offset within the containing box.

Initial Value

auto

Applies To

All elements.

caption-side NN n/a IE n/a CSS 2

Inherited: Yes

Positions the CAPTION element above or below the tabular content of the enclosing TABLE
element. This attribute supplants some deprecated ALIGN attribute settings of the CAPTION
element.

CSS Syntax
caption-side: top | bottom

Value Either of the two constant values: top | bottom.

Initial Value

top
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

856 clear
Applies To

CAPTION elements.

cell-spacing NN n/a IE n/a CSS 2

Inherited: Yes

Determines the size of the space (if any) between cell borders in a table. This attribute
requires that the display attribute be set to table. If you include only one length value, it
applies to both the horizontal and vertical cell spacing; for two values, the first applies to
the horizontal and the second to the vertical. See Figure 10-2 for a synopsis of a table’s
numerous dimension definitions.

CSS Syntax
cell-spacing: length[length] | none

Value

See the discussion of length values at the beginning of this chapter. The none value applies
to both vertical and horizontal cell spacing. If you want no spacing along one axis, set its
value to zero.

Initial Value

None.

Applies To

All elements.

clear NN 4 IE 4 CSS 1

Inherited: No

Defines whether the element allows itself to be displayed in the same horizontal band as a
floating element, such as an image. Typically, another element in the vicinity has its float
style attribute set to left or right. To prevent the current element from being in the same

Figure 10-2. The geometry of a TABLE element

Table width

cell-spacing Cell width

Table border

Cell border
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

clip 857

CSS sReference
band as the floating block, set the clear attribute to the same side (left or right). If you
aren’t sure where the potential overlap might occur, set the clear attribute to both. An
element whose clear attribute is set to a value other than none is rendered at the begin-
ning of the next available line below the floating element.

CSS Syntax
clear: both | left | none | right

JavaScript Equivalent
clear

Value Any of the following constants: both | left | none | right

Initial Value

None.

Example

<H1 STYLE="clear: right">Giantco Corporation</H1>

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.clear

clip NN 4 IE 4 CSS 2

Inherited: No

Defines a clipping region of a positionable element. The clipping region is the area of the
element layer in which content is visible. For the best results in clipping content, wrap the
content-holding element inside a DIV element whose clip attribute is set to the desired
region. Clipping may not work properly in Internet Explorer 4 for the Macintosh. Also,
when a clipped element is displayed at the very bottom of a page in Navigator 4, the
browser window may not allow you to scroll to view the very bottom of the clipping
region.

CSS Syntax
clip: rect(lengthTop lengthRight lengthBottom lengthLeft) | auto

JavaScript Equivalent
clip.bottom
clip.left
clip.right
clip.top

Value

Extending to CSS2, the only shape recognized for the clip attribute is rect. Other shapes
may be admitted in the future.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

858 color
When specifying lengths for each side of the clipping rectangle, observe the clockwise
order of values: top, right, bottom, left. See the discussion about length values at the begin-
ning of this chapter. A value of auto sets the clipping region to the block that contains the
content. In Navigator, this block cinches up to the width and height of the available
content; in Internet Explorer, the width may extend to the width of the next outermost
container (such as the BODY element).

Initial Value

auto

Example

Applies To

Any element with a position:absolute attribute setting.

Object Model Reference
IE [window.]document.all.elementID.style.clip

color NN 4 IE 4 CSS 1

Inherited: Yes

Defines the foreground text color of the element. For some graphically oriented elements,
such as form controls, the color attribute may also be applied to element edges or other
features. Such extra-curricular behavior is browser-specific and may not be the same across
browsers.

CSS Syntax
color: color

JavaScript Equivalent
color

Value See the discussion of color attribute values at the beginning of this chapter.

Initial Value

black

Example TH {color: darkred}

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.color
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

content 859

CSS sReference
column-span NN n/a IE n/a CSS 2

Inherited: No

Sets the number of columns to be spanned by a table cell, column, or column group. Anal-
ogous to the COLSPAN attribute of a TD or TH element and the SPAN attribute of a COL or
COLGROUP element.

CSS Syntax
column-span: integer

Value Any positive integer representing the number of columns.

Initial Value

1

Example #divider {column-span: 5}

Applies To

TD, TH, COL, and COLGROUP elements and any other cell, column, or column group type of
element.

content NN n/a IE n/a CSS 2

Inherited: No

Note that the details on this attribute are very preliminary. Defines the actual content or
source of content to be displayed before and/or after the current element. This attribute is
set only with the :before and :after pseudo-elements associated with a real element. For
example, in the following style sheet rule:

BLOCKQUOTE:before, BLOCKQUOTE:after {
content: "<HR STYLE=\"align: middle; width: 50%\">"}

a horizontal rule is drawn before and after every BLOCKQUOTE element. In this case, the
content is a string of text that is rendered as HTML. If the situation warrants it, an external
document can be assigned to the content attribute.

CSS Syntax
content: string | uri | counter+

Value

For a string value, any text inside a quoted pair. Internal quote marks should be escaped
(\"). For a URI, any valid complete or relative URL. (Details of counter and anticipated
future value types are not yet available.)

Initial Value

"" (empty string)

Example BODY:before {content: header.htm}
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

860 cue-after, cue-before
Applies To

All elements plus a :before and/or :after pseudo-element.

cue NN n/a IE n/a CSS 2

Inherited: No

For aural style sheets only, provides a shorthand attribute for setting cue-before and cue-
after attribute settings. A cue is a sound (also known as an auditory icon) that can be
used to aurally delimit the reading of document content. Cue attributes are URIs to sound
resources.

CSS Syntax
cue: cue-before || cue-after

Value

If there are two values, the first is applied to the cue-before attribute and the second to
the cue-after attribute. If there is only one value, the same auditory icon is applied to
both cue-before and cue-after.

Initial Value

None.

Applies To

All elements.

cue-after, cue-before NN n/a IE n/a CSS 2

Inherited: No

For aural style sheets only, a cue is a sound (also known as an auditory icon) that can be
used to aurally delimit the reading of document content. The cue-before and cue-after
attributes are URIs to sound files that are to be played before and after the content is
rendered via text-to-speech or other aural medium.

CSS Syntax
cue-after: uri | none
cue-before: uri | none

Value

Any valid complete or relative URL to a sound file in a MIME type supported by the
browser. You may apply the same values to both attributes for the same style selector if it
makes aural sense for the listener.

Initial Value

none

Example LI {cue-before: url(ding.wav); cue-after(dong.wav)}
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

cursor 861

CSS sReference
Applies To

All elements.

cursor NN n/a IE 4 CSS 2

Inherited: Yes

Sets the shape of the cursor when the screen pointer is on the element. The precise look of
cursors depends on the operating system. Before deploying a modified cursor, be sure you
understand the standard ways that the various types of cursors are used within the browser
and operating system. Users expect a cursor design to mean the same thing across all appli-
cations. Figure 10-3 offers a gallery of Windows and Macintosh cursors for each of the
cursor constant settings provided by Internet Explorer 4.

CSS Syntax
cursor: auto | crosshair | default | e-resize | help | move | n-resize |
ne-resize | nw-resize | pointer | s-resize | se-resize | sw-resize | text |
w-resize || wait || uri

Value

Any one cursor constant. Note that the CSS working draft specifies the pointer value for
the cursor that points to a link value, whereas Internet Explorer 4 implements the value as
hand. Although not supported in Internet Explorer 4, the URI value (specified in CSS2) indi-
cates possible future support for a downloadable cursor. Presumably, browsers will allow a
uniform file format across all operating systems.

Initial Value

auto

Example A.helpLink {cursor: help}

Figure 10-3. Internet Explorer cursor gallery

crosshair

text

e-resize

n-resize

s-resize

hand

wait

ne-resize

se-resize

w-resize

move

help

nw-resize

sw-resize

default
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

862 display
Applies To

All elements.

direction NN n/a IE n/a CSS 2

Inherited: Yes

Sets the direction of flow of inline portions of content (such as text) and the order in which
table cells are filled along a row. Analogous to the DIR attribute of most elements, the
direction style attribute lets you override the browser’s default rendering direction for other
languages or special content.

CSS Syntax
direction: ltr | rtl | ltr-override | rtl-override

Value

Any of the four constants. The value ltr stands for left-to-right; rtl stands for right-to-left.
The override values let you override the direction that is specified from the browser’s
adherence to a standard Unicode bidirectional algorithm.

Initial Value

rtl

Applies To

All elements.

display NN 4 IE 4 CSS 1

Inherited: No

A multipurpose attribute that determines whether the element should be rendered in the
document (and space reserved for it in the content). If the element is to be rendered, the
attribute sets what type of element (block or inline) it is. The list of available values recog-
nized by Navigator 4 and Internet Explorer 4 (and CSS1) is fairly short: block | inline |
list-item | none, yet both browsers do not actually change the element type with values
other than none. CSS2 expands the list significantly. When set to none, the element is
hidden from view, and all surrounding content cinches up to occupy whatever space the
element would normally occupy. This is different from the visibility attribute, which
reserves space for the element while hiding it from view.

CSS Syntax
display: displayType

JavaScript Equivalent
display
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

elevation 863

CSS sReference
Value

One of the constant values: block | compact | inline | inline-table | list-item |
none | run-in | table | table-caption | table-cell | table-column-group |
table-footer-group | table-header-group | table-row | table-row-group.

Initial Value

inline

Example hidden {display: none}

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.display

elevation NN n/a IE n/a CSS 2

Inherited: Yes

Given a listener at the center of a three-dimensional sound space (like in a surround-sound-
equipped theater), elevation sets the vertical angle of the source of the sound (for
example, in a text-to-speech browser). See also the azimuth attribute.

CSS Syntax
elevation: angle | angleConstant

Value

Your choice of a specific angle (in degrees) or one of the five constant values. An angle
value is any value in the range of -90 to +90 (inclusive) plus the letters “deg”, as in 90deg.
The value 0deg is at the same vertical level as the listener’s ear. To set the angle above
level, the value must be a positive value (45deg); below level requires a negative value
(-45deg). Optionally, you can choose an angleConstant value from a library of descrip-
tions that correspond to fixed points above and below level.

In combination with the azimuth attribute, you can place a sound at any point around a
spherical surround-sound stage.

Initial Value

level

Value Equals
above 90deg (directly overhead)
below -90deg (directly beneath)
higher +10 degrees from current
level 0deg (at listener’s ear level)
lower -10 degrees from current
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

864 filter
Example
H1 {elevation: -45deg}
P.heavenly {elevation: above}

Applies To

All elements.

filter NN n/a IE 4 CSS n/a

Inherited: No

Sets the visual, reveal, or blend filter used to display or change content of an element. A
visual filter can be applied to an element to produce effects such as content flipping, glow,
drop shadow, and many others. A reveal filter is applied to an element when its visibility
changes. The value of the reveal filter determines what visual effect is to be applied to the
transition from hidden to shown (or vice versa). This includes effects such as wipes, blinds,
and barn doors. A blend filter sets the speed at which a transition between states occurs. As
of this writing, the filter attribute is available only in Internet Explorer 4 but does not
work in the Macintosh version.

CSS Syntax
filter: filterType1(paramName1=value1, paramName2=value2,...)

filterType2(paramName1=value1,...) ...

Value

Each filter attribute may have more than one space-delimited filter type associated with it.
Each filter type is followed by a pair of parentheses, which may convey parameters about
the behavior of the filter for the current element. A parameter generally consists of a name/
value pair, with assignment performed by the equals symbol. See the section “Notes”, for
details on filterType values and parameters.

Initial Value

None.

Example fastStuff {filter: blur(add=true, direction=225)}

Applies To

BODY, BUTTON, IMG, INPUT, MARQUEE, TABLE, TD, TEXTAREA, TFOOT, TH, THEAD, TR, and
absolute-positioned DIV and SPAN elements.

Object Model Reference
IE [window.]document.all.elementID.style.filter

Notes

Filters are divided into three broad categories: visual, reveal, and blend. Each category has
its own parameter names. You can mix categories within a single filter attribute assignment
and have quite a bit of fun experimenting with the combinations. Observe carefully the
limitations about the elements to which you may assign filters.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

filter 865

CSS sReference
The visual filters and their parameters are as follows:

alpha() Transparency level. The opacity and finishopacity parameters can be set
from transparent (0) to opaque (100). The style parameter sets the opacity
gradient shape: uniform (0), linear (1), radial (2), rectangular (3). startX and
startY set the horizontal and vertical coordinates for opacity gradient start,
whereas finishX and finishY set the horizontal and vertical coordinates for
opacity gradient end.

blur() Gives the element impression of motion. The add parameter specifies whether
to add the original image to the blurred image (1) or to omit it (0). direction
sets the angle of the blurred image relative to the original image location: above
(0); above-right (45); right (90); below-right (135); below (180); below-left
(225); left (270); above-left (315). strength indicates the number of pixels for
the blurred image to extend.

chroma() Sets a color transparent. The color parameter sets the hexadecimal triplet value
of the color to be made transparent.

dropShadow()
Creates an offset shadow for apparent depth. The color parameter sets the
hexadecimal triplet value of color for drop shadow. offx and offy specify the
number of pixels between the element and the drop shadow along the x and y
axes (positive values to the right/down; negative to the left/up). The positive
parameter specifies whether only positive pixels generate drop shadows (1) or
transparent pixels as well (0).

flipH() Creates a horizontally mirrored image.

flipV() Creates a vertically mirrored image.

glow() Adds radiance to outer edges. The color parameter sets the hexadecimal triplet
value of the color for the radiance effect and strength sets the radiance intensity
(1-255).

grayscale()
Removes colors but retains luminance.

invert() Reverses the hue, saturation, and brightness (HSV) levels.

light() Shines a light source on the element (numerous filter method calls are available
to set specific types of light sources, locations, intensities, and colors).

mask() Creates a transparent mask. The color parameter sets the hexadecimal triplet
value of the color applied to transparent regions.

shadow() Displays the element as a solid silhouette. The color parameter sets the hexadec-
imal triplet value of the color used for shadows and direction sets the angle
of the shadow relative to the original image location: above (0); above-right
(45); right (90); below-right (135); below (180); below-left (225); left (270);
above-left (315).

wave() Renders the element with a sine wave distortion along the x-axis. The add
parameter specifies whether to add the original image to waved image (1) or
not (0). freq sets the number of waves to be applied to visual distortion, light
sets the light strength (0-100), phase sets the percentage offset for the sine
wave (0-100 corresponding to 0 to 360 degrees), and strength sets the wave
effect intensity (0-255).

xRay() Renders only the edges.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

866 float
The blend and reveal transition filters and parameters are as follows:

blendTrans()
Fades the element in or out. The duration parameter sets the floating-point
value (seconds.milliseconds) of how long the transition effect should take.

revealTrans()
Sets a transition effect between hiding and showing of an element. The dura-
tion parameter sets the floating-point value (seconds.milliseconds) of how
long the transition effect should take. transitionshape is a key integer that
corresponds to one of the following transition types:

float NN 4 IE 4 CSS 1

Inherited: No

Determines on which side of the containing box the element aligns so that other content
wraps around the element. When the attribute is set to none, the element appears in its
source code sequence, and at most, one line of surrounding text content appears in the
same horizontal band as the element.

There are some irreconcilable differences between browsers when deploying the float
style attribute, especially for objects such as images. If you follow the CSS format and assign
the float attribute to the IMG element, text tends to wrap as you’d expect in Internet
Explorer (particularly when the setting is float:left). Navigator 4, however, requires that
the IMG element be wrapped inside a DIV element, the latter receiving the float style
attribute (and other style settings, such as margins). But IE 4 reacts poorly to this combina-
tion. The most reliable cross-browser workaround for now is to avoid style sheet rules for
floating elements, and stick to the ALIGN attribute of the IMG element’s tag.

Due to the prior usage of the float keyword in JavaScript, the JavaScript syntax equiva-
lent of the float attribute is align. Assigned values are the same, however.

CSS Syntax
float: alignmentSide | none

JavaScript Equivalent
align

Value An alignmentSide is one of the following constants: left | right | none.

0 Box in 12 Random dissolve
1 Box out 13 Split vertical in
2 Circle in 14 Split vertical out
3 Circle out 15 Split horizontal in
4 Wipe up 16 Split horizontal out
5 Wipe down 17 Strips left down
6 Wipe right 18 Strips left up
7 Wipe left 19 Strips right down
8 Vertical blinds 20 Strips right up
9 Horizontal blinds 21 Random bars horizontal
10 Checkerboard across 22 Random bars vertical
11 Checkerboard down 23 Random
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

font 867

CSS sReference
Initial Value

none

Example IMG.navButton {float: right}

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.styleFloat

font NN n/a IE 4 CSS 1

Inherited: Yes

A shorthand attribute that lets you set one or more font-related attributes with one assign-
ment statement. A space-delimited list of values (in any sequence) are applied to the
specific font attribute for which the value is a valid type. In CSS2, some additional short-
circuit constants apply named system fonts that have fixed values for each of the font-
related attributes.

CSS Syntax
font: font-style || font-variant || font-weight || font-size || line-height ||
font-family | CSS2FontConstant

Value

For syntax and examples of value types for font and line attributes, see the respective
attribute listing. The CSS2 font constants are as follows: caption | icon | menu |
messagebox | smallcaption | statusbar. These constants refer to browser and oper-
ating system fonts used by the client. Their precise appearance are therefore different on
different operating systems but are consistent with the user’s expectation for a particular
type of font. In other words, these styles should be used when their function mirrors a
system or browser function.

Initial Value

None.

Example
BODY {font: 12pt serif}
H2 {font: bolder small-caps 16pt}
.iconCaption {font: caption}

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.font
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

868 font-family
font-family NN 4 IE 4 CSS 1

Inherited: Yes

Sets a prioritized list of font families to be used to render the content. One or more font
family names may be included in a space-delimited list of attribute values. If a font family
name consists of multiple words, the family name must be inside quotes.

A font family may consist of multiple font definitions. For example, a Helvetica font family
may also include a bold version and an italic version—genuinely distinct fonts rather than
the approximated versions of bold and italic. When you specify a font family by name, the
browser looks into the client’s system to see if there is a font available by that name. If not,
the browser looks to the next font family name in the list. Therefore, it is wise to include
font family names in a sequence that goes from the most esoteric to the most generic. The
final font family name should be the generic family (serif, sans-serif, cursive,
fantasy, or monospace) that most closely resembles the desired font. Bear in mind that
many fonts that are widely installed on one operating system may not be as popular on
another operating system.

Browsers following the CSS2 specification should also be smart enough to recognize
Unicode character codes and try to match them with named font families that cater to
particular languages. Ideally, this will allow a browser to mix fonts from different languages
and writing systems in the same element, provided each font-family is listed in the
attribute value.

CSS Syntax
font-family: fontFamilyName || fontFamilyName || ...

JavaScript Equivalent
fontFamily

Value

Any number of font family names, space delimited. Multiword family names must be
quoted. Recognized generic family names are: serif | sans-serif | cursive | fantasy
| monospace.

Initial Value

Browser default.

Example BODY {font-family: "Century Schoolbook" Times serif}

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.fontFamily

Notes

Navigator 4 and Internet Explorer 4 provide facilities for downloading font definition files
for a browser that doesn’t have a special font that the page designer wants for the page.
The font definition files must be created by the author using browser-specific font conver-
sion tools. Then, each browser has a different way of signalling the server to download the
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

font-size 869

CSS sReference
font definition file. For Navigator, you can use a @fontdef directive in a STYLE element or
a LINK element:

@fontdef url(http://www.giantco.com/fonts/neato.pfr)
<LINK REL=FONTDEF SRC="http://www.giantco.com/fonts/neato.pfr">

For Internet Explorer, use the @font-face directive in a STYLE element:

@font-face {font-family:Neato; src: url(http://www.giantco.com/fonts/
neato.eot}

See the previous section “At-Rules” for details on deploying this type of style rule. You then
specify the font in regular font-family style attributes. If the font has yet to download, the
browser displays the page in another font until the downloadable font has arrived. At that
point, the page is reflowed with the downloaded font.

font-size NN 4 IE 4 CSS 1

Inherited: Yes

Determines the font size of the element. The font size can be set in several ways. A collec-
tion of constants (xx-small, x-small, small, medium, large, x-large, xx-large)
defines what are known as absolute sizes. In truth, these are absolute as far as a single
browser in a single operating system goes because the reference point for these sizes varies
with browser and operating system (see Figure 10-4 and Figure 10-5 for size comparisons as
viewed on the same video monitor). But they do let the author have confidence that one
element set to large is rendered larger than another set to medium.

Another collection of constants (larger, smaller) are known as relative sizes. Because the
font-size attribute is inherited from the parent element, these relative sizes are applied to
the parent element to determine the font size of the current element. It is up to the browser
to determine exactly how much larger or smaller the font size is, and a lot depends on how
the parent element’s font size is set. If it is set with one of the absolute sizes (large, for
example), a child’s font size of larger means that the font is rendered in the browser’s

Figure 10-4. Font size constant values in Navigator on the Windows and Mac platforms

Navigator 4/Windows 95 Navigator 4/Mac
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

870 font-size
x-large size. The increments are not as clear cut when the parent font size is set with a
length or percentage.

If you elect to use a length value for the font-size attribute, choose a unit that makes the
most sense for fonts, such as points (pt) or ems (em). The latter bases its calculation on the
size of the parent element’s font size. Finally, you can set the font-size to a percentage,
which is calculated based on the size of the parent element’s font size.

CSS Syntax
font-size: absoluteSize | relativeSize | length | percentage

JavaScript Equivalent
fontSize

Value

For an absolute size, one of the following constants: xx-small | x-small | small |
medium | large | x-large | xx-large. For a relative size, one of the following
constants: larger | smaller. For a length, see the discussion about length values at the
beginning of this chapter. For a percentage, the percentage value and the % symbol.

Initial Value

medium (for BODY element); the parent element's font-size value (for all others).

Example
BODY {font-size: 14pt}
P.teeny {font-size: x-small}
EM {font-size: larger}
SPAN.larger {font-size: 150%}

Applies To

All elements.

Figure 10-5. Font size constant values in IE on the Windows and Mac platforms

Internet Explorer 4/Windows 95 Internet Explorer 4/Mac
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

font-style 871

CSS sReference
Object Model Reference
IE [window.]document.all.elementID.style.fontSize

font-size-adjust NN n/a IE n/a CSS 2

Inherited: Yes

Allows an element to preserve the x-height (measured in exes) of a “first choice” font when
substituting fonts. The z-factor is a ratio of the em- to x-heights of a font. Because different
fonts set to the same font size can look larger or smaller than neighboring fonts on a page
set to the same size, the z-factor can be used to calculate the ratio and apply it to other
fonts. Even though the resulting font size may be larger or smaller than the “first choice”
font setting, the perceived size is much more accurate. This also tends to equalize the hori-
zontal metrics of fonts so that word-wrapped lines break at the same place with different
font families.

CSS Syntax
font-size-adjust: z

Value A choice from the following constant values: z | none.

Initial Value

none

Applies To

All elements.

font-style NN 4 IE 4 CSS 1

Inherited: Yes

Determines whether the element is rendered in a normal (Roman), italic, or oblique font
style. If the font-family includes font faces labeled Italic and/or Oblique, the setting of
the font-style attribute summons those particular font faces from the browser’s system.
But if the specialized font faces are not available in the system, the normal font face is
usually algorithmically slanted to look italic. Output sent to a printer with such font settings
rely on the quality of arbitration between the client computer and printer to render an elec-
tronically generated italic font style. Although personal computer software typically includes
other kinds of font rendering under the heading of “Style,” see font-variant and font-
weight for other kinds of font “styles.”

CSS Syntax
font-style: fontStyle

JavaScript Equivalent
fontStyle
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

872 font-weight
Value

Navigator 4 recognizes: normal | italic. Internet Explorer 4 recognizes: normal |
italic | oblique but treats both italic and oblique as italic.

Initial Value

None.

Example H2 EM {font-style: italic}

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.fontStyle

font-variant NN n/a IE 4 CSS 1

Inherited: Yes

Determines whether the element should be rendered in all uppercase letters in such a way
that lowercase letters of the source code are rendered in smaller uppercase letters. If a font
family contains a small caps variant, the browser should use it automatically. More likely,
however, the browser calculates a smaller size for the uppercase letters that take the place
of source code lowercase letters. In practice, Internet Explorer 4 renders the entire source
code content as uppercase letters of the same size as the parent element’s font, regardless
of the case of the source code.

CSS Syntax
font-variant: fontVariant

Value Any of the following constant values: normal | small-caps.

Initial Value

normal

Example EM {font-variant: small-caps}

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.fontVariant

font-weight NN 4 IE 4 CSS 1

Inherited: Yes

Sets the weight (boldness) of the element’s font. CSS provides a weight rating scheme that
is more granular than most browsers render on the screen, but the finely tuned weights may
come into play when the content is sent to a printer. The scale is a numeric rating from 100
to 900 at 100-unit increments. Therefore, a font-weight of 100 is the least bold that can be
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

height 873

CSS sReference
displayed, whereas 900 is the boldest. A setting of normal (the default weight for any font)
is equivalent to a font-weight value of 400; the standard bold setting is equivalent to 700.
Other settings (bolder and lighter) let you specify a weight relative to the parent
element’s weight.

The CSS2 specification offers guidelines about how the weight values should correspond to
font family names and internal characteristics of some font definition formats. For example,
the OpenType font definition format provides slots for nine font weights. In this case, the
numeric font-weight attribute values map directly to the weight definitions in that font. If
the font family contains a face whose name contains the word Medium and one labeled
Book, Regular, Roman, or Normal, the Medium face is equated with a weight value of 500
(whereas the other is at 400). All font face names including the word Bold are equated with
a weight of 700. For font families that don’t have all nine weights assigned, the browser
should do its best to interpolate, but it is very likely that some weight values generate fonts
of the same weight.

CSS Syntax
font-weight: fontWeight

JavaScript Equivalent
fontWeight

Value

Any of the following constant values: bold | bolder | lighter | normal | 100 | 200 |
300 | 400 | 500 | 600 | 700 | 800 | 900.

Initial Value

normal

Example P EM {font-weight: bolder}

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.fontWeight

height NN 4 IE 4 CSS 1

Inherited: No

Sets the height of a block-level element’s content height (exclusive of borders, padding, and
margins). Version 4 browsers apply the height attribute only to selected elements (IE 4)
and absolute-positioned elements (which means DIV wrappers around other types of
elements), but CSS2 recommends application to all replaceable elements as well.

For absolute-positioned elements, Navigator 4 and Internet Explorer 4 react differently to
settings of the height style attribute. They agree on one thing: if the content requires more
height than is specified for the attribute, the content requirements override the attribute
value (use the clipping region to truncate the height of the viewport for the element if you
need to). But if the height attribute value produces a box that is taller than the content
requires, the browsers behave differently. Navigator cinches up the height of the box to
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

874 !important
accommodate the content (as if the height attribute is perennially set to auto), unless you
also adjust the clipping rectangle; Internet Explorer retains the attribute height. This discrep-
ancy can affect the look of borders around an absolute-positioned element generated via
CSS syntax.

CSS Syntax
height: length | percentage | auto

JavaScript Equivalent
height

Value

See the discussion about length values at the beginning of this chapter. You may also
specify a percentage value, which is calculated based on the height of the next outermost
container. The setting of auto lets the browser determine the height of the element box
based on the amount of space required to display the content.

Initial Value

auto

Example
DIV#announce {height: 240}
TEXTAREA {height: 90%}

Applies To

Navigator 4: all absolute-positioned elements.

Internet Explorer 4: APPLET, DIV, EMBED, FIELDSET, HR, IFRAME, IMG, INPUT, MARQUEE,
OBJECT, SPAN, TABLE, and TEXTAREA elements.

CSS2: all elements except nonreplaced inline elements, table column elements, and column
group elements.

Object Model Reference
IE [window.]document.all.elementID.style.height

!important NN n/a IE 4 CSS 1

Inherited: No

Increases the weight (importance) of an attribute setting with respect to cascading order.
This keyword is a declaration rather than an attribute, but it can be attached to any attribute
setting. The syntax requires an exclamation symbol between the attribute value and the
important keyword. Extra whitespace around the exclamation symbol is acceptable. See
Chapter 3.

CSS Syntax
!important

Value No values assigned to this declaration.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

letter-spacing 875

CSS sReference
Example P {font-size: 14pt ! important}

Applies To

All elements.

left NN 4 IE 4 CSS 2

Inherited: No

For positionable elements, defines the position of the left edge of an element’s box (content
plus left padding, border, and/or margin) relative to the left edge of the next outermost
block content container. When the element is relative-positioned, the offset is based on the
left edge of the inline location of where the element would normally appear in the content.

CSS Syntax
left: length | percentage | auto

JavaScript Equivalent
left

Value

See the discussion about length values at the beginning of this chapter. Negative lengths
may be allowed in some contexts, but be sure to test the results on all browsers. You may
also specify a percentage value, which is calculated based on the width of the next outer-
most container. The setting of auto lets the browser determine the left offset of the element
box on its naturally flowing offset within the containing box. Navigator tends to push up
against the left edge of the containing box, whereas Internet Explorer renders a bit of
margin.

Initial Value

auto

Example
H1 {position: relative; left: 2em}
#logo {position: absolute; left: 80px; top: 30px}

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.offsetLeft

letter-spacing NN n/a IE 4 CSS 1

Inherited: Yes

Defines the spacing between characters within an element. Browsers normally define the
character spacing based on font definitions and operating system font rendering. To over-
ride those settings, assign a length value to the letter-spacing attribute. A negative value
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

876 line-height
tightens up the spacing, but be sure to test the effect on the selected font for readability on
different operating systems.

CSS Syntax
letter-spacing: normal | length | auto

Value

See the discussion at the beginning of this chapter about length values. The best results use
units that are based on the rendered font size (em and ex). A setting of normal is how the
browser sets the letters without any intervention. A setting of auto (CSS2) is intended for
use with single-line elements (such as H1 and the like) to space the letters such that the
element content appears on a single line given the current width of the containing box.

Initial Value

normal

Example
.tight {letter-spacing: -0.03em}
BLOCKQUOTE {letter-spacing: 1.1em}

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.letterSpacing

line-height NN 4 IE 4 CSS 1

Inherited: Yes

Sets the height of the inline box (the box holding one physical line of content). Under
normal circumstances, the line-height of the tallest font in a line of text or the tallest
object governs the line height for that content line. In theory, you should be able to set the
line-height of a block element and have that value apply to all content lines, regardless
of the font face or font size specified for inline content.

In practice, both Navigator 4 and Internet Explorer 4 can experience line space rendering
problems when the font-size of inline text is larger than the size of surrounding text. Not
all lines of the outer block adhere to the block’s line-height setting as expected (espe-
cially lines after the larger text segment). Moreover, in Navigator 4, the line-height
attribute does not traverse more than one generation if the second generation element
becomes a block-level element (such as a positioned or floated element). Test these settings
extensively to make sure you get the look you desire.

CSS Syntax
line-height: normal | number | length | percentage

JavaScript Equivalent
lineHeight
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

list-style 877

CSS sReference
Value

A value of normal lets the browser calculate line spacing for the entire element, thus
producing a computed value that can be inherited by nested elements. A number value
(greater than zero) acts as a multiplier for the font-size of the current element. Therefore, if
a nested element inherits the line-height multiplier from its parent, that multiplier is applied
to the current element’s font-size setting (the multiplier, not the computed value of the
parent, is inherited). A length value assigns an actual value to the inline box height. And a
percentage value is a multiplier applied to the font size of the current element. In this
case, the computer value can be inherited by nested elements.

Initial Value

normal

Example
P {line-height: normal} Browser default; actual value is inheritable
P {line-height: 1.1} Number value; the number value is inheritable
P {line-height: 1.1em} Length value; the actual value is inheritable
P {line-height: 110%} Percentage value; percentage times font size is inheritable

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.lineHeight

list-style NN n/a IE 4 CSS 1

Inherited: Yes

A shorthand attribute for setting up to three list-style attributes in one assignment state-
ment. Whichever attributes you don’t explicitly set with this attribute assume their initial
values. These attributes define display characteristics for the markers automatically rendered
for list items inside OL and UL elements.

CSS Syntax
list-style: list-style-type || list-style-position || list-style-image

Value

See the individual attribute entries for list-style-type, list-style-position, and
list-style-image for details on acceptable values for each. You may include one, two,
or all three values in the list-style attribute setting in any order you wish.

Initial Value

None.

Example UL {list-style: square outside none}
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

878 list-style-position
Applies To

DD, DT, LI, OL, and UL elements and any other element assigned the display:list-item
style attribute.

Object Model Reference
IE [window.]document.all.elementID.style.listStyle

list-style-image NN n/a IE 4 CSS 1

Inherited: Yes

Provides the URL for an image that is to be used as the marker for a list item. Because this
attribute can be inherited, a setting (including none) for an individual list item can override
the same attribute setting in its parent.

CSS Syntax
list-style-image: none | uri

Value

Use none to override an image assigned to a parent element. For uri, supply any valid full
or relative URL to an image file whose MIME type is readable by the browser.

Initial Value

none

Example
UL {list-style-image: url(images/folder.gif)}
LI {list-style-image: none}

Applies To

DD, DT, LI, OL, and UL elements and any other element assigned the display:list-item
style attribute.

Object Model Reference
IE [window.]document.all.elementID.style.listStyleImage

list-style-position NN n/a IE 4 CSS 1

Inherited: Yes

Determine whether the marker is inside or outside (outdented) from the box containing the
list item’s content. When the list-style-position is set to inside and the content is
text, the marker appears to be part of the text block. In this case, the alignment (indent) of
the list item is the same as normal, but without the outdented marker. Figure 10-6 demon-
strates the effects of both settings on wrapped list item text. Note that in Internet Explorer 4
for Macintosh (not shown), wrapped text lines extend all the way to the left margin of the
UL or OL element.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

list-style-type 879

CSS sReference
CSS Syntax
list-style-position: inside | outside

Value Any of the constant values: inside | outside.

Initial Value

outside

Example UL {list-style-position: inside}

Applies To

DD, DT, LI, OL, and UL elements and any other element assigned the display:list-item
style attribute.

Object Model Reference
IE [window.]document.all.elementID.style.listStylePosition

list-style-type NN 4 IE 4 CSS 1

Inherited: Yes

Sets the kind of item marker to be displayed with each item. This attribute applies only if
list-style-image is none (or not specified). The constant values available for this
attribute are divided into two categories. One set is used with UL elements to present a
filled disc, an empty circle, or a square (empty on the Macintosh, filled in Windows); the
other set is for OL elements, whose list items can be marked in sequences of Arabic
numerals, Roman numerals (uppercase or lowercase), or letters of the alphabet (uppercase
or lowercase).

CSS Syntax
list-style-type: listStyleType

JavaScript Equivalent
listStyleType

Figure 10-6. Results of list-style-position settings (Windows 95)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

880 margin
Value

One constant value that is relevant to the type of list container. For UL: circle | disc |
square. For OL: decimal | lower-alpha | lower-roman | upper-alpha | upper-
roman. OL element sequences are treated as follows:

Initial Value

disc (for UL); decimal (for OL).

Example
UL {list-style-type: circle}
LI {list-style-type: upper-roman}

Applies To

DD, DT, LI, OL, and UL elements and any other element assigned the display:list-item
style attribute.

Object Model Reference
IE [window.]document.all.elementID.style.listStyleType

margin NN 4 IE 4 CSS 1

Inherited: No

A shortcut attribute that can set the margin widths of up to four edges of an element with
one statement. A margin is space that extends beyond the border of an element to provide
extra empty space between adjacent or nested elements, especially those that have border
attributes set. You may supply one to four space-delimited margin values. The number of
values determines which sides receive the assigned margins.

CSS Syntax
margin: marginThickness | auto {1,4}

JavaScript Equivalent
margins()

Value

This attribute accepts one, two, three, or four values, depending on how many and which
margins you want to set. Values for marginThickness can be lengths, percentages of the

Type Example
decimal 1, 2, 3, ...
lower-alpha a, b, c, ...
lower-roman i, ii, iii, ...
upper-alpha A, B, C, ...
upper-roman I, II, III, ...
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

margin-bottom, margin-left, margin-right, margin-top 881

CSS sReference
next outermost element size, or the auto constant. Value quantities and positions are inter-
preted as follows:

Initial Value

0

Example P.highlight {margin: 10px 20px}

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.margin

margin-bottom, margin-left,
margin-right, margin-top NN 4 IE 4 CSS 1

Inherited: No

All four attributes set the width of a single margin edge of an element. A margin is space
that extends beyond the element’s border and is not calculated as part of the element’s
width or height.

CSS Syntax
margin-bottom: marginThickness | auto
margin-left: marginThickness | auto
margin-right: marginThickness | auto
margin-top: marginThickness | auto

JavaScript Equivalent
marginBottom
marginLeft
marginRight
marginTop

Value

Values for marginThickness can be lengths, percentages of the next outermost element
size, or the auto constant.

Initial Value

0

Number
of Values Effect
1 All four margin edges set to value
2 Top and bottom margins set to the first value, right and left margins set to

the second value
3 Top margin set to first value, right and left margins set to second value,

bottom margin set to third value
4 Top, right, bottom, and left margin set, respectively
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

882 max-height, min-height
Example
BLOCKQUOTE {margin-left: 20; margin-top: 10}
#narrowCol {margin-left: 30%; margin-right: 30%}

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.marginBottom

[window.]document.all.elementID.style.marginLeft
[window.]document.all.elementID.style.marginRight
[window.]document.all.elementID.style.marginTop

marks NN n/a IE n/a CSS 2

Inherited: n/a

A page context attribute that sets whether the page should be rendered with crop or regis-
tration marks outside of the page content area. This attribute must be set within an @page
rule. See the previous section “At-Rules,” for details on deploying this type of style rule.

CSS Syntax
marks: markType | none

Value

Available markType values are the following constant values: crop | cross. A crop mark
shows where pages should be trimmed; a cross mark is used for alignment and
registration.

Initial Value

none

Example @page {marks: crop}

Applies To

Page context.

max-height, min-height NN n/a IE n/a CSS 2

Inherited: No

These attributes let you establish a minimum and/or maximum height for an element. You
can bracket the permissible height of an element regardless of the height caused by the
natural flow of the content.

CSS Syntax
max-height: length | percentage
min-height: length | percentage
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

orphans 883

CSS sReference
Value

See the discussion of length values at the beginning of the chapter. The value may also be a
percentage that is calculated relative to the element’s container.

Initial Value

0 (min-height); 100% (max-height).

Applies To

All elements.

max-width, min-width NN n/a IE n/a CSS 2

Inherited: No

These attributes let you establish a minimum and/or maximum width for an element. You
can bracket the permissible width of an element regardless of the width caused by the
natural flow of the content within a parent container.

CSS Syntax
max-width: length | percentage
min-width: length | percentage

Value

See the discussion of length values at the beginning of the chapter. The value may also be a
percentage that is calculated relative to the element’s container.

Initial Value

0 (min-width); 100% (max-width).

Applies To

All elements.

orphans NN n/a IE n/a CSS 2

Inherited: Yes

Sets the minimum number of lines of a paragraph that must be visible at the bottom of a
page where a page break occurs. See the widows attribute for lines to be displayed at the
top of a page after a page break.

CSS Syntax
orphans: lineCount

Value An integer of the number of lines.

Initial Value

2

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

884 overflow
Applies To

Block-level elements.

overflow NN n/a IE 4 CSS 2

Inherited: No

For positioned elements, defines how the element treats content whose rendered dimen-
sions exceed the height and/or width of the container. Except for some types of content
that demand a fixed width (a PRE element, for instance), the default behavior of an element
is to respect the width attribute setting and handle the issue of overflow in the height of
the element.

A setting of visible causes the containing block to expand to allow the full width (if
fixed) and height of the content to be displayed. If borders, margins, and padding are set
for the element, they are preserved around the expanded content block.

A setting of hidden forces the block to observe the height and width settings, potentially
causing the content to be clipped by the size of the block. Borders and padding are
preserved, but margins may be lost along the edges that clip the content.

A setting of scroll should generate a set of horizontal and vertical scrollbars inside the
rectangle of the content block. The bars become active only if the content actually requires
scrolling in any direction. In practice, scrollbars are displayed for this setting in Internet
Explorer 4 for Windows, but not on the Macintosh.

A setting of auto should generate scrollbars only if the content in the block requires it.
Again, this works correctly in IE 4 Windows, but not in IE 4 Macintosh.

Note that Navigator 4 does not provide direct control over the overflow attribute. It is in a
perennial state that sizes the height of a block element to the height of the content of the
element. Therefore, it is not practical to create empty blocks (with borders, for instance) in
Navigator 4, unless you artificially fill the block with padding (which then negatively affects
the display in Internet Explorer).

CSS Syntax
overflow: overFlowType

Value Any of the following constants: auto | hidden | scroll | visible.

Initial Value

visible

Example
DIV.aside {position: absolute; top: 200px; left: 10px; height: 100px;
width: 150px; overflow: scroll}

Applies To

All elements set to position:absolute.

Object Model Reference
IE [window.]document.all.elementID.style.overflow
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

padding 885

CSS sReference
padding NN 4 IE 4 CSS 1

Inherited: No

A shortcut attribute that can set the padding widths of up to four edges of an element with
one statement. Padding is space that extends around the content box of an element up to
but not including any border that may be specified for the element. Padding picks up the
background image or color of its element. As you add padding to an element, you increase
the size of the visible rectangle of the element without affecting the content block size. You
may supply one to four space-delimited padding values. The number of values determines
which sides receive the assigned padding.

CSS Syntax
padding: paddingThickness {1,4}

JavaScript Equivalent
paddings()

Value

This attribute accepts one, two, three, or four values, depending on how many and which
sides you want to assign padding to. Values for paddingThickness can be lengths or
percentages of the next outermost element size. Value quantities and positions are inter-
preted as follows:

Initial Value

0

Example
P.highlight {padding: 10px 20px}

Applies To

All elements (CSS and NN); BODY, CAPTION, DIV, IFRAME, MARQUEE, TABLE, TD, TEXTAREA,
TR, and elements (IE).

Object Model Reference
IE [window.]document.all.elementID.style.padding

Notes

Be aware that Navigator 4 adds its own three-pixel-wide transparent spacing around all four
edges of an element. If the element has padding defined for it, the extra spacing is placed
outside of the padding. An element’s border then appears outside of the extra spacing. This

Number
of Values Effect
1 All four padding edges set to value
2 Top and bottom padding set to the first value, right and left padding set to

the second value
3 Top padding set to first value, right and left padding set to second value,

bottom padding set to third value
4 Top, right, bottom, and left padding set, respectively
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

886 padding-bottom, padding-left, padding-right, padding-top
means that the background image or color of a Navigator element cannot bleed all the way
to the borders.

padding-bottom, padding-left,
padding-right, padding-top NN 4 IE 4 CSS 1

Inherited: No

All four attributes set the padding width of a single side of an element. Padding is space
that extends around the content box of an element up to but not including any border that
may be specified for the element. Padding picks up the background image or color of its
element. As you add padding to an element, you increase the size of the visible rectangle of
the element without affecting the content block size.

CSS Syntax
padding-bottom: paddingThickness
padding-left: paddingThickness
padding-right: paddingThickness
padding-top: paddingThickness

JavaScript Equivalent
paddingBottom
paddingLeft
paddingRight
paddingTop

Value

Values for paddingThickness can be lengths or percentages of the next outermost
container size.

Initial Value

0

Example
BLOCKQUOTE {padding-left: 20; padding-top: 10}
#narrowCol {padding-left: 30%; padding-right: 30%}

Applies To

All elements (CSS and NN); BODY, CAPTION, DIV, IFRAME, MARQUEE, TABLE, TD, TEXTAREA,
TR, and elements (IE).

Object Model Reference
IE [window.]document.all.elementID.style.paddingBottom

[window.]document.all.elementID.style.paddingLeft
[window.]document.all.elementID.style.paddingRight
[window.]document.all.elementID.style.paddingTop
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

page-break-after, page-break-before 887

CSS sReference
Notes

Be aware that Navigator 4 adds its own three-pixel-wide transparent spacing around all four
edges of an element. If the element has padding defined for it, the extra spacing is placed
outside of the padding. An element’s border then appears outside of the extra spacing. This
means that the background image or color of a Navigator element cannot run all the way to
the borders.

page-break-after, page-break-before NN n/a IE 4 CSS 2

Inherited: No

Defines how content should treat a page break around an element when the document is
sent to a printer. Page breaks are not rendered in the visual browser as they may be in
word processing programs; on screen, long content flows in one continuous scroll.

Page breaks (and related attributes such as widows and orphans) are handled more fully in
CSS2 than as deployed in Internet Explorer 4. Proper handling of pages for printers relies
on the CSS2 concept of the page box, which is a rectangular region that ultimately reaches a
printed page. Page break style attributes help the browser control the precise content of
each page box. Without any assistance (or with the auto setting), the browser divides
pages for printing much as it has in the past by doing a best-fit for the content to fill up as
much of each page as there is space for it.

To force a page break above an element, associate a page-break-before:always style
setting with the element. Similarly, to force a break after an element, use page-break-
after:always. For example, if you want a special class of BR elements to break after
them, you could set up a class selector style rule as follows:

<STYLE TYPE="text/css">
BR.pageEnd {page-break-after: always}
</STYLE>

Then, whenever you want to force a page break in the document, include the following
tag:

<BR CLASS="pageEnd">

Attribute settings for left and right assume that the browser is equipped to detect left-
facing from right-facing pages for double-sided printing (as specified in CSS2). Because you
are likely to set different margins for each side of the gutter, indicating how pages break to
start a new section requires forcing sufficient page breaks to plant new sections on the
desired page. For example, if you want each H1 element to begin on a right-facing page,
you would set a page break style for it as follows:

H1 {page-break-before: right}

This attribute forces the browser to at least one and at most two page breaks before the H1
element to make sure it starts on a right-facing page. When the browser generates a second
page break for the left or right value, it means that the browser generates a blank page box
for the second page break.

CSS Syntax
page-break-after: breakType
page-break-before: breakType
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

888 pause
Value

Internet Explorer 4 recognizes four constant values: always | auto | left | right. CSS2
adds avoid, which urges the browser to avoid breaking the page in that element if at all
possible.

Initial Value

auto

Example
DIV.titlePage {page-break-before: always; page-break-after: always}

Applies To

All elements except inline table elements TD and TH.

Object Model Reference
IE [window.]document.all.elementID.style.pageBreakAfter

[window.]document.all.elementID.style.pageBreakBefore

Notes

Values of left and right don’t behave properly in Internet Explorer 4. The always setting
may not always work in IE 4 for Windows but does the job in the Macintosh version.

pause NN n/a IE n/a CSS 2

Inherited: No

For aural style sheets, a shorthand attribute for setting both pause-after and pause-
before attributes in one statement. You may supply one or two values for this attribute.

CSS Syntax
pause: time | percentage {1,2}

Value

This attribute accepts one or two values, depending on the values you want to assign to the
pause-before and pause-after settings. A single value of the pause attribute is applied
to both pause-before and pause-after. When two values are supplied, the first is
assigned to pause-before; the second is assigned to pause-after.

Values for time are floating-point numbers followed by either the ms (milliseconds) or s
(seconds) unit identifier. These settings are therefore absolute durations for pauses. Values
for percentage are inversely proportional to the words-per-minute values of the speech-
rate attribute setting. Because the speech-rate controls how long it takes for a single
word (on average), a pause setting of 100% means that a pause has the same duration as a
single word; a setting of 50% would be a pause of one-half the duration of speaking a
single word.

Initial Value

Depends on the browser.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

pitch 889

CSS sReference
Applies To

All elements.

pause-after, pause-before NN n/a IE n/a CSS 2

Inherited: No

For aural style sheets, sets the duration of a pause after or before the current element. You
can assign both attributes to the same element to designate pauses before and after the
element is spoken.

CSS Syntax
pause-after: time | percentage
pause-before: time | percentage

Value

Values for time are floating-point numbers followed by either the ms (milliseconds) or s
(seconds) unit identifier. These settings are therefore absolute durations for pauses. Values
for percentage are inversely proportional to the words-per-minute values of the speech-
rate attribute setting. Because the speech-rate controls how long it takes for a single
word (on average), a pause setting of 100% means that a pause has the same duration as a
single word; a setting of 50% would be a pause of one-half the duration of speaking a
single word.

Initial Value

Depends on the browser.

Applies To

All elements.

pitch NN n/a IE n/a CSS 2

Inherited: No

For aural style sheets, sets the average pitch frequency of the voice used for text-to-speech
output.

CSS Syntax
pitch: frequency | frequencyConstant

Value

A frequency value is any positive floating-point number followed by either the Hz (Hertz)
or kHz (kiloHertz) units, as in 500Hz or 5.5kHz. Alternatively, you can use any of the
following constant values: x-low | low | medium | high | x-high. As of the CSS2
working draft available for this book, no specific frequency values had yet been assigned to
these constants.

Initial Value

medium
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

890 play-during
Applies To

All elements.

pitch-range NN n/a IE n/a CSS 2

Inherited: Yes

For aural style sheets, sets the range over which the average pitch frequency of a text-to-
speech voice varies.

CSS Syntax
pitch-range: number

Value

Any positive number or zero. A value of 0 is a monotone voice; a value of 50 should offer
a normal range; values above 50 might sound animated.

Initial Value

50

Applies To

All elements.

play-during NN n/a IE n/a CSS 2

Inherited: No

For aural style sheets, sets the sound mixing properties of a background sound with a text-
to-speech rendering of the element’s content.

CSS Syntax
play-during: uri [mix | repeat] | auto | none

Value

The uri value is a link to the sound file to be used as background sound (if desired).
Optionally, you can specify that the background sound of the parent element’s play-
during attribute is started and mixed with the current element’s background sound. If the
background sound’s length is shorter than it takes for the element’s text to be spoken, the
repeat constant tells the browser to repeat the sound until the spoken text has finished. A
value of auto means that the parent element’s sound continues to play without interrup-
tion. And a value of none means that no background sound (from the current or parent
element) is heard for this element.

Initial Value

auto

Applies To

All elements.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

richness 891

CSS sReference
position NN 4 IE 4 CSS 2

Inherited: No

Sets whether the element is positionable, and if so, what type of positionable element it is.
The two primary types of positionable elements are set with values relative and abso-
lute. See Chapter 4, Adding Dynamic Positioning to Documents, for details and examples.

CSS Syntax
position: positionConstant

Value

Browsers and the CSS standard recognize different sets of constant values for this attribute:

IE 4’s static value is the same as CSS2’s normal value: the element is rendered according
to its regular inline behavior as an HTML element, generally meaning that any position-
oriented attributes (such as top and left) are ignored by the browser.

Initial Value

static (IE 4); normal (CSS2); none (NN 4).

Applies To

You can apply the absolute value to: APPLET, DIV, EMBED, FIELDSET, HR, IFRAME,
INPUT, MARQUEE, OBJECT, SPAN, TABLE, and TABLE elements.

You can apply the relative value to most other block-level elements.

Object Model Reference
IE [window.]document.all.elementID.style.position

Notes

Navigator 4 treats elements that set the CSS syntax position attribute in the following ways:
an absolute-positioned element is turned into the same kind of element as that created as a
LAYER element; a relative-positioned element is turned into the same kind of element as
that created as an ILAYER element.

richness NN n/a IE n/a CSS 2

Inherited: Yes

For aural style sheets, sets the brightness (stridency) of the voice used in text-to-speech
rendering of the element.

Value NN 4 IE 4 CSS2
absolute • • •
fixed - - •
normal - - •
relative • • •
static - • -
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

892 row-span
CSS Syntax
richness: number

Value

A positive floating-point number to represent how strident the voice sounds. A value of 50
is normal. Lower values produce a softer, mellower voice; higher values produce a louder,
more forceful voice.

Initial Value

50

Applies To

All elements.

right NN n/a IE n/a CSS 2

Inherited: No

For positionable elements, defines the position of the right edge of an element box (content
plus padding, border, and/or margin) relative to the right edge of the next outermost block
content container. When the element is relative-positioned, the offset is based on the right
edge of the inline location of where the element would normally appear in the content.

CSS Syntax
right: length | percentage | auto

Value

See the discussion about length values at the beginning of this chapter. Negative lengths
may be allowed in some contexts, but be sure to test the results on all browsers. You may
also specify a percentage value, which is calculated based on the width of the next outer-
most container. The setting of auto lets the browser determine the right offset of the
element box on its naturally flowing offset within the containing box.

Initial Value

auto

Applies To

All elements.

row-span NN n/a IE n/a CSS 2

Inherited: No

Sets the number of rows to be spanned by a table cell, row, or row group. Analogous to the
ROWSPAN attribute of a TD or TH element.

CSS Syntax
row-span: integer
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

speak 893

CSS sReference
Value Any positive integer representing the number of rows.

Initial Value

1

Example #tallDrink {row-span: 3}

Applies To

TD and TH elements and any other cell type of element.

size NN n/a IE n/a CSS 2

Inherited: n/a

Sets the size and/or orientation of a page box. Intended primarily for printed page format-
ting, the settings may not affect how content is cropped or oriented on the video screen.
This attribute is set within an @page declaration.

CSS Syntax
size: [length {1,2}] auto | portrait | landscape

Value

If you specify one or two length values, the page box becomes “absolute” regardless of
the paper sheet size; without specific length values, the page box is sized relative to the
selected paper sheet size. If you supply only one length value, it is applied to both the
width and height of the page box; if two values, the first controls the page box width and
the second controls the page box height. Bear in mind that printers frequently impose a
minimum margin around the rendered page box. Even when the size attribute is set to
auto, you can add more breathing space around the page box by adding a margin
attribute to the @page declaration.

Initial Value

auto

Example @page{size: landscape}

Applies To

Page context.

speak NN n/a IE n/a CSS 2

Inherited: Yes

For aural style sheets, specifies whether a browser equipped for text-to-speech should
speak the element’s content. If so, whether the speech should be as words or spelled out
character-by-character.

CSS Syntax
speak: speechType
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

894 speak-header
Value

Three possible constant values: none | normal | spell-out. A value of none means that
speech is turned off. The browser does not delay over the duration of the speech and any
specified pauses (see the volume:silent attribute value). A value of normal turns on
speech and reads the text as words. A value of spell-out turns on speech and reads the
content letter-by-letter (certainly applicable to ABBR and ACRONYM elements).

Initial Value

normal

Applies To

All elements.

speak-date NN n/a IE n/a CSS 2

Inherited: Yes

Note that the details on this attribute are very preliminary. For aural style sheets, specifies
the sequence in which date components (month, day, and year) are spoken to account for
regional preferences.

CSS Syntax
speak-date: dateType

Value

Three possible constant values: mdy | dmy | ymd. A value of mdy signifies a sequence of
month-day-year. A value of dmy signifies a sequence of day-month-year. A value of ymd
signifies a sequence of year-month-day.

Initial Value

Depends on browser localization.

Applies To

All elements.

speak-header NN n/a IE n/a CSS 2

Inherited: Yes

For text-to-speech-capable browsers, specifies whether the browser calls out the name of a
table cell’s header prior to the cell’s value every time that value is read aloud or just one
time for all adjacently read cells that share the same header (e.g., navigating downward
through a table column).

CSS Syntax
speak-header: headerFrequency

Value Two possible constant values: once | always.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

speak-punctuation 895

CSS sReference
Initial Value

once

Applies To

All elements.

Notes

The CSS2 working draft indicates that one or more additional attributes will provide greater
control over designating more precisely which header cell is to be spoken.

speak-numeral NN n/a IE n/a CSS 2

Inherited: Yes

Note that the details on this attribute are very preliminary. For aural style sheets, sets
whether numbers are to be read as individual numerals (“One Four Two”) or as full
numbers (e.g., “One hundred forty two”). The language used for the spoken numbers is set
with the element’s LANG attribute.

CSS Syntax
speak-numeral: numeralType

Value Three possible constant values: digits | continuous | none.

Initial Value

none

Applies To

All elements.

speak-punctuation NN n/a IE n/a CSS 2

Inherited: Yes

Note that the details on this attribute are very preliminary. For aural style sheets, sets
whether punctuation symbols should be read aloud (“period”) or interpreted as the
language’s natural pauses for the various symbols.

CSS Syntax
speak-punctuation: punctuationType

Value

Two possible constant values: code | none. A value of code means that a symbol name is
spoken when the symbol is encountered in element text.

Initial Value

none
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

896 stress
Applies To

All elements.

speak-time NN n/a IE n/a CSS 2

Inherited: Yes

Note that the details on this attribute are very preliminary. For aural style sheets, sets
whether time content is spoken in 12- or 24-hour time.

CSS Syntax
speak-time: TimeType

Value Three possible constant values: 12 | 24 | none.

Initial Value

none

Applies To

All elements.

speech-rate NN n/a IE n/a CSS 2

Inherited: Yes

For aural style sheets, sets the number of words per minute of the text-to-speech output.

CSS Syntax
speech-rate: wordsPerSecond | speedConstant

Value

A wordsPerSecond value is any positive floating-point number with no unit appended.
Alternatively, you can use any of the following constant values: x-slow | slow | medium |
fast | x-fast | slower | faster. As of the CSS2 working draft available for this book,
no specific speed values had yet been assigned to these constants, and no increment had
been determined for slower and faster.

Initial Value

medium

Applies To

All elements.

stress NN n/a IE n/a CSS 2

Inherited: Yes

For aural style sheets, sets the amount of stress (inflection) in the spoken voice.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

text-align 897

CSS sReference
CSS Syntax
stress: stressLevel

Value

A stressLevel value is any positive floating-point number with no unit appended. A value
of 50 is normal.

Initial Value

50

Applies To

All elements.

table-layout NN n/a IE n/a CSS 2

Inherited: No

Determines whether the browser uses computed heights and widths of the entire table’s
data to begin rendering the table or relies on the TABLE element’s size attributes and uses
the first row’s cell widths to begin rendering table content. When the attribute is set to
auto, the browser must load all of the table cells and their content before the first row of
data can be rendered, causing a brief delay in drawing the table. Setting the value to fixed
allows table rendering to begin sooner, which is helpful for large tables.

CSS Syntax
table-layout: layoutType

Value Two possible constant values: auto | fixed.

Initial Value

auto

Applies To

TABLE elements.

text-align NN 4 IE 4 CSS 1

Inherited: Yes

Determines the horizontal alignment of text within an element. This attribute is inherited, so
it can be set for a container to impact all nested elements, such as a P element within a DIV
element. Values of center, left, and right are supported by Navigator 4 and Internet
Explorer 4. The value of justify is not a CSS requirement, and implementation in Version
4 browsers is spotty (see Notes).

CSS Syntax
text-align: alignment
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

898 text-decoration
JavaScript Equivalent
textAlign

Value One of the four constants: center | justify | left | right.

Initial Value

Depends on browser (left in both Navigator 4 and Internet Explorer 4, but this is not a
CSS requirement).

Example
P.rightHand {text-align: right}
BLOCKQUOTE {text-align: center}

Applies To

Block-level elements.

Object Model Reference
IE [window.]document.all.elementID.style.textAlign

Notes

If you assign the justify value, text is indeed justified in Navigator 4 for the Macintosh
and Internet Explorer 4 for Windows. The value is treated as the left setting in Navigator 4
for Windows and IE 4 for Macintosh.

text-decoration NN 4 IE 4 CSS 1

Inherited: No

Specifies additions to the text content of the element in the form of underlines,
strikethroughs, overlines, and (in Navigator and CSS) blinking. You may specify more than
one decoration style by supplying values in a space-delimited list. Although Internet
Explorer 4 accepts the blink value, it does not blink the text. Navigator 4, on the other
hand, does not recognize the overline decoration. Text decoration has an unusual parent-
child relationship. Values are not inherited, but the effect of a decoration carries over to
nested items. Therefore, unless otherwise overridden, an underlined P element underlines a
nested B element within, for example.

CSS Syntax
text-decoration: decorationStyle | none

JavaScript Equivalent
textDecoration

Value

In addition to none, any of the following four constants: blink | line-through |
overline | underline. Navigator 4 does not observe the overline value.

Initial Value

none
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

text-indent 899

CSS sReference
Example DIV.highlight {text-decoration: underline}

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.textDecoration

[window.]document.all.elementID.style.textDecorationBlink
[window.]document.all.elementID.style.textDecorationLineThrough
[window.]document.all.elementID.style.textDecorationNone
[window.]document.all.elementID.style.textDecorationOverLine
[window.]document.all.elementID.style.textDecorationUnderline

text-indent NN 4 IE 4 CSS 1

Inherited: Yes

Sets the size of indenting of the first line of a block of inline text (such as a P element).
Only the first line is affected by this setting. A negative value can be used to outdent the
first line, but be sure the text does not run beyond the left edge of the browser window or
frame.

CSS Syntax
text-indent: length | percentage

JavaScript Equivalent
textIndent

Value

See the discussion about length values at the beginning of this chapter. Negative lengths
may be allowed in some contexts, but be sure to test the results on all browsers. You may
also specify a percentage value, which is calculated based on the width of the next outer-
most container.

Initial Value

0

Example
BODY {text-indent: 2em}
P.firstGraphs {text-indent: 0}

Applies To

Block-level elements.

Object Model Reference
IE [window.]document.all.elementID.style.textIndent
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

900 text-transform
Notes

Internet Explorer 4 for the Macintosh does not respond to the text-indent attribute
properly.

text-shadow NN n/a IE n/a CSS 2

Inherited: No

Sets shadow effects for the text of the current element. A text element can have more than
one shadow, and each shadow can have its own color, vertical offset, horizontal offset, and
blur radius. Each shadow exists in its own minilayer, stacked with the first shadow specifi-
cation at the bottom of the heap. Even so, text shadows move with their text element as a
unit when the z-index attribute of the element is set or modified. Values for each shadow
are space-delimited, and multiple shadow value sets are comma-delimited.

CSS Syntax
text-shadow: [color] horizLength vertLength blurRadiusLength,
 [[color] horizLength vertLength blurRadiusLength] | none

Value

If you omit the color attribute value, the shadow uses the element’s color property value
(which may, itself, be inherited). The color attribute can be placed before or after what-
ever length values are set for a shadow. See the discussion of color values at the beginning
of this chapter. Values for horizLength and vertLength are length values (see the begin-
ning of this chapter), and their sign indicates the direction the shadow offset takes from the
element text. For the horizLength value, a positive value places the shadow to the right of
the element; a negative value to the left. For the vertLength value, a positive value places
the shadow below the text; a negative value above. A blur radius is a length value (see the
beginning of this chapter) that specifies the extent of the shadow from the edge of the text
characters.

Initial Value

none

Applies To

All elements.

text-transform NN 4 IE 4 CSS 1

Inherited: Yes

Controls the capitalization of the element’s text. When a value other than none is assigned
to this attribute, the cases of all letters in the source text are arranged by the style sheet,
overriding the case of the source text characters.

CSS Syntax
text-transform: caseType | none
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

top 901

CSS sReference
JavaScript Equivalent
textTransform

Value

A value of none allows the case of the source text to be rendered as-is. Other available
constant values are: capitalize | lowercase | uppercase. A value of capitalize sets
the first character of every word to uppercase. Values lowercase and uppercase render
all characters of the element text in their respective cases.

Initial Value

none

Example
H2 {text-transform: capitalize}

Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.textTransform

top NN 4 IE 4 CSS 2

Inherited: No

For positionable elements, defines the position of the top edge of an element box (content
plus top padding, border, and/or margin) relative to the top edge of the next outermost
block content container.

CSS Syntax
top: length | percentage | auto

JavaScript Equivalent
top

Value

See the discussion about length values at the beginning of this chapter. Negative lengths
may be allowed in some contexts, but be sure to test the results on all browsers. You may
also specify a percentage value, which is calculated based on the height of the next outer-
most container. The setting of auto lets the browser determine the top offset of the element
box on its naturally flowing offset within the containing box.

Initial Value

auto

Example
H1 {position: relative; top: 2em}
#logo {position: absolute; left: 80px; top: 30px}
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

902 vertical-align
Applies To

All elements.

Object Model Reference
IE [window.]document.all.elementID.style.offsetTop

vertical-align NN n/a IE 4 CSS 1

Inherited: No

There are two sets of values for this attribute, and they affect different characteristics of the
inline element to which they are applied. The major point of reference is that an inline
element has its own line box that holds its content. Two values, top and bottom, affect
how the text is rendered within the line box. The settings bring the text flush with the top
or bottom of the box, respectively.

Application of this attribute is not limited to inline spans of text. Images and tables can use
this style attribute. All other settings for vertical-align affect how the entire element box
is vertically positioned relative to text content of the parent element. The default value,
baseline, means that the line box is positioned such that the baselines of both the line
box’s text (or very bottom of an element such as an IMG) and the parent text are even.
That’s how an EM element can be its own line box element but still look as though it flows
on the same baseline as its containing P element. The rest of the attribute constant values
(and percentage or length) determine where the element’s line box is set with respect to the
parent line.

CSS Syntax
vertical-align: vertAlignType | length | percentage

Value

Two constant values apply to alignment of text within the element itself: bottom | top.

Six constant values apply to alignment of the element’s line box relative to the surrounding
text line (of the parent element): baseline | middle | sub | super | text-bottom |
text-top. A value of baseline keeps the baseline of the element and parent element line
even. A value of middle aligns the vertical midpoint of the element with the baseline plus
one-half the x-height of the parent element’s font. Values of sub and super shift the
element into position for subscript and superscript but do not by themselves create a true
subscript or superscript in that no adjustment to the font size is made with this attribute. A
value of text-bottom aligns the bottom of the element with the bottom of the font line of
the parent element text; a value of text-top does the same with the tops of the element
and parent.

Initial Value

baseline

Example SPAN.sup {vertical-align: super; text-size: smaller}

Applies To

Inline elements only.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

visibility 903

CSS sReference
Object Model Reference
IE [window.]document.all.elementID.style.verticalAlign

Notes

Internet Explorer 4 recognizes only the sub and super constant values.

visibility NN 4 IE 4 CSS 2

Inherited: Sometimes

For positioned elements, controls whether the element is rendered on the page. An element
hidden via the visibility attribute preserves space in the document where the element
normally appears. If you prefer surrounding content to cinch up the space left by a hidden
element, see the display attribute.

The visibility attribute is inherited when its value is set to inherit. This setting means
that if the parent is hidden, the child is also hidden. But, by setting the child’s visibility
attribute to visible, you can still keep the parent hidden while showing the child
independently.

CSS Syntax
visibility: visibilityType

JavaScript Equivalent
visibility

Value

Navigator 4 features a set of constants that don’t always match those of Internet Explorer 4
and CSS, but Navigator 4 does recognize the CSS standards:

Use the CSS attribute constants to maintain cross-browser compatibility. There have been
reports of Navigator 4 not responding properly to the CSS values when scripting an
element’s visibility. For dynamically changing visibility of a positioned element, you might
feel safer with some of the cross-browser API strategies detailed in Chapter 4.

Initial Value

inherit

Example #congrats {visibility: hidden}

Applies To

All elements whose position style attribute is set.

Value NN 4 IE 4 CSS2
hide • - -
hidden • • •
inherit • • •
show • - -
visible • • •
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

904 volume
Object Model Reference
IE [window.]document.all.elementID.style.visibility

voice-family NN n/a IE n/a CSS 2

Inherited: Yes

For aural style sheets, sets the voice family names the aural browser should try to use for
speaking the content. Multiple, comma-delimited values are accepted. This feature is analo-
gous to the font-family setting for visual browsers.

CSS Syntax
voice-family: voiceFamilyName [, voiceFamilyName [, ...]]

Value

A voiceFamilyName may be the identifier for a voice type provided by the aural browser
or a generic voice name (yet to be determined by the W3C). As with font-family settings,
you should specify multiple voice types, starting with the more specific and ending with the
most generic for the type of speech you want for the element’s content.

Initial Value

Depends on browser.

Applies To

All elements.

volume NN n/a IE n/a CSS 2

Inherited: Yes

For aural style sheets, sets the dynamic range (softness/loudness) of the spoken element.
Because normal speech has inflections that prevent an absolute volume to apply at all
times, the volume attribute sets the median volume.

CSS Syntax
volume: number | percentage | volumeConstant

Value

A volume number value is any number. A value of zero should represent the minimum
audible level for the equipment and ambient noise environment; a value of 100 should
represent the maximum comfortable level under the same conditions. A percentage value
is calculated relative to the parent element’s volume attribute setting. Alternative settings
include the following constants (and their representative values): silent (no sound) |
x-soft (0) | soft (25) | medium (50) | loud (75) | x-loud (100).

Initial Value

medium
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

widows 905

CSS sReference
Applies To

All elements.

white-space NN 4 IE n/a CSS 1

Inherited: Yes

Sets how the browser should render whitespace (extra character spaces and carriage
returns) that is part of the element’s source code. Under normal circumstances, HTML
ignores extra whitespace and thus collapses the rendered content around such space. For
example, only single spaces are preserved between words and BR elements are required to
force a line break within a paragraph. A whitespace attribute setting of pre treats
whitespace as if you had surrounded the element in a PRE element. But although browsers
have a tradition of rendering PRE elements in a monospace font, the look of an ordinary
element set to white-space:pre preserves its font characteristics.

CSS Syntax
white-space: whiteSpaceType

JavaScript Equivalent
whiteSpace

Value

One of three constants: normal | nowrap | pre. A value of normal allows regular HTML
treatment of whitespace to rule. A value of nowrap (not available in Navigator 4) tells the
browser to ignore line breaks in the source text (in case the author breaks up lines for read-
ability in the editor) and break them on the page only where there are explicit HTML line
breaks (with a BR element, for example). A value of pre has the browser honor all
whitespace entered by the author in the source content, without adjusting any font settings
of the element.

Initial Value

normal

Example DIV.example {white-space: pre}

Applies To

Block-level elements.

widows NN n/a IE n/a CSS 2

Inherited: Yes

Sets the minimum number of lines of a paragraph that must be visible at the top of a page
after a page break occurs. See the orphans attribute for lines to be displayed at the bottom
of a page before a page break.

CSS Syntax
widows: lineCount
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

906 width
Value An integer of the number of lines.

Initial Value

2

Applies To

Block-level elements.

width NN 4 IE 4 CSS 1

Inherited: No

Sets the width of a block-level or replaced element’s content (exclusive of borders, padding,
and margins). Internet Explorer 4 applies the width attribute only to selected elements and
absolute-positioned elements (which means DIV wrappers around other types of elements),
but CSS2 recommends application to all block-level and replaceable elements as well.

Navigator 4 and Internet Explorer 4 react differently to settings of the width style attribute.
One thing they agree on is that if the content requires more width than is specified for the
attribute (an IMG element’s width, for instance), the content requirements override the
attribute value (use the clipping region to truncate the width of the viewport for the
element if you need to). But if the window is narrower than the specified width, Navigator
tends to shrink the width of the element to fit the window width (to a point) so that the
window doesn’t need to scroll horizontally; IE 4, on the other hand, preserves the element’s
width setting regardless of the window width.

A number of other discrepancies between browsers (and between operating system
versions of the same browser) plague the width attribute. For example, if you create a DIV
element whose width is 300px and nest a P element inside whose width is set to 200px,
Navigator 4 respects the narrower width of the P element, but Internet Explorer 4 causes
the P element to fill the 300-pixel width of the DIV container. You may also encounter
varying behavior of parent and child elements when both have borders set. In Internet
Explorer 4 for the Macintosh, some edges of the parent border are obscured.

CSS Syntax
width: length | percentage | auto

JavaScript Equivalent
width

Value

See the discussion about length values at the beginning of this chapter. You may also
specify a percentage value, which is calculated based on the width of the next outermost
container. The setting of auto lets the browser determine the width of the element box
based on the amount of space required to display the content within the current window
width.

Initial Value

auto
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

z-index 907

CSS sReference
Example
DIV#announce {position: relative; left: 30; width: 240}
TEXTAREA {width: 80%}

Applies To

Navigator 4: block-level and replaced elements.

Internet Explorer 4: APPLET, DIV, EMBED, FIELDSET, HR, IFRAME, IMG, INPUT, MARQUEE,
OBJECT, SELECT, SPAN, TABLE, and TEXTAREA elements.

CSS2: all elements except nonreplaced inline elements, table rows, and row group
elements.

Object Model Reference
IE [window.]document.all.elementID.style.width

word-spacing NN n/a IE n/a CSS 1

Inherited: Yes

Sets the spacing between words when the text is not under external word spacing
constraints (e.g., an align attribute set to justify).

CSS Syntax
word-spacing: length | normal

Value

A value of normal lets the browser handle word spacing according to its rendering calcula-
tions. See the discussion about length values at the beginning of this chapter.

Initial Value

normal

Applies To

All elements.

z-index NN 4 IE 4 CSS 2

Inherited: No

For a positioned element, sets the stacking order relative to other elements within the same
parent container. See Chapter 4 for details on relationships of element layering amid
multiple containers.

CSS Syntax
z-index: integer | auto

JavaScript Equivalent
zIndex
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

908 z-index
Value

Any integer value. A value of auto is the same as a value of zero. When all elements in the
same parent container have the same z-index value, the stacking order is determined by
element source code order.

Initial Value

auto

Example DIV#instrux {position: absolute; left: 50;top: 70;z-index: 2}

Applies To

Any positioned element.

Object Model Reference
IE [window.]document.all.elementID.style.zIndex
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Chapter 11JavaScript
Reference

The previous chapters in the re
of Dynamic HTML authoring th
that are often visible on the pa
“glue” that makes it possible to
up to this point. This chapter co
to cross-browser application de
trols, and Java classes accessib
here in favor of the core langua
Dynamic H
Copyright
11

11.JavaScript Core

Language Reference
JavaScript
Reference
ference part of the book have covered every aspect
at affects elements, objects, and styles—the pieces
ge. The one part yet to be covered is the scripting
dynamically access and control the items detailed
vers the core scripting language features that apply
velopment. This means that VBScript, ActiveX con-
le through LiveConnect are intentionally omitted
ge that has become an industry standard.

As described in Chapter 1, The State of the Art, the JavaScript language was a
Netscape invention. Microsoft’s version of the language is called JScript. But a
browser-neutral version of the language has been given the nod as a common
denominator standard for all JavaScript-derived languages: ECMAScript. There is a
great deal of agreement in the implementation of the core elements of this script-
ing language among browser makers and the ECMA standards group. The biggest
challenge for writing core language code (i.e., code that is independent of the
scriptable document object model) is knowing what version of the language is
supported by which versions of the browser. In the entries for this chapter, you
can see at a glance which browser version first supported every core language
object, property, method, function, operator, and control statement.

Internet Explorer JScript Versions
For the core scripting language in Internet Explorer, it is not enough to know
which browser version introduced support for a particular object or property.
Microsoft separates the core language functionality from the browser itself by
implementing each language as a .dll file that can be updated and swapped in
without a change in the browser version.
909
TML: The Definitive Reference, eMatter Edition
 © 1999 Danny Goodman. All rights reserved.

910 About Static Objects
The first shipping versions of Internet Explorer 3 came with the first version of the
Jscript.dll file. Later, while IE 3 was still the shipping product, Microsoft offered an
upgrade of the Jscript.dll file to Version 2. This new version incorporated several
new features to the core language. Internet Explorer 4 shipped with Version 3 of
the Jscript.dll file. Unfortunately, you can’t deduce from the most likely place
you’d look—the navigator.userAgent property—which Jscript.dll file is
installed in the browser. Internet Explorer does provide a pair of global functions
(ScriptEngineMajorVersion() and ScriptEngineMinorVersion()) that you
can use to determine what level of JScript is installed in the browser. This func-
tion, however, was not available in Jscript.dll Version 1 (currently running in many
versions of IE 3), so this test is not foolproof either.

In the listings within this chapter, the versions listed for IE are shown as J1, J2, or
J3, corresponding to Versions 1, 2, and 3 of the Jscript.dll file.

About Static Objects
Unlike the heavily object-oriented Java language, there is little of the traditional
object-oriented vernacular in the object-based JavaScript language. As a result,
scripters tend not to think in terms of static objects and object instantiation. But
some of that does take place behind the scenes.

Some core language objects act as if they were true static objects. The Math object
is a good example; it contains a number of properties and methods that scripts use
without ever having to “peel off” an instance of that object to do some math.

In contrast, the Date object is a static object that generates an instance of itself
each time someone creates a new date:

var now = new Date()

In this example, the now variable is an instance of the Date object—a snapshot of
the object frozen in time. That instance provides access to many methods that let
scripts get pieces of date and time, as well as set new values to those pieces. The
methods actually “live” in the static object, but you access them through the
instance that holds a value that can be influenced by those methods (yes, these
methods are inherited, but JavaScript doesn’t use this term much). Only on rare
occasions do scripts ever need to look directly at the static Date object for other
kinds of assistance (such as the getTimezoneOffset() method).

Most objects are either all static (Math) or completely suppress themselves from
the scene once you create instances you work with (String, Array, Number).
Only a few objects operate in both modes, depending on whether you need the
data of an instance of the object or one of the static properties or methods. You’ve
seen how the Date object performs double duty. The RegExp object and Naviga-
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Array 911

JavaScript
Reference
tor’s Event object also perform this double duty; instances of these objects are
created for you. At the same time, you can access static objects (such as String
and Array) to modify their basic behavior by assigning new properties and meth-
ods to their prototype (via the prototype property).

Core Objects

Array NN 3 IE J2 ECMA 1

An array is an ordered collection of one or more pieces of data. JavaScript array entries may
be of any data type, including different data types in the same array. Each entry in an array
has an index assigned to it. The default behavior is for the index to be a zero-based integer
(the first entry has an index of zero). An index value may also be a string. Accessing an
entry in an array requires the name of the array and the index in square brackets:

cars[0]
cars["Ford"]

The number of entries in a JavaScript array (its length) can vary over time. To add a new
entry to an array, assign the value to the next higher array index value:

cars[cars.length] = "Bentley"

Internet Explorer first recognized the Array object in Version 2 of the Jscript.dll for Internet
Explorer 3.

Creating an Array
var myArray = new Array()
var myArray = new Array(sizeInteger)
var myArray = new Array(element0, element1, ..., elementN)

Properties

Methods

length NN 3 IE J2 ECMA 1

Read/Write

A count of the number of entries stored in the array. If the constructor function used to
create the array specified a preliminary length, the length property reflects that amount,
even if data does not occupy every slot.

Example
for (var i = 0; i < myArray.length; i++) {
 ...
}

length prototype

concat() push() slice()
join() reverse() sort()
pop() shift() unshift()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

912 Array
Value Integer.

prototype NN 3 IE J2 ECMA 1

Read/Write

A property of the static Array object. Use the prototype property to assign new proper-
ties and methods to future instances of arrays created in the current document. For
example, the following function creates a return-delimited list of elements in an array in
reverse order:

function formatAsList() {
 var output = ""
 for (var i = this.length - 1; i >= 0; i--) {
 output += this[i] + "\n"
 }
 alert(output)
}

To give an array that power, assign this function reference to a prototype property whose
name you want to use as the method to invoke this function:

Array.prototype.showReverseList = formatAsList

If a script creates an array at this point:

var stooges = new Array("Moe", "Larry", "Curly", "Shemp")

the new array has the showReverseList() method available to it. To invoke the method,
the call is:

stooges.showReverseList()

You can add properties the same way. These allow you to attach information about the
array (its creation time, for example) without disturbing the ordered sequence of array data.
When a new document loads into the window or frame, the static Array object starts fresh
again.

Example
Array.prototype.created = ""

Value Any data, including function references.

concat() NN 4 IE J3 ECMA n/a

concat(array2)

Returns an array that combines the current array object with a second array object specified
as the method parameter:

var combinedArray = myArray1.concat(myArray2)

Neither of the original arrays is altered in the process.

Returned Value

An Array object.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Array 913

JavaScript
Reference
Parameters
array2 Any JavaScript array.

join() NN 3 IE J2 ECMA 1

join("delimiterString")

Returns a string consisting of a list of items (as strings) contained by an array. The delimiter
character(s) between items is set by the parameter to the method.

Returned Value

String.

Parameters
delimiterString

Any string of characters. Nonalphanumeric characters must use URL-encoded
equivalents (%0D for carriage return).

pop() NN 4 IE n/a ECMA n/a

Returns the value of the last item in an array and removes it from the array. The length of
the array decreases by one.

Returned Value

Any JavaScript value.

Parameters

None.

push() NN 4 IE n/a ECMA n/a

push(value)

Appends an item to the end of an array. The length of the array increases by one.

Returned Value

The value pushed into the array.

Parameters
value Any JavaScript value.

reverse() NN 3 IE J2 ECMA 1

Reverses the order of items in the array and returns a copy of the array in the new order.
The original order of the array is changed after this method executes.

Returned Value

An Array object.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

914 Array
Parameters

None.

shift() NN 4 IE n/a ECMA n/a

Returns the value of the first item in an array and removes it from the array. The length of
the array decreases by one.

Returned Value

Any JavaScript value.

Parameters

None.

slice() NN 4 IE J3 ECMA n/a

slice(startIndex[, endIndex])

Returns an array that is a subset of contiguous items from the main array. Parameters deter-
mine where the selection begins and ends.

Returned Value

An Array object.

Parameters
startIndex

A zero-based integer of the first item of the subset from the current array.

endIndex
An optional zero-based integer of the last item of the subset from the current
array. If omitted, the selection is made from the startIndex position to the end of
the array.

sort() NN 3 IE J3 ECMA 1

sort([compareFunction])

Sorts the values of the array either by the ASCII value of string versions of each array entry
or according to a comparison function of your own design. The sort() method repeatedly
invokes the comparison function, passing two values from the array. The comparison func-
tion should return an integer value, which is interpreted by the sort() function as follows:

The following comparison function sorts values of an array in numerical (instead of ASCII)
order:

function doCompare(a, b) {
 return a - b
}

Value Meaning
<0 The second passed value should sort above the first value.
0 The sort order of the two values should not change.
>0 The first passed value should sort above the second.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Boolean 915

JavaScript
Reference
To sort an array by this function, the statement is:

myArray.sort(doCompare)

By the time the sort() method has completed its job, it has sent all values to the doCom-
pare() function two values at a time and sorted the values on whether the first value is
larger than the second.

Not only does the sort() method rearrange the values in the array, but it also returns a
copy of the sorted array.

Returned Value

An Array object.

Parameters
compareFunction

A reference to a function that receives two parameters and returns an integer
result.

unshift() NN 4 IE n/a ECMA n/a

unshift(value)

Inserts an item at the beginning of an array. The length of the array increases by one, and
the method returns the new length of the array.

Returned Value

Integer.

Parameters
value Any JavaScript value.

Boolean NN 3 IE J2 ECMA 1

A Boolean object represents any value that evaluates to true or false. By and large, you
don’t have to worry about the Boolean object because the browsers automatically create
such objects for you when you assign a true or false value to a variable.

Creating a Boolean Object
var myValue = new Boolean()
var myValue = new Boolean(BooleanValue)
var myValue = BooleanValue

Properties

Methods

prototype

toString() valueOf()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

916 Date
prototype NN 3 IE J2 ECMA 1

Read/Write

A property of the static Boolean object. Use the prototype property to assign new proper-
ties and methods to future instances of a Boolean value created in the current document.
See the Array.prototype property description for examples. There is little need to create
new prototype properties or methods for the Boolean object.

Example Boolean.prototype.author = "DG"

Value Any data, including function references.

toString() NN 4 IE J3 ECMA 1

Returns the object’s value as a string data type. You don’t need this method in practice,
because the browsers automatically convert Boolean values to strings when they are needed
for display in alert dialogs or in-document rendering.

Returned Value

"true" | "false"

Parameters

None.

valueOf() NN 4 IE J3 ECMA 1

Returns the object’s value as a Boolean data type. You don’t need this method when you
create Boolean objects by simple value assignment.

Returned Value

Boolean value: true | false.

Parameters

None.

Date NN 2 IE J1 ECMA 1

The Date object is a static object that generates instances by way of several constructor
functions. Each instance of a Date object is a snapshot of the date and time, measured in
milliseconds relative to zero hours on January 1, 1970. Negative millisecond values repre-
sent time before that date; positive values represent time since that date.

The typical way to work with dates is to generate a new Date object instance, either for
now or for a specific date and time (past or future, using the client local time). Then use the
myriad of available date methods to get or set components of that time (e.g., minutes,
hours, date, month). Browsers internally store a date as the millisecond value at Coordi-
nated Universal Time (UTC, which is essentially the same as Greenwich Mean Time, or
GMT). When you ask a browser for a component of that time, it automatically converts the
value to the local time zone of the browser based on the client computer’s control panel
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Date 917

JavaScript
Reference
setting for the clock and time zone. If the control panel is set incorrectly, time and date
calculations may go awry.

Early versions of scriptable browsers had numerous bugs when working with the Date
object. One resource that explains the ins and outs of working with the Date object (and
bugs) can be found at http://developer.netscape.com/viewsource/goodman_dateobject.html.

Creating a Date Object
var now = new Date()
var myDate = new Date("month dd, yyyy hh:mm:ss")
var myDate = new Date("month dd, yyyy")
var myDate = new Date(yy, mm, dd, hh, mm, ss)
var myDate = new Date(yy, mm, dd)
var myDate = new Date(milliseconds)

Properties

Methods

prototype NN 3 IE J2 ECMA 1

Read/Write

A property of the static Date object. Use the prototype property to assign new properties
and methods to future instances of a Date value created in the current document. See the
Array.prototype property description for examples.

Example Date.prototype.author = "DG"

Value Any data, including function references.

getDate() NN 2 IE J1 ECMA 1

Returns the date within the month specified by the Date object.

prototype

getDate() getUTCMilliseconds() setUTCDate()
getDay() getUTCMinutes() setUTCFullYear()
getFullYear() getUTCMonth() setUTCHours()
getHours() getUTCSeconds() setUTCMilliseconds()
getMilliseconds() getYear() setUTCMinutes()
getMinutes() parse() setUTCMonth()
getMonth() setDate() setUTCSeconds()
getSeconds() setFullYear() setYear()
getTime() setHours() toGMTString()
getTimezoneOffset() setMilliseconds() toLocaleString()
getUTCDate() setMinutes() toString()
getUTCDay() setMonth() toUTCString()
getUTCFullYear() setSeconds() UTC()
getUTCHours() setTime() valueOf()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

918 Date
Returned Value

Integer between 1 and 31.

Parameters

None.

getDay() NN 2 IE J1 ECMA 1

Returns an integer corresponding to a day of the week for the date specified by the Date
object.

Returned Value

Integer between 0 and 6. Sunday is 0, Monday is 1, and Saturday is 6.

Parameters

None.

getFullYear() NN 4 IE J3 ECMA 1

Returns all digits of the year for the date specified by the Date object.

Returned Value

Integer. Navigator goes no lower than zero. Internet Explorer returns negative year values.

Parameters

None.

getHours() NN 2 IE J1 ECMA 1

Returns a zero-based integer corresponding to the hours of the day for the date specified by
the Date object. The 24-hour time system is used.

Returned Value

Integer between 0 and 23.

Parameters

None.

getMilliseconds() NN 4 IE J3 ECMA 1

Returns a zero-based integer corresponding to the number of milliseconds past the seconds
value of the date specified by the Date object.

Returned Value

Integer between 0 and 999.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Date 919

JavaScript
Reference
Parameters

None.

getMinutes() NN 2 IE J1 ECMA 1

Returns a zero-based integer corresponding to the minute value for the hour and date speci-
fied by the Date object.

Returned Value

Integer between 0 and 59.

Parameters

None.

getMonth() NN 2 IE J1 ECMA 1

Returns a zero-based integer corresponding to the month value for the date specified by the
Date object. That this method’s values are zero-based frequently confuses scripters at first.

Returned Value

Integer between 0 and 11. January is 0, February is 1, and December is 11.

Parameters

None.

getSeconds() NN 2 IE J1 ECMA 1

Returns a zero-based integer corresponding to the seconds past the nearest full minute for
the date specified by the Date object.

Returned Value

Integer between 0 and 59.

Parameters

None.

getTime() NN 2 IE J1 ECMA 1

Returns a zero-based integer corresponding to the number of milliseconds since January 1,
1970, to the date specified by the Date object.

Returned Value

Integer.

Parameters

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

920 Date
getTimezoneOffset() NN 2 IE J1 ECMA 1

Returns a zero-based integer corresponding to the number of minutes difference between
GMT and the client computer’s clock. Time zones to the west of GMT are positive values;
time zones to the east are negative values. Numerous bugs plagued this method in earlier
browsers, especially Macintosh versions.

Returned Value

Integer between -720 and 720.

Parameters

None.

getUTCDate() NN 4 IE J3 ECMA 1

Returns the date within the month specified by the Date object but in the UTC time stored
internally by the browser.

Returned Value

Integer between 1 and 31.

Parameters

None.

getUTCDay() NN 4 IE J3 ECMA 1

Returns an integer corresponding to a day of the week for the date specified by the Date
object but in the UTC time stored internally by the browser.

Returned Value

Integer between 0 and 6. Sunday is 0, Monday is 1, and Saturday is 6.

Parameters

None.

getUTCFullYear() NN 4 IE J3 ECMA 1

Returns all digits of the year for the date specified by the Date object but in the UTC time
stored internally by the browser.

Returned Value

Integer. Navigator goes no lower than zero. Internet Explorer returns negative year values.

Parameters

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Date 921

JavaScript
Reference
getUTCHours() NN 4 IE J3 ECMA 1

Returns a zero-based integer corresponding to the hours of the day for the date specified by
the Date object but in the UTC time stored internally by the browser. The 24-hour time
system is used.

Returned Value

Integer between 0 and 23.

Parameters

None.

getUTCMilliseconds() NN 4 IE J3 ECMA 1

Returns a zero-based integer corresponding to the number of milliseconds past the seconds
value of the date specified by the Date object but in the UTC time stored internally by the
browser.

Returned Value

Integer between 0 and 999.

Parameters

None.

getUTCMinutes() NN 4 IE J3 ECMA 1

Returns a zero-based integer corresponding to the minute value for the hour and date speci-
fied by the Date object but in the UTC time stored internally by the browser.

Returned Value

Integer between 0 and 59.

Parameters

None.

getUTCMonth() NN 4 IE J3 ECMA 1

Returns a zero-based integer corresponding to the month value for the date specified by the
Date object but in the UTC time stored internally by the browser. That this method’s values
are zero-based frequently confuses scripters at first.

Returned Value

Integer between 0 and 11. January is 0, February is 1, and December is 11.

Parameters

None.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

922 Date
getUTCSeconds() NN 4 IE J3 ECMA 1

Returns a zero-based integer corresponding to the seconds value past the nearest full
minute of the date specified by the Date object but in the UTC time stored internally by the
browser.

Returned Value

Integer between 0 and 59.

Parameters

None.

getYear() NN 2 IE J1 ECMA 1

Returns a number corresponding to the year but exhibits irregular behavior. In theory, the
method should return the number of years the date object represents since 1900. This
would produce a one- or two-digit value for all years between 1900 and 1999. However
when you reach 2000, the pattern fails. Instead of producing values starting with 100, the
getYear() method starting with Navigator 3 and IE 4, returns the same four-digit value as
getFullYear(). For this reason, it is best to use getFullYear() whenever possible (but
observe the browser compatibility for that method).

Returned Value

Integer between 0 and 99 for the years 1900 to 1999; four-digit integer starting with 2000.

Parameters

None.

parse() NN 2 IE J1 ECMA 1

parse(dateString)

Static method that returns the millisecond equivalent of the date specified as a string in the
parameter.

Returned Value

Date in milliseconds.

Parameters
dateString

Any valid string format equivalent to that derived from a Date object. See
toString(), toGMTString(), and toLocaleString() methods for sample
formats.

setDate() NN 2 IE J1 ECMA 1

setDate(dateInt)

Sets the date within the month specified by the Date object. This method alters the value of
the instance of the Date object.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Date 923

JavaScript
Reference
Returned Value

New date in milliseconds.

Parameters
dateInt Integer between 1 and 31.

setFullYear() NN 4 IE J3 ECMA 1

setFullYear(yearInt)

Assigns the year for the date specified by the Date object. This method alters the value of
the instance of the Date object.

Returned Value

New date in milliseconds.

Parameters
yearInt Integer. Navigator allows digits no lower than zero. Internet Explorer allows

negative year values.

setHours() NN 2 IE J1 ECMA 1

setHours(hourInt)

Sets the hours of the day for the date specified by the Date object. The 24-hour time system
is used. This method alters the value of the instance of the Date object.

Returned Value

New date in milliseconds.

Parameters
hourInt Integer between 0 and 23.

setMilliseconds() NN 4 IE J3 ECMA 1

setMilliseconds(msInt)

Sets the number of milliseconds past the seconds value of the date specified by the Date
object. This method alters the value of the instance of the Date object.

Returned Value

New date in milliseconds.

Parameters
msInt Integer between 0 and 999.

setMinutes() NN 2 IE J1 ECMA 1

setMinutes(minuteInt)

Sets the minute value for the hour and date specified by the Date object. This method alters
the value of the instance of the Date object.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

924 Date
Returned Value

New date in milliseconds.

Parameters
minuteInt Integer between 0 and 59.

setMonth() NN 2 IE J1 ECMA 1

setMonth(monthInt)

Sets the month value for the date specified by the Date object. That this method’s values
are zero-based frequently confuses scripters at first. This method alters the value of the
instance of the Date object.

Returned Value

New date in milliseconds.

Parameters
monthInt Integer between 0 and 11. January is 0, February is 1, and December is 11.

setSeconds() NN 2 IE J1 ECMA 1

setSeconds(secInt)

Sets the seconds value past the nearest full minute of the date specified by the Date object.
This method alters the value of the instance of the Date object.

Returned Value

New date in milliseconds.

Parameters
secInt Integer between 0 and 59.

setTime() NN 2 IE J1 ECMA 1

setTime(msInt)

Sets the Date object to the number of milliseconds since January 1, 1970. This method
alters the value of the instance of the Date object.

Returned Value

New date in milliseconds.

Parameters
msInt Integer.

setUTCDate() NN 4 IE J3 ECMA 1

setUTCDate(dateInt)

Sets the date within the month specified by the Date object but in the UTC time stored
internally by the browser.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Date 925

JavaScript
Reference
Returned Value

New UTC date in milliseconds.

Parameters
dateInt Integer between 1 and 31.

setUTCFullYear() NN 4 IE J3 ECMA 1

setUTCFullYear(yearInt)

Sets all digits of the year for the date specified by the Date object but in the UTC time
stored internally by the browser. This method alters the value of the instance of the Date
object.

Returned Value

New UTC date in milliseconds.

Parameters
yearInt Integer. Navigator allows values no lower than zero. Internet Explorer allows

negative year values.

setUTCHours() NN 4 IE J3 ECMA 1

setUTCHours(hourInt)

Sets the hours of the day for the date specified by the Date object but in the UTC time
stored internally by the browser. The 24-hour time system is used. This method alters the
value of the instance of the Date object.

Returned Value

New UTC date in milliseconds.

Parameters
hourInt Integer between 0 and 23.

setUTCMilliseconds() NN 4 IE J3 ECMA 1

setUTCMilliseconds(msInt)

Sets the number of milliseconds past the seconds value of the date specified by the Date
object but in the UTC time stored internally by the browser. This method alters the value of
the instance of the Date object.

Returned Value

New UTC date in milliseconds.

Parameters
msInt Integer between 0 and 999.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

926 Date
setUTCMinutes() NN 4 IE J3 ECMA 1

setUTCMinutes(minuteInt)

Sets the minute value for the hour and date specified by the Date object but in the UTC
time stored internally by the browser. This method alters the value of the instance of the
Date object.

Returned Value

New UTC date in milliseconds.

Parameters
minuteInt Integer between 0 and 59.

setUTCMonth() NN 4 IE J3 ECMA 1

setUTCMonth(monthInt)

Sets the month value for the date specified by the Date object but in the UTC time stored
internally by the browser. That this method’s values are zero-based frequently confuses
scripters at first. This method alters the value of the instance of the Date object.

Returned Value

New UTC date in milliseconds.

Parameters
monthInt Integer between 0 and 11. January is 0, February is 1, and December is 11.

setUTCSeconds() NN 4 IE J3 ECMA 1

setUTCSeconds(secInt)

Sets the seconds value past the nearest full minute specified by the Date object but in the
UTC time stored internally by the browser.

Returned Value

New UTC date in milliseconds.

Parameters
secInt Integer between 0 and 59.

setYear() NN 2 IE J1 ECMA 1

setYear(yearInt)

Sets the year of a Date object. Use setFullYear() if the browser versions you support
allow it.

Returned Value

New date in milliseconds.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Date 927

JavaScript
Reference
Parameters
yearInt Integer between 0 and 99 for the years 1900 to 1999; four-digit integer starting

with 2000. Four-digit integers also accepted for years before 2000.

toGMTString() NN 2 IE J1 ECMA 1

Returns a string version of the GMT value of a Date object instance in a standardized
format. This method does not alter the original Date object. For use in newer browsers, the
toUTCString() method is recommended in favor of toGMTString().

Returned Value

String in the following format: dayAbbrev, dd mmm yyyy hh:mm:ss GMT. For example:

Wed 05 Aug 1998 02:33:22 GMT

Parameters

None.

toLocaleString() NN 2 IE J1 ECMA 1

Returns a string version of the local time zone value of a Date object instance in a format
that may be localized for a particular country or an operating system’s convention. This
method does not alter the original Date object.

Returned Value

String in a variety of possible formats. Examples of U.S. versions of browsers include:

Parameters

None.

toString() NN 2 IE J2 ECMA 1

A static method used mostly by the browser itself to convert Date objects to string values
when needed for display in dialog boxes or on-screen rendering. This method is inherited
by Date object instances, so you may use it to script string conversion if the other available
formats are not to your liking.

Returned Value

String in a variety of possible formats. Examples of U.S. versions of browsers include:

Platform String Value
Navigator 4/Win32 03/31/98 11:22:44
Navigator 4/MacPPC Mar 31 11:22:44 1998
Internet Explorer 4/Win32 03/31/98 11:22:44
Internet Explorer 4/MacPPC Tuesday, 31 March, 1998 11:22:44 AM

Platform String Value
Navigator 4/Win32 Tue Mar 31 11:22:04 Pacific Standard Time 1998
Navigator 4/MacPPC Tue Mar 31 11:30:24 1998
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

928 Date
Parameters

None.

toUTCString() NN 4 IE J3 ECMA 1

Returns a string version of the UTC value of a Date object instance in a standardized
format. This method does not alter the original Date object. For use in newer browsers, the
toUTCString() method is recommended in favor of toGMTString().

Returned Value

String in the following format: dayAbbrev, dd mmm yyyy hh:mm:ss GMT. For example:

Wed 05 Aug 1998 02:33:22 GMT

Parameters

None.

UTC() NN 2 IE J1 ECMA 1

UTC(yyyy, mm, dd[, hh[, mm[, ss[, msecs]]]])

A static method of the Date object that returns a numeric version of the date as stored inter-
nally by the browser for a Date object. Unlike parameters to the Date object constructor,
the parameter values for the UTC() method must be in UTC time for the returned value to
be accurate. This method does not generate a date object, as the Date object constructor
does.

Returned Value

Integer of the UTC millisecond value of the date specified as parameters.

Parameters
yyyy Four-digit year value.

mm Two-digit month number (0-11).

dd Two-digit date number (1-31).

hh Optional two-digit hour number in 24-hour time (0-23).

mm Optional two-digit minute number (0-59).

ss Optional two-digit second number (0-59).

msec Optional milliseconds past the last whole second (0-999).

valueOf() NN 4 IE J3 ECMA 1

Returns the object’s value.

Returned Value

Integer millisecond count.

Internet Explorer 4/Win32 Tue Mar 31 11:22:04 PST 1998
Internet Explorer 4/MacPPC Tue Mar 31 11:30:24 PST 1998

Platform String Value
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Function 929

JavaScript
Reference
Parameters

None.

Function NN 2 IE J1 ECMA 1

A function is a group of one or more script statements that can be invoked at any time
during or after the loading of a page. Invoking a function requires nothing more than
including the function name with a trailing set of parentheses inside another script state-
ment or as a value assigned to an event handler attribute in an HTML tag.

Since the first scriptable browsers, a function is created by the act of defining it inside a
SCRIPT element:

function funcName() {...}

More recent browsers also allow the use of a constructor function, but this syntax is usually
more complex than defining a function.

Functions may be built to receive zero or more parameters. Parameters are assigned to
comma-delimited parameter variables defined in the parentheses pair following the func-
tion name:

function doSomething(param1, param2, ... paramN) {...}

A parameter value may be any JavaScript data type, including object references and arrays.
There is no penalty for not supplying the same number of parameters to the function as are
defined for the function. The function object receives all parameters into an array (called
arguments), which script statements inside the function may examine to extract parameter
data.

A function returns execution to the calling statement when the function’s last statement has
executed. A value may be returned to the calling statement via the return statement. Also,
a return statement anywhere else in the function’s statements aborts function statement
execution at that point and returns control to the calling statement (optionally with a
returned value). If one branch of a conditional construction in a function returns a value,
each branch, including the main branch, must also return a value, even if that value is
null.

Functions have ready access to all global variables that are defined outside of functions
anywhere in the document. But variables defined inside a function (the var keyword is
required) are accessible only to statements inside the function.

To reference a function object that is defined elsewhere in the document, use the function
name without its parentheses. For example, to assign a function to an event handler prop-
erty, the syntax is:

objReference.eventHandlerProperty = functionName

In Navigator 4, you may nest functions inside one another:

function myFuncA() {
statements

 function myFuncB() {
statements

 }
}

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

930 Function
Nested functions (such as myFuncB) can be invoked only by statements in its next outer-
most function.

All functions belong to the window in which the function is defined. Therefore, if a script
must access a function located in a sibling frame, the reference must include the frame and
the function name:

parent.otherFrame.someFunction()

Creating a Function
function myFunction([param1[, param2[,...paramN]]]) {

statement(s)
}
var myFunction = new Function([param1[,...paramN], "statement1[;
...statement2"])
obj.MethodName = function([param1[, param2[,...paramN]]]) {

statement(s)
}

Properties

Methods

arguments NN 3 IE J2 ECMA 1

Read-only

Returns an array of values passed as arguments to the function. The content of the array is
independent of the parameter variables defined for the function. Therefore, if the function
defines two parameter variables but the calling statement passes 10 parameters, the argu-
ments array captures all 10 values in the order in which they were passed. Statements
inside the function may then examine the length of the arguments array and extract values
as needed. This allows one function to handle an indeterminate number of parameters if
the need arises.

Example
function myFunc()
 for (var i = 0; i < myFunc.arguments.length; i++) {
 ...
 }
}

Value Array of values of any JavaScript data type.

arity NN 4 IE n/a ECMA n/a

Read-only

Returns an integer representing the number of parameters that are defined for the function.
This property may be examined in a statement outside of the function, perhaps in prepara-
tion of parameters to be passed to the function.

arguments arity caller length prototype

toString() valueOf()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Function 931

JavaScript
Reference
Example var paramCount = myFunction.arity

Value Integer.

caller NN 3 IE J2 ECMA n/a

Read-only

Returns a reference to a function object that contained the statement invoking the current
function.

Example
function myFunc()
 if (myFunc.caller == someFuncZ) {

process for this function being called by someFuncZ
 }
}

Value Function object.

length NN 4 IE J3 ECMA 1

Read-only

Returns an integer representing the number of parameters that are defined for the function.
This property may be examined in a statement outside of the function, perhaps in prepara-
tion of parameters to be passed to the function. Navigator always returns a value of zero
(see the arity property).

Example var paramCount = myFunction.length

Value Integer.

prototype NN 3 IE J2 ECMA 1

Read/Write

A property of the static Function object. Use the prototype property to assign new prop-
erties and methods to future instances of functions created in the current document. See the
Array.prototype property description for examples.

Example Function.prototype.author = "DG"

Value Any data, including function references.

toString() NN 4 IE J3 ECMA 1

Returns the object’s value (script statement listing and function wrapper) as a string data
type. You don’t need this method in practice because the browsers automatically convert
values to strings when they are needed for display in alert dialogs or in-document
rendering.

Returned Value

String.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

932 Math
Parameters

None.

valueOf() NN 4 IE J3 ECMA 1

Returns the object’s value.

Returned Value

A function object reference.

Parameters

None.

Math NN 2 IE J1 ECMA 1

The Math object is used only in its static object form as a library of math constant values
and (mostly trigonometric) operations. As a result, there is no constructor function. Invoking
a Math object property or method adheres to the following syntax:

Math.propertyName
Math.method(param1[, param2])

Be sure to observe the uppercase “M” in the Math object in script statements. All expres-
sions involving the Math object evaluate to or return a value.

Properties

Methods

E NN 2 IE J1 ECMA 1

Read-only

Returns Euler’s constant.

Example var num = Math.E

Value 2.718281828459045

LN2 NN 2 IE J1 ECMA 1

Read-only

Returns the natural logarithm of 2.

E LN10 LOG10E SQRT1_2 SQRT2
LN2 LOG2E PI

abs() atan2() floor() pow() sin()
acos() ceil() log() random() sqrt()
asin() cos() max() round() tan()
atan() exp() min()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Math 933

JavaScript
Reference
Example var num = Math.LN2

Value 0.6931471805599453

LN10 NN 2 IE J1 ECMA 1

Read-only

Returns the natural logarithm of 10.

Example var num = Math.LN10

Value 2.302585092994046

LOG2E NN 2 IE J1 ECMA 1

Read-only

Returns the log base-2 of E.

Example var num = Math.LOG2E

Value 1.4426950408889634

LOG10E NN 2 IE J1 ECMA 1

Read-only

Returns the log base-10 of E.

Example var num = Math.LOG10E

Value 0.4342944819032518

PI NN 2 IE J1 ECMA 1

Read-only

Returns the value of π.

Example var num = Math.PI

Value 3.141592653589793

SQRT1_2 NN 2 IE J1 ECMA 1

Read-only

Returns the square root of 0.5.

Example var num = Math.SQRT1_2

Value 0.7071067811865476

SQRT2 NN 2 IE J1 ECMA 1

Read-only

Returns the square root of 2.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

934 Math
Example var num = Math.SQRT2

Value 1.4142135623730951

abs() NN 2 IE J1 ECMA 1

abs(number)

Returns the absolute value of the number passed as a parameter.

Returned Value

Positive number or zero.

Parameters
number Any number.

acos() NN 2 IE J1 ECMA 1

acos(number)

Returns the arc cosine (in radians) of the number passed as a parameter.

Returned Value

Number.

Parameters
number Any number from -1 to 1.

asin() NN 2 IE J1 ECMA 1

asin(number)

Returns the arc sine (in radians) of the number passed as a parameter.

Returned Value

Number.

Parameters
number Any number from -1 to 1.

atan() NN 2 IE J1 ECMA 1

atan(number)

Returns the arc tangent (in radians) of the number passed as a parameter.

Returned Value

Number.

Parameters
number Any number between negative infinity and infinity.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Math 935

JavaScript
Reference
atan2() NN 2 IE J2 ECMA 1

atan2(x, y)

Returns the angle (in radians) of angle formed by a line to Cartesian point x, y.

Returned Value

Number between -π and π.

Parameters
x Any number.

y Any number.

ceil() NN 2 IE J1 ECMA 1

ceil(number)

Returns the next higher integer that is greater than or equal to the number passed as a
parameter.

Returned Value

Integer.

Parameters
number Any number.

cos() NN 2 IE J1 ECMA 1

cos(number)

Returns the cosine of the number passed as a parameter.

Returned Value

Number.

Parameters
number Any number.

exp() NN 2 IE J1 ECMA 1

exp(number)

Returns the value of E to the power of the number passed as a parameter.

Returned Value

Number.

Parameters
number Any number.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

936 Math
floor() NN 2 IE J1 ECMA 1

floor(number)

Returns the next lower integer that is less than or equal to the number passed as a
parameter.

Returned Value

Integer.

Parameters
number Any number.

log() NN 2 IE J1 ECMA 1

log(number)

Returns the natural logarithm (base e) of the number passed as a parameter.

Returned Value

Number.

Parameters
number Any number.

max() NN 2 IE J1 ECMA 1

max(number1, number2)

Returns the greater value of the two parameters.

Returned Value

Number.

Parameters
number1 Any number.

number2 Any number.

min() NN 2 IE J1 ECMA 1

min(number1, number2)

Returns the lesser value of the two parameters.

Returned Value

Number.

Parameters
number1 Any number.

number2 Any number.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Math 937

JavaScript
Reference
pow() NN 2 IE J1 ECMA 1

pow(number1, number2)

Returns the value of the first parameter raised to the power of the second parameter.

Returned Value

Number.

Parameters
number1 Any number.

number2 Any number.

random() NN 2 IE J1 ECMA 1

Returns a random number between 0 and 1. To calculate a random integer between zero
and another maximum value, use the formula:

Math.round(Math.random() * n)

where n is the top integer of the acceptable range. To calculate a random integer between a
range starting with a number other than zero, use the formula:

Math.round(Math.random() * n) + m

where m is the lowest integer of the acceptable range and n+m equals the maximum value
of the range. Note that the Math.random() method does not work in the Windows and
Macintosh versions of Navigator 2.

Returned Value

Number from 0 through 1.

Parameters

None.

round() NN 2 IE J1 ECMA 1

round(number)

Returns an integer that follows rounding rules. If the value of the passed parameter is
greater than or equal to x.5, the returned value is x + 1; otherwise, the returned value is x.

Returned Value

Integer.

Parameters
number Any number.

sin() NN 2 IE J1 ECMA 1

sin(number)

Returns the sine (in radians) of the number passed as a parameter.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

938 Number
Returned Value

Number.

Parameters
number Any number.

sqrt() NN 2 IE J1 ECMA 1

sqrt(number)

Returns the square root of the number passed as a parameter.

Returned Value

Number.

Parameters
number Any number.

tan() NN 2 IE J1 ECMA 1

tan(number)

Returns the tangent (in radians) of the number passed as a parameter.

Returned Value

Number.

Parameters
number Any number between negative infinity and infinity.

Number NN 3 IE J2 ECMA 1

A Number object represents any numerical value, whether it is an integer or floating-point
number. By and large, you don’t have to worry about the Number object because a numer-
ical value automatically becomes a Number object instance whenever you use such a value
or assign it to a variable. On the other hand, you might want access to the static properties
that only a math major would love.

Creating a Number Object
var myValue = number
var myValue = new Number(number)

Properties

Methods

MAX_VALUE NaN NEGATIVE_INFINITY POSITIVE_INFINITY prototype
MIN_VALUE

toString() valueOf()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Number 939

JavaScript
Reference
MAX_VALUE NN 3 IE J2 ECMA 1

Read-only

Equal to the highest possible number that JavaScript can handle.

Example var tiptop = Number.MAX_VALUE

Value 1.7976931348623157e+308

MIN_VALUE NN 3 IE J2 ECMA 1

Read-only

Equal to the smallest possible number that JavaScript can handle.

Example var itsybitsy = Number.MIN_VALUE

Value 5e-324

NaN NN 3 IE J2 ECMA 1

Read-only

Equal to a value that is not-a-number. JavaScript returns this value when a numerical opera-
tion yields a non-numerical result because of a flaw in one of the operands. If you want to
test whether a value is not a number, use the isNaN() global function rather than
comparing to this property value.

Value NaN

NEGATIVE_INFINITY, POSITIVE_INFINITY NN 3 IE J2 ECMA 1

Read-only

Values that are outside of the bounds of Number.MIN_VALUE and Number.MAX_VALUE,
respectively.

Example Number.NEGATIVE_INFINITY

Value -Infinity; Infinity

prototype NN 3 IE J2 ECMA 1

Read/Write

A property of the static Number object. Use the prototype property to assign new proper-
ties and methods to future instances of a Number value created in the current document.
See the Array.prototype property description for examples. There is little need to create
new prototype properties or methods for the Number object.

Example Number.prototype.author = "DG"

Value Any data, including function references.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

940 Object
toString() NN 4 IE J3 ECMA 1

Returns the object’s value as a string data type. You don’t need this method in practice
because the browsers automatically convert Number values to strings when they are needed
for display in alert dialogs or in-document rendering.

Returned Value

String.

Parameters

None.

valueOf() NN 4 IE J3 ECMA 1

Returns the object’s value.

Returned Value

A numeric value.

Parameters

None.

Object NN 4 IE J3 ECMA 1

An Object represents a customizable object. Use the Object object to generate “things” in
your scripts whose behaviors are defined by custom properties and/or methods. Most typi-
cally, you start by creating a blank object with the constructor and then assign values to
new properties of that object.

Navigator 4 also lets you assign properties and values via a special literal syntax that also
creates the Object instance in the process:

var myObject = {prop1Name:prop1Value[, prop2Name:prop2Value[,
...propNName:propNValue]]}

You can use objects as data structures for structured custom data in your scripts, much like
creating an array with named index values.

Creating a Boolean Object
var myObject = new Object()

Properties

Methods

prototype

toString() valueOf()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

RegExp 941

JavaScript
Reference
prototype NN 4 IE J3 ECMA 1

Read/Write

A property of the static Object. Use the prototype property to assign new properties and
methods to future instances of an Object created in the current document. See the
Array.prototype property description for examples.

Example Object.prototype.author = "DG"

Value Any data, including function references.

toString() NN 4 IE J3 ECMA 1

Returns the object’s value as a string data type.

Returned Value

String.

Parameters

None.

valueOf() NN 4 IE J3 ECMA 1

Returns the object’s value.

Returned Value

An object reference.

Parameters

None.

RegExp NN 4 IE J3 ECMA n/a

The RegExp object is a static object that both generates instances of a regular expression
and monitors all regular expression in the current window or frame. Instances of the
RegExp object are covered in the regular expressions object description that follows this
section.

Regular expressions assist in locating text that matches patterns of characters or characteris-
tics. For example, a regular expression can be used to find out very quickly if an entry in a
text field is a five-digit number. Defining the pattern to match requires knowledge of a
separate notation syntax that is beyond the scope of this book (but is covered in Mastering
Regular Expressions, by Jeffrey E.F. Friedl, published by O’Reilly). A summary of the syntax
can be found in the description of the regular expression object.

Properties of the RegExp object store information about the last operation of any regular
expression in the document. Therefore, it is conceivable that each property could change
after each regular expression operation. Such operations include not only the methods of a
regular expression object instance (exec() and test()), but also the String object
methods that accept regular expressions as parameters (match(), replace(), and
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

942 RegExp
split()). Some of these properties are passed to the regular expression object as well, in
preparation for the next operation with the regular expression.

All properties have verbose names as well as shortcut names that begin with $.

Properties

input NN 4 IE J3 ECMA n/a

Read/Write

The main string against which a regular expression is compared. If the main string is
handed to the regular expression operation as a parameter to a method, this value is null.
The short version is $_ (dollar sign, underscore).

Example RegExp.input = "Four score and seven years ago..."

Value String.

lastMatch NN 4 IE J3 ECMA n/a

Read-only

Returns the string that matches the regular expression as a result of the most recent opera-
tion. The short version is $&.

Example var matched = RegExp.lastMatch

Value String.

lastParen NN 4 IE J3 ECMA n/a

Read-only

Returns the string that matches the last parenthesized subcomponent of the regular expres-
sion as a result of the most recent operation. The short version is $+.

Example var myValue = RegExp.lastParen

Value String.

leftContext, rightContext NN 4 IE J3 ECMA n/a

Read-only

The leftContext property returns the string starting with the beginning of the most recent
searched text up to, but not including, the matching string. The rightContext property
returns the string starting with the main string portion immediately following the matching
string and extending to the end of the string. The short versions are $` and $', respec-
tively. Because the start of subsequent searches on the same main string move inexorably
toward the end of the main string, the starting point of the leftContext value can shift
with each operation.

input leftContext $1 $4 $7
lastMatch multiline $2 $5 $8
lastParen rightContext $3 $6 $9
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

regular expression 943

JavaScript
Reference
Example
var wholeContext = RegExp.leftContext + RegExp.lastMatch +
RegExp.rightContext

Value String.

multiline NN 4 IE J3 ECMA n/a

Read/Write

If the search extends across multiple lines of text, the multiline property is set to true. A
search through text in a TEXTAREA element, for example, is multiline. The short version is
$*.

Example
if (RegExp.multiline) {
 ...
}

Value Boolean.

$1, ..., $9 NN 4 IE J3 ECMA n/a

Read-only

Parenthesized subcomponents of a regular expression return results. These results are
stored individually in properties labeled 1 through 9, preceded by the $ shortcut symbol.
The order is based on the position of the left parenthesis of a subcomponent: the leftmost
subcomponent result is placed into $1. These properties may be used directly within
parameters to String methods that use regular expressions (see the String.replace()
method).

Example RegExp.$2

Value String.

regular expression NN 4 IE J3 ECMA n/a

A regular expression object is an instance of the RegExp object. Each regular expression
object consists of a pattern that is used to locate matches within a string. Patterns for a
regular expression can be simple strings or significantly more powerful expressions that use
a notation that is essentially a language unto itself. The implementation of regular expres-
sions in JavaScript 1.2 is very similar to the way they are implemented in Perl. You can read
more about these concepts in books covering JavaScript 1.2.

To create a regular expression object, surround the pattern with forward slashes, and assign
the whole expression to a variable. For example, the following statement creates a regular
expression whose pattern is a simple word:

var re = /greet/

The re variable can then be used as a parameter is a variety of methods that search for the
pattern within some string (you may also use an expression directly as a method param-
eter, rather than assigning it to a variable).
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

944 regular expression
Regular expression notation also consists of a number of metacharacters that stand in for
sometimes complex ideas, such as the boundary on either side of a word, any numeral, or
one or more characters. For example, to search for the pattern of characters shown above
but only when the pattern is a word (and not part of a word such as greetings), the regular
expression notation uses the metacharacters to indicate that the pattern includes word
boundaries on both sides of the pattern:

var re = /\bgreet\b/

Table 11-1 shows a summary of the regular expression notation used in JavaScript 1.2:

When you create a regular expression, you may optionally wire the expression to work
globally (as you probably do if the regular expression is doing a search-and-replace opera-
tion with a method) and to ignore case in its matches. The modifiers that turn on these
switches are the letters g and i. They may be used by themselves or together as gi.

Once you have established a pattern with the regular expression notation, all the action
takes place in the regular expression object methods and the String object methods that
accept regular expression parameters.

Table 11-1. Regular Expression Notation

Character Matches Example
\b Word boundary /\bto/ matches “tomorrow”

/to\b/ matches “Soweto”
/\bto\b/ matches “to”

\B Word nonboundary /\Bto/ matches “stool” and “Soweto”
/to\B/ matches “stool” and “tomorrow”
/\Bto\B/ matches “stool”

\d Numeral 0 through 9 /\d\d/ matches “42”
\D Nonnumeral /\D\D/ matches “to”
\s Single whitespace /under\sdog/ matches “under dog”
\S Single nonwhitespace /under\Sdog/ matches “under-dog”
\w Letter, numeral, or underscore /1\w/ matches “1A”
\W Not a letter, numeral, or under-

score
/1\W/ matches “1%”

. Any character except a newline /../ matches “Z3”
[…] Any one of the character set in

brackets
/J[aeiou]y/ matches “Joy”

[^…] Negated character set /J[^eiou]y/ matches “Jay”
* Zero or more times /d*/ matches “”, “5”, or “444”
? Zero or one time /d?/ matches “” or “5”
+ One or more times /d+/ matches “5” or “444”
{n} Exactly n times /d{2}/ matches “55”
{n,} n or more times /d{2,}/ matches “555”
{n,m} At least n, at most m times /d{2,4}/ matches “5555”
^ At beginning of a string or line /^Sally/ matches “Sally says...”
$ At end of a string or line /Sally.$/ matches “Hi, Sally.”
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

regular expression 945

JavaScript
Reference
Creating a regular expression Object
var regExpressionObj = /pattern/ [g | i | gi]
var regExpressionObj = new RegExp(["pattern", ["g" | "i" | "gi"]])

Properties

Methods

global, ignoreCase NN 4 IE J3 ECMA n/a

Read-only

Returns whether the object had the g or i modifiers set when it was created. If a regular
expression object has both modifiers set (gi), you must still test for each property
individually.

Example
if (myRE.global && myRE.ignoreCase) {
 ...
}

Value Boolean.

lastIndex NN 4 IE J3 ECMA n/a

Read/Write

The zero-based index value of the character within the string where the next search for the
pattern begins. In a new search, the value is zero. You can also set the value manually if
you wish to start at a different location or skip some characters.

Example myRE.lastIndex = 30

Value Integer.

source NN 4 IE J3 ECMA n/a

Read-only

Returns a string version of the characters used to create the regular expression. The value
does not include the forward slash delimiters that surround the expression.

Example var myREasString = myRE.source

Value String.

compile() NN 4 IE J3 ECMA n/a

compile(pattern[, g | i | gi])

Compiles a regular expression pattern into a genuine regular expression object. This
method is used primarily to recompile a regular expression whose pattern may change
during the execution of a script.

global ignoreCase lastIndex source

compile() exec() test()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

946 regular expression
Returned Value

regular expression object reference.

Parameters
pattern Any regular expression pattern as a quoted string.

exec() NN 4 IE J3 ECMA n/a

exec(string)

Performs a search through the string passed as a parameter for the current regular expres-
sion pattern. A typical sequence follows the format:

var myRE = /somePattern/
var resultArray = myRE.exec("someString")

Properties of both the static RegExp and regular expression (myRE in the example) objects
are updated with information about the results of the search. In addition, the exec()
method returns an array of data, much of it similar to RegExp object properties. The
returned array includes the following properties:

index Zero-based index of starting character in the string that matches the pattern

input The original string being searched

[0] String of the characters matching the pattern

[1]…[n] Strings of the results of the parenthesized component matches

You can stow away the results of the exec() method in a variable, whereas the RegExp
property values change with the next regular expression operation. If the regular expres-
sion is set for global searching, a subsequent call to myRE.exec("someString") continues
the search from the position of the previous match.

If no match is found for a given call to exec(), it returns null.

Returned Value

An array of match information if successful; null if there is no match.

Parameters
string The string to be searched.

test() NN 4 IE J3 ECMA n/a

test(string)

Returns true if there is a match of the regular expression anywhere in the string passed as
a parameter; false if not. No additional information is available about the results of the
search. This is the fastest way to find out if a pattern matches within a string.

Returned Value

Boolean.

Parameters
string The string to be searched.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

String 947

JavaScript
Reference
String NN 2 IE J1 ECMA 1

A String object represents any sequence of zero or more characters that are to be treated
strictly as text (that is, no math operations are to be applied). A large library of methods are
divided into two categories. One category surrounds a string with a pair of HTML tags for a
variety of HTML character formatting. These methods are used primarily to assist statements
that use document.write() to dynamically create content. The second method category is
the more traditional set of string parsing and manipulation methods that facilitate character
and substring extraction, case changes, and conversion from string lists to JavaScript arrays.

By and large, you don’t have to worry about explicitly creating a string beyond a simple
assignment of a quoted string value:

var myString = "howdy"

Occasionally, however, it is helpful to create a string object using the constructor of the
static String object. Preparing string values for passage to Java applets often requires this
type of string generation:

var myString = new String("howdy")

Other than the constructor, prototype property, and fromCharCode() method, all proper-
ties and methods are for use with instances of the String object, rather than the static
String object.

Creating a String Object
var myValue = "someString"
var myValue = new String("someString")

Properties

Methods

length NN 2 IE J1 ECMA 1

Read-only

A count of the number of characters in the string. String values dynamically change their
lengths if new values are assigned to them or if other strings are concatenated.

length prototype

anchor() fromCharCode() small()
big() indexOf() split()
blink() italics() strike()
bold() lastIndexOf() sub()
charAt() link() substr()
charCodeAt() match() substring()
concat() replace() sup()
fixed() search() toLowerCase()
fontcolor() slice() toUpperCase()
fontsize()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

948 String
Example
for (var i = 0; i < myString.length; i++) {
 ...
}

Value Integer.

prototype NN 3 IE J2 ECMA 1

Read/Write

A property of the static String object. Use the prototype property to assign new proper-
ties and methods to future instances of a String value created in the current document.
See the Array.prototype property description for examples. There is little need to create
new prototype properties or methods for the String object.

Example String.prototype.author = "DG"

Value Any data, including function references.

anchor() NN 2 IE J1 ECMA n/a

anchor(anchorName)

Returns a copy of the string embedded within an anchor (<A>) tag set. The value passed as
a parameter is assigned to the NAME attribute of the tag.

Returned Value

A string within an A element.

Parameters
anchorName

A string to use as the value of the NAME attribute.

big() NN 2 IE J1 ECMA n/a

Returns a copy of the string embedded within a <BIG> tag set.

Returned Value

A string within a BIG element.

Parameters

None.

blink() NN 2 IE J1 ECMA n/a

Returns a copy of the string embedded within a <BLINK> tag set.

Returned Value

A string within a BLINK element.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

String 949

JavaScript
Reference
Parameters

None.

bold() NN 2 IE J1 ECMA n/a

Returns a copy of the string embedded within a tag set.

Returned Value

A string within a B element.

Parameters

None.

charAt() NN 2 IE J1 ECMA 1

charAt(positionIndex)

Returns a single character string of the character located at the zero-based index position
passed as a parameter. Use this method instead of substring() when only one character
from a known position is needed from a string.

Returned Value

A one-character string. In newer browser versions, an empty string is returned if the param-
eter value points to a character beyond the length of the string.

Parameters
positionIndex Zero-based integer.

charCodeAt() NN 4 IE J3 ECMA 1

charCodeAt(positionIndex)

Returns a number of the decimal Unicode value for the character located at the zero-based
index position passed as a parameter. For common alphanumeric characters, the Unicode
values are the same as ASCII values.

Returned Value

A positive integer. Returns NaN if the parameter value points to a character beyond the
length of the string.

Parameters
positionIndex Zero-based integer.

concat() NN 4 IE J3 ECMA n/a

concat(string2)

Returns a string that appends the parameter string to the current string object. The results of
this method are the same as concatenating strings with the add (+) or add-by-value (+=)
operators. Neither the method nor operators insert spaces between the two string
components.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

950 String
Returned Value

String.

Parameters
string2 Any string.

fixed() NN 2 IE J1 ECMA n/a

Returns a copy of the string embedded within a <TT> tag set.

Returned Value

A string within a TT element.

Parameters

None.

fontcolor() NN 2 IE J1 ECMA n/a

fontColor(color)

Returns a copy of the string embedded within a font () tag set. The value passed as
a parameter is assigned to the COLOR attribute of the tag.

Returned Value

A string within a FONT element.

Parameters
color A string to use as the value of the COLOR attribute.

fontsize() NN 2 IE J1 ECMA n/a

fontSize(size)

Returns a copy of the string embedded within a font () tag set. The value passed as
a parameter is assigned to the SIZE attribute of the tag.

Returned Value

A string within a FONT element.

Parameters
size An integer to use as the value of the SIZE attribute.

fromCharCode() NN 4 IE J3 ECMA n/a

fromCharCode(num1[, num2,[...numN]])

A static method that returns a string of one or more characters whose Unicode values are
passed as a comma-delimited list of parameters. For example, the expression:

String.fromCharCode(120, 121, 122)

returns “xyz”.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

String 951

JavaScript
Reference
Returned Value

A string.

Parameters
num1...numN One or more integer values in an unquoted, comma-delimited list.

indexOf() NN 2 IE J1 ECMA 1

indexOf(searchString[, startPositionIndex])

Returns a zero-based integer of the position within the current string where the search-
String parameter starts. Normally, the search starts with the first (index of zero) character,
but you may have the search begin later in the string by specifying the optional second
parameter, which is the index value of where the search should start. If there is no match,
the returned value is -1. This is a backward-compatible quick way to find out if one string
contains another: If the returned value is -1 then you know the searchString is not in
the larger string. If the returned value is another number (the precise value doesn’t matter),
the searchString is in the larger string. For Version 4 browsers, the String object’s
search() method performs a similar function.

Returned Value

Integer.

Parameters
searchString

A string to look for in the current string object

startPositionIndex
A zero-based integer indicating the position within the current string object to
begin the search of the first parameter

italics() NN 2 IE J1 ECMA n/a

Returns a copy of the string embedded within an <I> tag set.

Returned Value

A string within an I element.

Parameters

None.

lastIndexOf() NN 2 IE J1 ECMA 1

lastIndexOf(searchString[, startPositionIndex])

Returns a zero-based integer of the position within the current string object where the
searchString parameter starts. This method works like the indexOf() method but begins
all searches from the end of the string or some index position. Even though searching starts
from the end of the string, the startPositionIndex parameter is based on the start of the
string, as is the returned value. If there is no match, the returned value is -1.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

952 String
Returned Value

Integer.

Parameters
searchString

A string to look for in the current string object.

startPositionIndex
A zero-based integer indicating the position within the current string object to
begin the search of the first parameter. Even though the search starts from the
end of the string, this parameter value is relative to the front of the string.

link() NN 2 IE J1 ECMA n/a

link(URL)

Returns a copy of the string embedded within an anchor (<A>) tag set. The value passed as
a parameter is assigned to the HREF attribute of the tag.

Returned Value

A string within an A element.

Parameters
URL A string to use as the value of the HREF attribute.

match() NN 4 IE J3 ECMA n/a

match(regexpression)

Returns an array of strings within the current string that match the regular expression
passed as a parameter. For example, if you pass a regular expression that specifies any five-
digit number, the returned value of the match() method would be an array of all five-digit
numbers (as strings) in the main string. Properties of the RegExp static object are influ-
enced by this method’s operation.

Returned Value

An array of strings.

Parameters
regexpression

A regular expression object. See the regular expression object for the syntax to
create a regular expression object.

replace() NN 4 IE J3 ECMA n/a

replace(regexpression, replaceString)

Returns the new string that results when all matches of the regexpression parameter are
replaced by the replaceString parameter. The original string is unharmed in the process.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

String 953

JavaScript
Reference
Returned Value

A string.

Parameters
regexpression

A regular expression object. See the regular expression object for the syntax to
create a regular expression object.

replaceString
A string that is to take the place of all matches of regexpression in the current
string.

search() NN 4 IE J3 ECMA n/a

search(regexpression)

Returns the zero-based indexed value of the first character in the current string that matches
the pattern of the regexpression parameter. This method is similar to the indexOf()
method, but the search is performed with a regular expression rather than a straight string.

Returned Value

Integer.

Parameters
regexpression

A regular expression object. See the regular expression object for the syntax to
create a regular expression object.

slice() NN 4 IE J3 ECMA n/a

slice(startPositionIndex[, endPositionIndex])

Returns a substring of the current string. The substring is copied from the main string
starting at the zero-based index count value of the character in the main string. If no second
parameter is provided, the substring extends to the end of the main string. The optional
second parameter can be another zero-based index value of where the substring should
end. This value may also be a negative value, which counts from the end of the string
toward the front.

Returned Value

String.

Parameters
startPositionIndex

A zero-based integer indicating the position within the current string object to
start copying characters.

endPositionIndex
A zero-based integer indicating the position within the current string object to
end copying characters. Negative values count inward from the end of the
string.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

954 String
small() NN 2 IE J1 ECMA n/a

Returns a copy of the string embedded within a <SMALL> tag set.

Returned Value

A string within a SMALL element.

Parameters

None.

split() NN 4 IE J3 ECMA 1

split(delimiter [, limitInteger])

Returns a new array object whose elements are segments of the current string. The current
string is divided into array entries at each instance of the delimiter string specified as the
first parameter of the method. The delimiter does not become part of the array. You do not
have to declare the array prior to stuffing the results of the split() method. For example,
if a string consists of a comma-delimited list of names, you can convert the list into an array
as follows:

var listArray = stringList.split(",")

You may also use a regular expression as the parameter to divide the string by a pattern
rather than a fixed character.

Returned Value

Array.

Parameters
delimiter

A string or regular expression that defines where the main string is divided into
elements of the resulting array.

limitInteger
An optional integer that restricts the number of items converted into array
elements. This parameter is recognized only by Navigator 4.

strike() NN 2 IE J1 ECMA n/a

Returns a copy of the string embedded within a <STRIKE> tag set.

Returned Value

A string within a STRIKE element.

Parameters

None.

sub() NN 2 IE J1 ECMA n/a

Returns a copy of the string embedded within a <SUB> tag set.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

String 955

JavaScript
Reference
Returned Value

A string within a SUB element.

Parameters

None.

substr() NN 4 IE J3 ECMA n/a

substr(startPositionIndex [, length])

Returns a copy of an extract from the current string. The extract begins at the zero-based
index position of the current string as specified by the first parameter of the method. If no
other parameter is provided, the extract continues to the end of the main string. The second
parameter can specify an integer of the number of characters to be extracted from the main
string. In contrast, the substring() method’s parameters point to the start and end posi-
tion index values of the main string.

Returned Value

A string.

Parameters
startPositionIndex

A zero-based integer indicating the position within the current string object to
start copying characters

length An optional integer of the number of characters to extract, starting with the char-
acter indicated by the startPositionIndex parameter

substring() NN 2 IE J1 ECMA 1

substring(startPositionIndex, endPositionIndex)

Returns a copy of an extract from the current string. The extract begins at the zero-based
index position of the current string as specified by the first parameter of the method and
ends at the character whose index is specified by the second parameter. In contrast, the
substr() method’s parameters point to the start position of the main string and the
number of characters (length) to extract.

Returned Value

A string.

Parameters
startPositionIndex

A zero-based integer indicating the position within the current string object to
start copying characters

endPositionIndex
A zero-based integer indicating the position within the current string object to
end copying characters
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

956 +
sup() NN 2 IE J1 ECMA n/a

Returns a copy of the string embedded within a <SUP> tag set.

Returned Value

A string within a SUP element.

Parameters

None.

toLowerCase(), toUpperCase() NN 2 IE J1 ECMA 1

Returns a copy of the current string in all lowercase or uppercase letters. If you want to
replace the current string with a case-adjusted version, assign the result of the method to
the same string:

myString = myString.toUpperCase()

It is common to use either one of these methods to create a case-insensitive comparison of
two strings. This is especially convenient if one of the strings being compared is entered by
a user, who may submit a variety of case situations:

if (document.forms[0].entry.value.toLowerCase() == compareValue) {
 ...
}

Returned Value

String.

Parameters

None.

Operators

+ NN 2 IE J1 ECMA 1

The addition operator. This operator works with both numbers and strings, but its results
vary with the data types of its operands. When both operands are numbers, the result is the
sum of the two numbers; when both operands are strings, the result is a concatenation of
the two strings (in the order of the operands); when one operand is a number and the
other a string, the number data type is converted to a string, and the two strings are concat-
enated. To convert a string operand to a number, use the parseInt() or parseFloat()
function.

Example
var mySum = number1 + number2
var newString = "string1" + "string2"
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

&& 957

JavaScript
Reference
+= NN 2 IE J1 ECMA 1

The add-by-value operator. This class of operator combines a regular assignment operator
(=) with one of the many other operators to carry out the assignment by performing the
stated operation on the left operand with the value of the right operand. For example, if a
variable named a has a string stored in it, you can append a string to a with the +=
operator:

a += " and some more."

Without the add-by-value operator, the operation had to be structured as follows:

a = a + " and some more"

Table 11-2 shows all the assignment operators that function this way:

Example
output += "<H1>Section 2</H1>"
total *= .95

&& NN 2 IE J1 ECMA 1

The AND operator. This operator compares two Boolean expressions for equality. If both
expressions evaluate to true, the result of the && operator also evaluates to true; if either
or both expressions are false, the && operator evaluates to false.

A Boolean expression may consist of a comparison expression (using any of the many
comparison operators) or a variety of other values. Here are the most common data types,
values, and their Boolean value equivalent.:

Table 11-2. Assignment Operators

Operator Example Equivalent
+= a += b a = a + b
-= a -= b a = a - b
*= a *= b a = a * b
/= a /= b a = a / b
%= a %= b a = a % b
<<= a <<= b a = a << b
>>= a >>= b a = a >> b
>>>= a >>>= b a = a >>> b
&= a &= b a = a & b
|= a |= b a = a | b
^= a ^= b a = a ^ b

Data Type Boolean Equivalent
Number other than zero true
Zero false
Any nonempty string true
Empty string false
Any object true
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

958 &
Using this information, you can create compound conditions with the help of the && oper-
ator. For example, if you want to see if someone entered a value into a form field and it is a
number greater than 100, the condition would look like the following:

var userEntry = document.forms[0].entry.value
if (userEntry && parseInt(userEntry) >= 100) {
 ...
}

If the user had not entered any value, the string is an empty string. In the compound condi-
tion, when the first operand evaluates to false, the && operator rules mean that the entire
expression returns false (because both operands must be true for the operator to return
true). Because evaluation of expressions such as the compound condition are evaluated
from left to right, the false value of the first operand short-circuits the condition to return
false, meaning that the second operand isn’t evaluated.

Example
if (a <= b && b >= c) {
 ...
}

= NN 2 IE J1 ECMA 1

The assignment operator. This operator assigns the evaluated value of the right-hand
operand to the variable on the left. After the operation, the variable contains data of the
same data type as the original value. Assignment operations can also be chained, with the
evaluation of the entire statement starting from the right and working left. Therefore, after
the expression:

a = b = c = 25

all three variables equal 25.

Example
var myName = "Theodore Roosevelt"
var now = new Date()

& NN 2 IE J1 ECMA 1

The bitwise AND operator. This operator performs binary math on two operands (their
binary values). Each column of bits is subjected to the Boolean AND operation. If the value
of a column in both operands is 1, the result for that column position is 1. All other combi-
nations yield a zero. The resulting value of the operator is the decimal equivalent of the
binary result. For example, the binary values of 3 and 6 are 0011 and 0110, respectively.
After an AND operation on these two values, the binary result is 0010; the decimal equiva-
lent is 3.

Example var n = 3 & 6

null false
undefined false

Data Type Boolean Equivalent
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

^ 959

JavaScript
Reference
<< NN 2 IE J1 ECMA 1

The bitwise left-shift operator. This operator shifts the bits of the first operand by the
number of columns specified by the second operand. For example, if the binary value of 3
(0011) has its bits shifted to the left by 2, the binary result is 1100; the decimal equivalent is
12.

Example var shifted = 3 << 2

~ NN 2 IE J1 ECMA 1

The bitwise NOT operator. This unary operator inverts the value of the binary digit in each
column of a number. For example, the binary 6 is 0110 (with many more zeros off to the
left). After the negation operation on each column’s value, the binary result is 1001, plus all
zeros to the left inverted to 1s. The decimal equivalent is a negative value (-5).

Example var n = ~6

| NN 2 IE J1 ECMA 1

The bitwise OR operator. This operator performs binary math on two operands (their binary
values). Each column of bits is subjected to the Boolean OR operation. If the value of a
column in both operands is 0, the result for that column position is 0. All other combina-
tions yield a 1. The resulting value of the operator is the decimal equivalent of the binary
result. For example, the binary values of 3 and 6 are 0011 and 0110, respectively. After an
OR operation on these two values, the binary result is 0111; the decimal equivalent is 7.

Example var n = 3 | 6

>> NN 2 IE J1 ECMA 1

The bitwise right-shift operator. This operator shifts the bits of the first operand by the
number of columns specified by the second operand. For example, if the binary value of 6
(0110) has its bits shifted to the right by 2, the binary result is 0001; the decimal equivalent
is 1. Any digits that fall off the right end of the number are discarded.

Example var shifted = 6 >> 2

^ NN 2 IE J1 ECMA 1

The bitwise exclusive OR (XOR) operator. This operator performs binary math on two oper-
ands (their binary values). Each column of bits is subjected to the Boolean XOR operation.
If the value of a column in either operand (but not both operands) is 1, the result for that
column position is 1. All other combinations yield a 0. The resulting value of the operator is
the decimal equivalent of the binary result. For example, the binary values of 3 and 6 are
0011 and 0110, respectively. After an XOR operation on these two values, the binary result
is 0101; the decimal equivalent is 5.

Example var n = 3 ^ 6
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

960 --
>>> NN 2 IE J1 ECMA 1

The bitwise zero-fill right-shift operator. This operator shifts (to the right) the bits of the first
operand by the number of columns specified by the second operand. With the bitwise
right-shift operator, new digits that fill in from the left end are 1s; with the zero-fill right-
shift operator, the new digits at the left are zeros. Any digits that fall off the right end of the
number are discarded. Microsoft also refers to this operator as the unsigned right-shift
operator.

Example var shifted = 6 >>> 2

, NN 2 IE J1 ECMA 1

The comma operator. This operator can delimit expressions in the same line of script. It can
be used in a number of ways. For example, to declare multiple variables, the syntax would
be:

var varName1, varName2, ... varNameN

Multiple script statements may also be joined together on the same line. Therefore, the
following script line:

alert("Howdy"),alert("Doody")

presents two alert dialog boxes in sequence (the second one appears after the first is
dismissed by the user). Another application is in for loops when you wish to involve two
(or more) variables in the loop:

for (var i = 0, var j = 2; i < 20; i++, j++) {
 ...
}

Example var isNav, isIE

?: NN 2 IE J1 ECMA 1

The conditional operator. This operator provides a shortcut syntax to an if/else control
structure. There are three components to the deployment of this operator: a condition and
two statements. If the condition evaluates to true, the first of the statements is executed; if
the condition evaluates to false, the second statement is evaluated. The syntax is as follows:

condition ? statement1 : statement2

This operator is a shortcut in appearance only. It invokes the same internal processing as an
if...else construction.

Example var newColor = (temp > 100) ? "red" : "blue"

- - NN 2 IE J1 ECMA 1

The decrement operator. This unary operator subtracts 1 from the current value of a vari-
able expression. You can place the operator in front of or behind the variable for a different
effect. When the operator is in front of the variable, the variable is decremented before it is
evaluated in the current statement. For example, in the following sequence:
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

== 961

JavaScript
Reference
var a, b
a = 5
b = --a

one is subtracted from a before being assigned to b. Therefore, both b and a are 4 when
these statements finish running. In contrast, in the following sequence:

var a, b
a = 5
b = a--

the subtraction occurs after a is assigned to b. When these statements complete, b is 5 and
a is 4.

This behavior impacts the way for-loop-counting variables are defined and used. Typi-
cally, a loop counter that counts backwards from a maximum value decrements the counter
after the statements in the loop have run. Thus most loop counters place the operator after
the counter variable:

for (var i = 10; i >=0; i--) ...

Example
--n
n--

delete NN 4 IE J3 ECMA 1

The delete operator. This operator removes a property from an object (e.g., a prototype
property from an instance of an object to whose static object your script added the proto-
type earlier) or an element from a script-generated array. Internet Explorer and ECMA
versions return a Boolean value based on the success of the deletion; Navigator 4 returns
undefined.

Example delete myString.author

/ NN 2 IE J1 ECMA 1

The division operator. This operator divides the number to the left of the operator by the
number to the right. Both operands must be numbers. An expression with this operator
evaluates to a number.

Example var myQuotient = number1 / number2

== NN 2 IE J1 ECMA 1

The equality operator. This operator compares two operand values and returns a Boolean
result. The behavior of this operator differs with the version of JavaScript specified for the
SCRIPT element. If the LANGUAGE attribute is set to JavaScript or JavaScript1.1, some
operands are automatically converted as shown in the following table:

Left Operand Right Operand Description
Object reference Object reference Compare evaluation of object references.
Any data type null Convert left operand to its object type and

compare against null .
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

962 >=
Version 1 of ECMAScript observes the same behavior.

The situation is a bit different in Navigator when the SCRIPT element is set to
LANGUAGE="JavaScript11.2". The browser is more literal about equality, meaning that
no automatic data conversions are performed. Therefore, whereas the expression:

123 == "123"

evaluates to true in most situations due to automatic data type conversion, the expression
evaluates to false in Navigator 4 but only in statements belonging to explicitly JavaScript
1.2 scripts. Internet Explorer 4’s equivalent of unconverted equality comparison is the iden-
tity operator (===).

Regardless of version, if you wish to compare the values of objects (for example, strings
explicitly generated with the new String() constructor), you need to convert the values
beforehand with methods such as toString() or valueOf().

Example
if (n == m) {
 ...
}

> NN 2 IE J1 ECMA 1

The greater-than operator. This operator compares the values of operands on either side of
the operator. If the numeric value of the left operand is larger than the right operand, the
expression evaluates to true. Strings are converted to their Unicode values for comparison
of those values.

Example
if (a > b) {
 ...
}

>= NN 2 IE J1 ECMA 1

The greater-than-or-equal operator. This operator compares the values of operands on
either side of the operator. If the numeric value of the left operand is larger than or equal to
the right operand, the expression evaluates to true. Strings are converted to their Unicode
values for comparison of those numeric values.

Example
if (a >= b) {
 ...
}

Object reference String Convert object to string (via toString()) and
compare strings.

String Number Convert string to a number and compare numeric
values.

Left Operand Right Operand Description
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

!= 963

JavaScript
Reference
=== NN n/a IE J3 ECMA n/a

The identity operator. This operator compares two operand values and returns a Boolean
result. Both the value and data type of the two operands must be identical for this operator
to return true. See the equality operator (==) for similar functionality in Navigator.

Example
if (n === m) {
 ...
}

++ NN 2 IE J1 ECMA 1

The increment operator. This unary operator adds 1 to the current value of a variable
expression. You can place the operator in front of or behind the variable for a different
effect. When the operator is in front of the variable, the variable is incremented before it is
evaluated in the current statement. For example, in the following sequence:

var a, b
a = 5
b = ++a

1 is added to a before being assigned to b. Therefore, both b and a are 6 when these state-
ments finish running. In contrast, in the following sequence:

var a, b
a = 5
b = a--

the addition occurs after a is assigned to b. When these statements complete, b is 5 and a is
6.

This behavior impacts the way for-loop-counting variables are defined and used. Typi-
cally, a loop counter that counts upward from a minimum value increments the counter
after the statements in the loop have run. Thus most loop counters place the operator after
the counter variable:

for (var i = 10; i >=0; i++) ...

Example
++n
n++

!= NN 2 IE J1 ECMA 1

The inequality operator. This operator compares two operand values and returns a Boolean
result. The behavior of this operator differs with the version of JavaScript specified for the
SCRIPT element. If the LANGUAGE attribute is set to JavaScript or JavaScript1.1, some
operands are automatically converted as for the equality (==) operator. Version 1 of ECMAS-
cript observes the same behavior. The situation is a bit different in Navigator when the
SCRIPT element is set to LANGUAGE="JavaScript1.2". The browser is more literal about
inequality, meaning that no automatic data conversions are performed. Therefore, whereas
the expression:

123 != "123"
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

964 %
evaluates to false in most situations due to automatic data type conversion, the expres-
sion evaluates to true in Navigator 4 but only in statements belonging to explicitly
JavaScript 1.2 scripts. Internet Explorer 4’s equivalent of unconverted equality comparison is
the nonidentity operator (!==).

Regardless of version, if you wish to compare the values of objects (for example, strings
explicitly generated with the new String() constructor), you need to convert the values
beforehand with methods such as toString() or valueOf().

Example
if (n != m) {
 ...
}

< NN 2 IE J1 ECMA 1

The less-than operator. This operator compares the values of operands on either side of the
operator. If the numeric value of the left operand is smaller than the right operand, the
expression evaluates to true. Strings are converted to their Unicode values for comparison
of those values.

Example
if (a < b) {
 ...
}

<= NN 2 IE J1 ECMA 1

The less-than-or-equal operator. This operator compares the values of operands on either
side of the operator. If the numeric value of the left operand is smaller than or equal to the
right operand, the expression evaluates to true. Strings are converted to their Unicode
values for comparison of those numeric values.

Example
if (a <= b) {
 ...
}

% NN 2 IE J1 ECMA 1

The modulus operator. This operator divides the number to the left of the operator by the
number to the right. If a remainder exists after the division, the expression evaluates to that
remainder as an integer. If there is no remainder, the returned value is zero. Both operands
must be numbers. An expression with this operator evaluates to a number. Even if you
aren’t interested in the remainder value, this operator is a quick way to find out if two
values are evenly divisible.

Example
if ((dayCount % 7) > 0) {
 ...
}

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

new 965

JavaScript
Reference
* NN 2 IE J1 ECMA 1

The multiplication operator. This operator multiplies the number to the left of the operator
by the number to the right. Both operands must be numbers. An expression with this oper-
ator evaluates to a number.

Example var myProduct = number1 * number2

- NN 2 IE J1 ECMA 1

The negation operator. This unary operator negates the value of the single operand. For
example, in the following statements:

a = 5
b = -a

the value of b becomes -5. A negation operator applied to a negative value returns a posi-
tive value.

Example var myOpposite = -me

new NN 2 IE J1 ECMA 1

The new operator. This operator creates instances of the following static objects:

• Array

• Boolean

• Date

• Function

• Number

• Object

• RegExp

• String

An expression with this operator evaluates to an instance of the object. Syntax rules allow
naming the static object, the static object with empty parentheses, and the static object with
parameters in parentheses:

var myArray = new Array
var myArray = new Array()
var myArray = new Array("Larry", "Moe", "Curly")

Only the last two examples are guaranteed to work in all scriptable browser versions. With
the exception of the Date object, if you omit assigning parameters during the object
creation, the newly minted instance has only the properties that are assigned to the proto-
type of the static object.

Example var now = new Date()
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

966 ||
!== NN n/a IE J3 ECMA n/a

The nonidentity operator. This operator compares two operand values and returns a
Boolean result. Both the value and data type of the two operands must be identical for this
operator to return false. See the inequality operator (!=) for similar functionality in
Navigator.

Example
if (n !== m) {
 ...
}

! NN 2 IE J1 ECMA 1

The NOT operator. This unary operator evaluates to the negative value of a single Boolean
operand. The NOT operator should be used with explicit Boolean values, such as the result
of a comparison or a Boolean property setting.

Example
if (a == !b) {
 ...
}

|| NN 2 IE J1 ECMA 1

The OR operator. This operator compares two Boolean expressions for equality. If either or
both expressions evaluate to true, the result of the || operator also evaluates to true; if
both expressions are false, the || operator evaluates to false. A Boolean expression may
consist of a comparison expression (using any of the many comparison operators) or a
variety of other values. See the discussion of the AND operator for a summary of the most
common data types, values, and their Boolean value equivalent.

You can create compound conditions with the help of the && operator. For example, if you
want to see if either or both of two conditions are true, you would create a condition such
as the following:

var userEntry1 = document.forms[0].entry1.value
var userEntry2 = document.forms[0].entry2.value
if (userEntry1 || userEntry2) {
 ...
}

In the compound condition, the || operator wants to know if either or both operands is
true before it evaluates to true. If the user entered text into the first field, the condition
short-circuits because a true value of either operand yields a true result. If text were
entered only in the second field, the second operand is evaluated. Because it evaluates to
true (a nonempty string), the condition evaluates to true. Only when both operands eval-
uate to false does the compound condition evaluate to false.

Example
if (a <= b || b >= c) {
 ...
}

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

break 967

JavaScript
Reference
- NN 2 IE J1 ECMA 1

The subtraction operator. This operator subtracts the number to the right of the operator
from the number on the left. Both operands must be numbers. An expression with this
operator evaluates to a number.

Example var myDifference = number1 - number2

typeof NN 3 IE J1 ECMA 1

The typeof operator. This unary operator returns one of six string descriptions of the data
type of a value. Those returned types are:

• boolean

• function

• number

• object

• string

• undefined

The object type includes arrays, but the operator provides no further information about the
type of object or array of the value.

Example
if (typeof someVar == "string") {
 ...
}

void NN 3 IE J2 ECMA 1

The void operator. This unary operator evaluates the expression to its right but returns a
value of undefined, even if the expression (such as a function call) evaluates to some value.
This operator is commonly used with javascript: pseudo-URLs that invoke functions. If
the function returns a value, that value is ignored by the calling expression.

Example ...

Control Statements

break NN 2 IE J1 ECMA 1

Stops execution of the current loop and returns control to the next script statement
following the end of the current loop. Note that without a label parameter, the scope of the
break statement is its own loop. To break out of a nested loop, assign labels to each
nested layer, and use the desired label as a parameter with the break statement. See the
label statement (available only starting with Navigator 4 and Internet Explorer 4).

Syntax break [label]
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

968 for
Example See the label statement.

continue NN 2 IE J1 ECMA 1

Stops execution of the current iteration through the loop and returns to the top of the loop
for the next pass (executing the update expression if one is specified in a for loop). If you
are using nested loop constructions, assign labels to each nested layer, and use the desired
label as a parameter with the continue statement. See the label statement (available only
starting with Navigator 4 and Internet Explorer 4).

Syntax continue [label]

Example
outerLoop:
for (var i = 0; i <= maxValue1; i++) {
 for (var j = 0; j <= maxValue2; j++) {
 if (j*i == magic2) {
 continue outerLoop
 }
 }
}

do/while NN 4 IE J3 ECMA n/a

Executes statements in a loop while a condition is true. Because the condition is tested at
the end of the loop, the statements inside it are always executed at least one time. It is
imperative that the expression that makes up the condition have some aspect of its value
potentially altered in the statements. Otherwise, an infinite loop occurs.

Syntax
do {

statements
} while (condition)

Example
var i = 1
do {
 window.status = "Loop number " + i++
} while (i <= 10)
window.status = ""

for NN 2 IE J1 ECMA 1

A construction that allows repeated execution of statements, usually for a controlled
number of times.

Syntax
for ([initExpression]; [condition]; [updateExpression]) {

statements
}

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

if/else 969

JavaScript
Reference
Example
var userEntry = document.forms[0].entry.value
var oneChar
for (var i = 0; i < userEntry.length; i++) {
 oneChar = userEntry.charAt(i)
 if (oneChar < "0" || oneChar > "9") {
 alert("The entry must be numerals only.")
 }
}

for/in NN 2 IE J1 ECMA 1

A variation of the regular for loop that can extract the property names and values of an
object.

Syntax
for (varName in objectRef) {

statements
}

Example
function showProps() {
 objName = "image"
 obj = document.images[0]
 var msg = ""
 for (var i in obj) {
 msg += objName + "." + i + "=" + obj[i] + "\n"
 }
 alert(msg)
}

if NN 2 IE J1 ECMA 1

A simple conditional statement that provides one alternate execution path.

Syntax
if (condition) {

statement(s) if true
}

Example
if (myDateObj.getMonth() == 1) {
 calcMonthLength()
}

if/else NN 2 IE J1 ECMA 1

A conditional statement that provides two execution paths depending on the result of the
condition. You can nest another if or if/else statement inside either path of the if/else
statement.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

970 return
Syntax
if (condition) {

statement(s) if true
} else {

statement(s) if false
}

Example
var theMonth = myDateObj.getMonth()
if (theMonth == 1) {
 monLength = calcLeapMonthLength()
} else {
 monLength = calcMonthLength(theMonth)
}

label NN 4 IE J3 ECMA n/a

You can assign a label identifier to any block of executing statements, including control
structures. The purpose of the label is to allow break and continue statements within
deeply nested control structures to exit to a nested level that may be at levels beyond the
scope of the normal break and continue statements.

Syntax labelName:

Example
outerLoop:
for (var i = 0; i <= maxValue1; i++) {
 for (var j = 0; j <= maxValue2; j++) {
 if (i == magic1 && j == magic2) {
 break outerLoop
 }
 }
}

return NN 2 IE J1 ECMA 1

Stops execution of the current function. A return statement can be located anywhere
within the function, including inside control structures. You can optionally specify a value
to be returned to the calling statement. This return value can be any JavaScript data type. If
a return statement that returns a value is in a loop or other control structure, there must
be a return statement for each branch of the execution tree, including a default return
statement if execution should reach the main execution scope near or at the end of the
function.

Syntax return [value]

Example
function validateNumber(form) {
 var oneChar
 for (var i = 0; i < userEntry.length; i++) {
 oneChar = form.entry.value.charAt(i)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

while 971

JavaScript
Reference
 if (oneChar < "0" || oneChar > "9") {
 return false
 }
 }
 return true
}

switch/case NN 4 IE J3 ECMA n/a

Provides a shortcut to execution paths for numerous conditions of an expression.

Syntax
switch (expression) {
 case label1:

statements
 [break]
 case label2:

statements
 [break]
 ...
 [default:

statements]
}

Example
var productList = document.forms[0].prodList
var chosenItem = productList.options[productList.selectedIndex].value
switch(chosenItem) {
 case "Small Widget":
 document.forms[0].price.value = "44.95"
 break
 case "Medium Widget":
 document.forms[0].price.value = "54.95"
 break
 case "Large Widget":
 document.forms[0].price.value = "64.95"
 break
 default:
 document.forms[0].price.value = "Nothing Selected"
}

while NN 2 IE J1 ECMA 1

Executes statements in a loop as long as a condition is true. Because the condition is tested
at the beginning of the loop, it is conceivable that under the right conditions, the state-
ments inside the loop do not execute. It is imperative that the expression that makes up the
condition have some aspect of its value potentially altered in the statements. Otherwise an
infinite loop occurs.

Syntax
while (condition) {

statements
}

Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

972 eval()
Example
var i = 0
while (!document.forms[0].radioGroup[i].checked) {
 i++
}
alert("You selected item number " + (i+1) + ".")

with NN 2 IE J1 ECMA 1

The with statement adds an object to the scope of every statement nested within. This can
shorten the code of some statement groups that rely on a particular object reference.

Syntax
with (objectRef) {

statements
}

Example
with (document.forms[0]) {
 name1 = firstName.value
 name2 = lastName.value
 mail = eMail.value
}

Global Functions

escape() NN 2 IE J1 ECMA 1

escape(string[, 1])

Returns a URL-encoded version of the string passed as a parameter to the function. URL
encoding converts non-alphanumeric characters to hexadecimal values (such as %20 for the
space character). URL-encoded strings do not normally encode the plus symbol because
those symbols are used to separate components of search strings. If you must have the plus
symbol encoded as well, Navigator 4 offers a second parameter (a numeral 1) to turn on
that switch for the method.

Returned Value

A string.

Parameters
string Any string value.

eval() NN 2 IE J1 ECMA 1

eval(string)

Returns an object reference of the object described as a string in the parameter of the func-
tion. For example, if a form has a sequence of text fields named entry1, entry2, entry3,
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

parseInt() 973

JavaScript
Reference
and so on, you can still use a for loop to cycle through all items by name if you let the
eval() function convert the string representation of the names to object references:

for (var i = 1; i <=5; i++) {
 oneField = eval("document.forms[0].entry" + i)
 oneValue = oneField.value
 ...
}

Returned Value

Object reference.

Parameters
string Any string representation of an object reference.

isFinite() NN 4 IE J3 ECMA 1

isFinite(expression)

Returns a Boolean value of true if the number passed as a parameter is anything within the
range of Number.MIN_VALUE and Number.MAX_VALUE, inclusive. String values passed as
parameters cause the function to return false.

Returned Value

Boolean.

Parameters
expression Any JavaScript expression.

isNaN() NN 2 IE J1 ECMA 1

isNaN(expression)

Returns a Boolean value of true if the expression passed as a parameter does not evaluate
to a numeric value.

Returned Value

Boolean.

Parameters
expression Any JavaScript expression.

parseInt() NN 2 IE J1 ECMA 1

parseInt(string[, radix])

Returns an integer value (as a number data type in base-10) of the numerals in the string
passed as a parameter. The string value must at least begin with a numeral, or the result is
NaN. If the string starts with numbers but changes to letters along the way, only the leading
numbers are converted to the integer. Therefore, you can use the expression:
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

974 ScriptEngine()
parseInt(navigator.appVersion)

to extract only the whole number of the version that leads the otherwise long string that is
returned from that property.

The optional radix parameter lets you specify the base of the number being passed to the
function. A number string that begins with zero is normally treated as an octal number,
which gives you the wrong answer. It is a good idea to use the radix value of 10 on all
parseInt() functions if all of your dealings are in base-10 numbers.

Returned Value

Integer of base-10.

Parameters
string Any string that begins with one or more numerals.

radix An integer of the number base of the number passed as the string parameter
(e.g., 2, 10, 16).

parseFloat() NN 2 IE J1 ECMA 1

parseFloat(string)

Returns a number value (either an integer or floating-point number) of the numerals in the
string passed as a parameter. The string value must at least begin with a numeral, or the
result is NaN. If the string starts with numbers but changes to letters along the way, only the
leading numbers are converted to the integer. Therefore, you can use the expression:

parseFloat(navigator.appVersion)

to extract the complete version number (e.g., 4.03) that leads the otherwise long string that
is returned from that property.

If the converted value does not have any nonzero values to the right of the decimal, the
returned value is an integer. Floating-point values are returned only when the number calls
for it.

Returned Value

Number.

Parameters
string Any string that begins with one or more numerals.

ScriptEngine(), ScriptEngineBuildVersion(),
ScriptEngineMajorVersion(),
ScriptEngineMinorVersion() NN n/a IE J2 ECMA n/a

These Internet Explorer-only functions reveal information about the scripting engine
(JScript, VBScript, or VBA) currently in force (executing the statement invoking the func-
tion) and which version of that engine is installed. For JScript, the version refers to the
version of the Jscript.dll file installed among the browser’s support files. The major version
is the part of the version number to the left of the version decimal point; the minor version
is the part to the right of the decimal point. More granular than that is the internal build
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

unwatch(), watch() 975

JavaScript
Reference
number that Microsoft uses to keep track of release generations during development and
through release.

Returned Value

ScriptEngine() returns a string of one of the following engine names: JScript | VBA |
VBScript. All other functions return integer values.

Parameters

None.

toString() NN 3 IE J3 ECMA n/a

toString(radix)

Returns a string version of a number in the number base specified by the radix parameter.
This variant of the toString() function lets you perform number base conversions. For
example, the following sequence converts a base-10 number to a base-16 version as a
string:

var a = 32
var b = a.toString(16)

After these statements execute, the value of b is "20".

Returned Value

A string.

Parameters
radix An integer of the number base of the result (e.g., 2, 10, 16).

unescape() NN 2 IE J1 ECMA 1

unescape(string)

Returns a decoded version of the URL-encoded string passed as a parameter to the func-
tion. URL encoding converts nonalphanumeric characters to hexadecimal values (such as
%20 for the space character).

Returned Value

String.

Parameters
string Any URL-encoded string value.

unwatch(), watch() NN 4 IE n/a ECMA n/a

unwatch(property)
watch(property, funcHandler)

These Navigator-specific functions are used primarily by JavaScript debuggers. When a
statement invokes the watch() function for an object, the parameters include the property
whose value is to be watched and the reference to the function to be invoked whenever
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

976 this
the value of the property is changed by an assignment statement. To turn off the watch
operation, invoke the unwatch() function for the particular property engaged earlier.

Returned Value

Nothing.

Parameters
property The name of the object’s property to be watched.

funcHandler
The name of the function (no parentheses) to be invoked whenever the
watched property’s value changes.

Statements

//, /*...*/ NN 2 IE J1 ECMA n/a

Comment statements that let you enter nonexecuting text in a script. Any text following the
// symbol anywhere in a statement line is ignored by the language interpreter. The next
line of script, unless it begins with another // symbol, is interpreted by the browser.

For longer comment blocks, you can begin a block with the /* symbol. Comment blocks
may run any number of lines. The block is closed with the */ symbol, after which the inter-
preter engages subsequent statements.

Example
// convert temp from C to F

/*
many lines
of
comments
*/

this NN 2 IE J1 ECMA 1

A keyword that refers to the current object. For example, in a form element object event
handler, you can pass the object as a parameter to the function:

<INPUT TYPE="text" NAME="ZIP" onChange="validate(this)">

Inside a custom object constructor, the keyword refers to the object itself, allowing you to
assign values to its properties (even creating the properties at the same time):

function CD(label, num, artist) {
 this.label = label
 this.num = num
 this.artist = artist
}

Inside a function, the this keyword refers to the function object.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

var 977

JavaScript
Reference
Example
<INPUT TYPE="text" NAME="phone" onChange="validate(this.value)">

var NN 2 IE J1 ECMA 1

A keyword that defines the creation of a new variable. Although the keyword is optional for
global variables (those not declared or initialized inside a function), it is good form to use
this keyword for each new variable. Using the var keyword inside a function makes the
variable local to statements inside the function.

You may simply declare one or more variable names, in which case their initial values are
null. Or you can also initialize a new variable with a value.

Example
var a, b, c

var myName = "Susan"
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

III
III.Cross References

This part of the book, Chapters 12 through 15, provides a different take on the
information of Part II. If you have the name of an HTML attribute or an object
property, method, or event handler, you can look it up in one of the indices here

to find out which elements and/or objects support it.

• Chapter 12, HTML Attribute Index

• Chapter 13, Document Object Properties Index

• Chapter 14, Document Object Methods Index

• Chapter 15, Document Object Event Handlers Index
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross References
Chapter 12Cross References

12.H

Entries in the following index a
can look up an attribute to find
a union of attributes defined fo
HTML 4.0. The same attribute
ments. Be sure to look up the
Reference, to find out if the att
intended audience and whether
Dynamic H
Copyright
12

TML Attribute Index
re arranged alphabetically by HTML attribute. You
 out which HTML elements support it. This listing is
r elements in Navigator 4, Internet Explorer 4, and
name may mean different things for different ele-
details of the attribute listing in Chapter 8, HTML

ribute is available for the browser(s) used by your
 it does what you want.

ABBR TD, TH

ABOVE ILAYER, LAYER

ACCEPT FORM, INPUT

ACCEPT-CHARSET FORM

ACCESSKEY A, AREA, BUTTON, INPUT, LABEL, LEGEND, OBJECT, SELECT, TEXTAREA

ACTION FORM

ALIGN APPLET, CAPTION, COL, COLGROUP, DIV, EMBED, FIELDSET, H1, H2, H3, H4,
H5, H6, HR, IFRAME, IMG, INPUT, LEGEND, OBJECT, P, SELECT, SPACER, TABLE,
TBODY, TD, TEXTAREA, TFOOT, TH, THEAD, TR

ALINK BODY

ALT APPLET, AREA, EMBED, IMG, INPUT

ARCHIVE APPLET, OBJECT

AXIS TD, TH

BACKGROUND BODY, ILAYER, LAYER, TABLE, TD, TH

BALANCE BGSOUND

BEHAVIOR MARQUEE

BELOW ILAYER, LAYER

BGCOLOR BODY, ILAYER, LAYER, MARQUEE, TABLE, TBODY, TD, TFOOT, TH, THEAD,
TR
981
TML: The Definitive Reference, eMatter Edition
 © 1999 Danny Goodman. All rights reserved.

982 Chapter 12: HTML Attribute Index
BGPROPERTIES BODY

BORDER EMBED, FRAMESET, IFRAME, IMG, INPUT, OBJECT, TABLE

BORDERCOLOR FRAME, FRAMESET, IFRAME, TABLE, TD, TH, TR

BORDERCOLORDARK TABLE, TD, TH, TR

BORDERCOLORLIGHT TABLE, TD, TH, TR

BOTTOMMARGIN BODY

CELLPADDING TABLE

CELLSPACING TABLE

CHALLENGE KEYGEN

CHAR COL, COLGROUP, TBODY, TD, TFOOT, TH, THEAD, TR

CHAROFF COL, COLGROUP, TBODY, TD, TFOOT, TH, THEAD, TR

CHARSET A, DIV, LINK, SCRIPT, SPAN

CHECKED INPUT

CITE BLOCKQUOTE, DEL, INS, Q

CLASS A, ABBR, ACRONYM, ADDRESS, APPLET, AREA, B, BASEFONT, BDO, BGSOUND,
BIG, BLOCKQUOTE, BODY, BR, BUTTON, CAPTION, CENTER, CITE, CODE, COL,
COLGROUP, DD, DEL, DFN, DIR, DIV, DL, DT, EM, EMBED, FIELDSET, FONT, FORM,
FRAME, FRAMESET, H1, H2, H3, H4, H5, H6, HEAD, HR, I, IFRAME, IMG, INPUT, INS,
ISINDEX, KBD, LABEL, LEGEND, LI, LINK, LISTING, MAP, MARQUEE, MENU, NOBR,
NOFRAMES, NOSCRIPT, OBJECT, OL, OPTGROUP, OPTION, P, PLAINTEXT, PRE, Q,
S, SAMP, SCRIPT, SELECT, SMALL, SPAN, STRIKE, STRONG, SUB, SUP, TABLE,
TBODY, TD, TEXTAREA, TFOOT, TH, THEAD, TR, TT, U, UL, VAR, WBR, XMP

CLASSID OBJECT

CLEAR BR

CLIP ILAYER, LAYER

CODE APPLET, EMBED, OBJECT

CODEBASE APPLET, EMBED, OBJECT

CODETYPE OBJECT

COLOR BASEFONT, FONT, HR

COLS FRAMESET, MULTICOL, PRE, TABLE, TEXTAREA

COLSPAN TD, TH

COMPACT DIR, DL, MENU, OL, UL

CONTENT META

COORDS A, AREA

DATA OBJECT

DATAFLD A, APPLET, BUTTON, DIV, FRAME, IFRAME, IMG, INPUT, LABEL, MARQUEE,
OBJECT, PARAM, SELECT, SPAN, TD, TEXTAREA, TH

DATAFORMATAS BUTTON, DIV, LABEL, MARQUEE, PARAM, SPAN

DATAPAGESIZE TABLE

DATASRC A, APPLET, BUTTON, DIV, FRAME, IFRAME, IMG, INPUT, LABEL, MARQUEE,
OBJECT, PARAM, SELECT, SPAN, TABLE, TEXTAREA
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross References

Chapter 12: HTML Attribute Index 983
DATETIME DEL, INS

DECLARE OBJECT

DEFER SCRIPT

DIR A, ABBR, ACRONYM, ADDRESS, AREA, B, BASEFONT, BDO, BIG, BLOCKQUOTE,
BODY, CAPTION, CITE, CODE, COL, COLGROUP, DD, DEL, DFN, DIR, DIV, DL, DT,
EM, FIELDSET, FONT, FORM, H1, H2, H3, H4, H5, H6, HEAD, HTML, I, IMG, INPUT,
INS, ISINDEX, KBD, LABEL, LEGEND, LI, LINK, MAP, MENU, META, NOFRAMES,
NOSCRIPT, OBJECT, OL, OPTGROUP, OPTION, P, PRE, Q, S, SAMP, SMALL, SPAN,
STRIKE, STRONG, STYLE, SUB, SUP, TABLE, TBODY, TD, TEXTAREA, TFOOT, TH,
THEAD, TITLE, TR, TT, U, UL, VAR

DIRECTION MARQUEE,

DISABLED BUTTON, INPUT, LINK, OPTGROUP, OPTION, SELECT, STYLE, TEXTAREA

DYNSRC IMG

ENCTYPE FORM

EVENT SCRIPT

EXPORT OBJECT

FACE BASEFONT, FONT

FOR LABEL, SCRIPT

FRAME TABLE

FRAMEBORDER EMBED, FRAME, FRAMESET, IFRAME

FRAMESPACING FRAMESET, IFRAME

GUTTER MULTICOL

HEADERS TD, TH

HEIGHT APPLET, EMBED, FRAME, IFRAME, ILAYER, IMG, LAYER, MARQUEE, OBJECT,
SPACER, TABLE, TD, TH

HIDDEN EMBED

HREF A, AREA, BASE, DIV, LINK, SPAN

HREFLANG A, DIV, LINK, SPAN

HSPACE APPLET, EMBED, IFRAME, IMG, MARQUEE, OBJECT

HTTP-EQUIV META

ID A, ABBR, ACRONYM, ADDRESS, APPLET, AREA, B, BASEFONT, BDO, BGSOUND,
BIG, BLOCKQUOTE, BODY, BR, BUTTON, CAPTION, CENTER, CITE, CODE, COL,
COLGROUP, DD, DEL, DFN, DIR, DIV, DL, DT, EM, EMBED, FIELDSET, FONT, FORM,
FRAME, FRAMESET, H1, H2, H3, H4, H5, H6, HEAD, HR, I, IFRAME, ILAYER, IMG,
INPUT, INS, ISINDEX, KBD, LABEL, LAYER, LEGEND, LI, LINK, LISTING, MAP, MAR-
QUEE, MENU, NOBR, NOFRAMES, NOSCRIPT, OBJECT, OL, OPTGROUP, OPTION, P,
PARAM, PLAINTEXT, PRE, Q, S, SAMP, SCRIPT, SELECT, SMALL, SPAN, STRIKE,
STRONG, SUB, SUP, TABLE, TBODY, TD, TEXTAREA, TFOOT, TH, THEAD, TITLE, TR,
TT, U, UL, VAR, WBR, XMP

ISMAP IMG

LABEL OPTGROUP, OPTION
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

984 Chapter 12: HTML Attribute Index
LANG A, ABBR, ACRONYM, ADDRESS, AREA, B, BASEFONT, BDO, BGSOUND, BIG,
BLOCKQUOTE, BODY, BUTTON, CAPTION, CENTER, CITE, CODE, COL, COL-
GROUP, DD, DEL, DFN, DIR, DIV, DL, DT, EM, FIELDSET, FONT, FORM, FRAME,
FRAMESET, H1, H2, H3, H4, H5, H6, HEAD, HR, HTML, I, IFRAME, IMG, INPUT, INS,
ISINDEX, KBD, LABEL, LEGEND, LI, LINK, LISTING, MAP, MARQUEE, MENU, META,
NOFRAMES, NOSCRIPT, OBJECT, OL, OPTGROUP, OPTION, P, PLAINTEXT, PRE, Q,
S, SAMP, SELECT, SMALL, SPAN, STRIKE, STRONG, STYLE, SUB, SUP, TABLE, TBODY,
TD, TEXTAREA, TFOOT, TH, THEAD, TITLE, TR, TT, U, UL, VAR, WBR, XMP

LANGUAGE A, ACRONYM, ADDRESS, AREA, B, BIG, BLOCKQUOTE, BODY, BR, BUT-
TON, CAPTION, CENTER, CITE, CODE, DD, DEL, DFN, DIR, DIV, DL, DT, EM, FIELD-
SET, FONT, FORM, FRAME, FRAMESET, H1, H2, H3, H4, H5, H6, HR, I, IFRAME, IMG,
INPUT, INS, ISINDEX, KBD, LABEL, LEGEND, LI, LISTING, MAP, MARQUEE, MENU,
OBJECT, OL, OPTGROUP, OPTION, P, PLAINTEXT, PRE, Q, S, SAMP, SCRIPT, SELECT,
SMALL, SPAN, STRIKE, STRONG, SUB, SUP, TABLE, TBODY, TD, TEXTAREA, TFOOT,
TH, THEAD, TR, TT, U, UL, VAR, XMP

LEFT ILAYER, LAYER

LEFTMARGIN BODY

LINK BODY

LONGDESC FRAME, IFRAME, IMG

LOOP BGSOUND, IMG, MARQUEE

LOWSRC IMG

MARGINHEIGHT FRAME, IFRAME

MARGINWIDTH FRAME, IFRAME

MAXLENGTH INPUT

MAYSCRIPT APPLET

MEDIA DIV, LINK, SPAN, STYLE

METHOD FORM

METHODS A

MULTIPLE SELECT

NAME A, APPLET, AREA, BASEFONT, BUTTON, EMBED, FORM, FRAME, IFRAME, IMG,
INPUT, KEYGEN, MAP, META, OBJECT, PARAM, SELECT, TEXTAREA

NOHREF AREA

NORESIZE FRAME, IFRAME

NOSHADE HR

NOWRAP TD, TH

PAGEX LAYER

PAGEY LAYER

PALETTE EMBED

PLUGINSPAGE EMBED

PLUGINURL EMBED

POINT-SIZE FONT

PROFILE HEAD
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross References

Chapter 12: HTML Attribute Index 985
PROMPT ISINDEX

READONLY INPUT, TEXTAREA

REL A, DIV, LINK, SPAN

REPEAT COL

REV A, DIV, LINK, SPAN

RIGHTMARGIN BODY

ROWS FRAMESET, TEXTAREA

ROWSPAN TD, TH

RULES TABLE

SCHEME META

SCOPE TD, TH

SCROLL BODY

SCROLLAMOUNT MARQUEE

SCROLLDELAY MARQUEE

SCROLLING FRAME, IFRAME

SELECTED OPTION

SHAPE A, AREA

SHAPES OBJECT

SIZE BASEFONT, FONT, HR, INPUT, SELECT, SPACER

SPAN COL, COLGROUP

SRC APPLET, BGSOUND, EMBED, FRAME, IFRAME, ILAYER, IMG, INPUT, LAYER, LINK,
SCRIPT

STANDBY OBJECT

START IMG, OL

STYLE A, ABBR, ACRONYM, ADDRESS, APPLET, AREA, B, BASEFONT, BDO, BIG,
BLOCKQUOTE, BODY, BR, BUTTON, CAPTION, CENTER, CITE, CODE, COL, COL-
GROUP, DD, DEL, DFN, DIR, DIV, DL, DT, EM, EMBED, FIELDSET, FONT, FORM,
FRAME, FRAMESET, H1, H2, H3, H4, H5, H6, HR, I, IFRAME, IMG, INPUT, INS, ISIN-
DEX, KBD, LABEL, LEGEND, LI, LINK, LISTING, MAP, MARQUEE, MENU, NOBR, NO-
FRAMES, NOSCRIPT, OBJECT, OL, OPTGROUP, OPTION, P, PLAINTEXT, PRE, Q, S,
SAMP, SELECT, SMALL, SPAN, STRIKE, STRONG, SUB, SUP, TABLE, TBODY, TD,
TEXTAREA, TFOOT, TH, THEAD, TR, TT, U, UL, VAR, WBR, XMP

SUMMARY TABLE

TABINDEX A, AREA, BUTTON, INPUT, LABEL, OBJECT, SELECT, TEXTAREA

TARGET A, AREA, BASE, DIV, FORM, LINK, SPAN

TEXT BODY, BR

TITLE A, ABBR, ACRONYM, ADDRESS, APPLET, AREA, B, BASEFONT, BDO, BGSOUND,
BIG, BLOCKQUOTE, BODY, BR, BUTTON, CAPTION, CENTER, CITE, CODE, COL,
COLGROUP, DD, DEL, DFN, DIR, DIV, DL, DT, EM, EMBED, FIELDSET, FONT, FORM,
FRAME, FRAMESET, H1, H2, H3, H4, H5, H6, HEAD, HR, HTML, I, IFRAME, IMG,
INPUT, INS, ISINDEX, KBD, LABEL, LEGEND, LI, LINK, LISTING, MAP, MARQUEE,
MENU, META, NOBR, NOFRAMES, NOSCRIPT, OBJECT, OL, OPTGROUP, OPTION, P,
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

986 Chapter 12: HTML Attribute Index
PLAINTEXT, PRE, Q, S, SAMP, SCRIPT, SMALL, SPAN, STRIKE, STRONG, STYLE, SUB,
SUP, TABLE, TBODY, TD, TEXTAREA, TFOOT, TH, THEAD, TITLE, TR, TT, U, UL,
VAR, WBR, XMP

TOP ILAYER, LAYER

TOPMARGIN BODY

TRUESPEED MARQUEE

TYPE A, BUTTON, DIV, EMBED, INPUT, LI, LINK, OBJECT, OL, PARAM, SCRIPT, SPACER,
SPAN, STYLE, UL

UNITS EMBED

URN A

USEMAP IMG, INPUT, OBJECT

VALIGN CAPTION, COL, COLGROUP, FIELDSET, TBODY, TD, TFOOT, TH, THEAD, TR

VALUE BUTTON, INPUT, LI, OPTION, PARAM

VALUETYPE PARAM

VERSION HTML

VISIBILITY ILAYER, LAYER

VLINK BODY

VOLUME BGSOUND

VSPACE APPLET, EMBED, IFRAME, IMG, MARQUEE, OBJECT

WEIGHT FONT

WIDTH APPLET, COL, COLGROUP, EMBED, FRAME, HR, IFRAME, ILAYER, IMG, LAYER,
MARQUEE, MULTICOL, OBJECT, PRE, SPACER, TABLE, TD, TH

WRAP PRE, TEXTAREA

Z-INDEX ILAYER, LAYER
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross References
Chapter 13Cross References

Entries in the following index
properties. You can look up a
port it. This listing is a union of
net Explorer 4, and a working
mean different things for differ
property listing in Chapter 9, D
available for the browser(s) use
what you want. Objects show
Dynamic H
Copyright
13

13.Document Object
Properties Index
are arranged alphabetically by scriptable object
property to find out which document objects sup-
properties defined for objects in Navigator 4, Inter-
draft of the DOM. The same property name may
ent objects. Be sure to look up the details of the
ocument Object Reference, to find if the property is
d by your intended audience and whether it does
n in all uppercase letters are objects that reflect

HTML elements of the same name. The following objects reflect specific types of
INPUT elements: button, checkbox, fileUpload, password, radio, reset,
submit, and text.

ABORT Event

above layer

accessKey A, APPLET, BODY, BUTTON, button, checkbox, EMBED, FIELDSET, fileUp-
load, LABEL, LEGEND, MARQUEE, OBJECT, password, radio, reset, SELECT, submit,
text, TEXTAREA

action FORM

activeElement document

align APPLET, CAPTION, COL, COLGROUP, DIV, FIELDSET, H1, H2, H3, H4, H5, H6, HR,
IFRAME, IMG, LEGEND, OBJECT, P, TABLE, TBODY, TD, TFOOT, TH, THEAD, TR

alink BODY

alinkColor document

alt AREA, IMG

altHTML APPLET

altHtml OBJECT

altKey event
987
TML: The Definitive Reference, eMatter Edition
 © 1999 Danny Goodman. All rights reserved.

988 Chapter 13: Document Object Properties Index
ALT_MASK Event

appCodeName navigator

appMinorVersion navigator

appName navigator

appVersion navigator

availHeight screen

availLeft screen

availTop screen

availWidth screen

BACK Event

background BODY, layer, style, TABLE, tags, TD, TH

backgroundAttachment style

backgroundColor style, tags

backgroundImage style, tags

backgroundPosition style

backgroundPositionX style

backgroundPositionY style

backgroundRepeat style

balance BGSOUND

behavior MARQUEE

below layer

bgColor BODY, document, layer, MARQUEE, TABLE, tags, TBODY, TD, TFOOT, TH,
THEAD, TR

bgProperties BODY

BLUR Event

body document

border FRAMESET, IMG, style, TABLE

borderBottom style

borderBottomColor style

borderBottomStyle style

borderBottomWidth style, tags

borderColor FRAME, FRAMESET, style, TABLE, tags, TD, TH, TR

borderColorDark TABLE, TD, TH, TR

borderColorLight TABLE, TD, TH, TR

borderLeft style

borderLeftColor style

borderLeftStyle style

borderLeftWidth style, tags

borderRight style
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross References

Chapter 13: Document Object Properties Index 989
borderRightColor style

borderRightStyle style

borderRightWidth style, tags

borderStyle style, tags

borderTop style

borderTopColor style

borderTopStyle style

borderTopWidth style, tags

borderWidth style

borderWidths() tags

bottomMargin BODY

boundingHeight TextRange

boundingLeft TextRange

boundingTop TextRange

boundingWidth TextRange

browserLanguage navigator

bufferDepth screen

button event

cancelBubble event

caption TABLE

cellIndex TD

cellPadding TABLE

cellSpacing TABLE

CHANGE Event

charset document, META

checked checkbox, radio

cite BLOCKQUOTE, DEL, INS

classid OBJECT

className A, ACRONYM, APPLET, AREA, B, BASE, BASEFONT, BDO, BGSOUND, BIG,
BLOCKQUOTE, BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox, CITE,
CODE, COL, COLGROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL, DT, EM, EMBED,
FIELDSET, fileUpload, FONT, FORM, FRAME, FRAMESET, H1, H2, H3, H4, H5, H6,
HEAD, hidden, HR, HTML, I, IFRAME, IMG, INS, KBD, LABEL, LEGEND, LI, LINK, LIST-
ING, MAP, MARQUEE, MENU, META, NOFRAMES, NOSCRIPT, OBJECT, OL, OPTION,
P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SCRIPT, SELECT, SMALL,
SPAN, STRIKE, STRONG, STYLE, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXT-
AREA, TFOOT, TH, THEAD, TITLE, TR, TT, U, UL, VAR, XMP

clear BR, style

CLICK Event

clientHeight BODY, BUTTON, CAPTION, DIV, EMBED, FIELDSET, LEGEND, MARQUEE,
TABLE, TD, TEXTAREA, TH, TR
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

990 Chapter 13: Document Object Properties Index
clientInformation window

clientLeft BODY, BUTTON, CAPTION, EMBED, FIELDSET, LEGEND, MARQUEE, TEXT-
AREA

clientTop BODY, BUTTON, CAPTION, EMBED, FIELDSET, LEGEND, MARQUEE, TEXT-
AREA

clientWidth BODY, BUTTON, CAPTION, DIV, EMBED, FIELDSET, LEGEND, MARQUEE,
TABLE, TD, TEXTAREA, TH, TR

clientX event

clientY event

clip layer, style, tags

closed window

code APPLET, OBJECT

codeBase APPLET, OBJECT

codeType OBJECT

color BASEFONT, FONT, HR, style, tags

colorDepth screen

cols FRAMESET, TABLE, TEXTAREA

colSpan TD, TH

compact DL, OL, UL

complete IMG

content META

CONTROL_MASK Event

cookie document

cookieEnabled navigator

coords AREA

cpuClass navigator

cssText style

ctrlKey event

current history

cursor style

data event, OBJECT

dataFld A, APPLET, BUTTON, button, checkbox, DIV, FRAME, hidden, IFRAME, IMG,
LABEL, MARQUEE, OBJECT, password, radio, SELECT, SPAN, TABLE, text, TEXTAREA

dataFormatAs BUTTON, DIV, LABEL, MARQUEE, SPAN

dataPageSize TABLE

dataSrc A, APPLET, BUTTON, button, checkbox, DIV, FRAME, hidden, IFRAME, IMG,
LABEL, MARQUEE, OBJECT, password, radio, SELECT, SPAN, TABLE, text, TEXTAREA

dateTime DEL, INS

DBLCLICK Event

defaultCharset document
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross References

Chapter 13: Document Object Properties Index 991
defaultChecked checkbox, radio

defaultSelected OPTION

defaultStatus window

defaultValue password, text, TEXTAREA

defer SCRIPT

description mimeType, plugin

dialogArguments window

dialogHeight window

dialogLeft window

dialogTop window

dialogWidth window

dir BDO, NOFRAMES, NOSCRIPT

direction MARQUEE

disabled BUTTON, button, checkbox, fileUpload, hidden, LINK, password, radio, reset,
SELECT, STYLE, styleSheet, submit, text, TEXTAREA

display style, tags

document A, ACRONYM, ADDRESS, APPLET, AREA, B, BASE, BASEFONT, BGSOUND,
BIG, BLOCKQUOTE, BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox,
CITE, CODE, COL, COLGROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL, DT, EM,
EMBED, FIELDSET, fileUpload, FONT, FORM, FRAME, FRAMESET, H1, H2, H3, H4, H5,
H6, HEAD, hidden, HR, HTML, I, IFRAME, IMG, INS, KBD, LABEL, layer, LEGEND, LI,
LINK, LISTING, MAP, MARQUEE, MENU, META, OBJECT, OL, OPTION, P, password,
PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SCRIPT, SELECT, SMALL, SPAN, STRIKE,
STRONG, STYLE, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT,
TH, THEAD, TITLE, TR, TT, U, UL, VAR, window, XMP

domain document

DRAGDROP Event

dynsrc IMG

enabledPlugin mimeType

encoding FORM

ERROR Event

event SCRIPT, window

expando document

face BASEFONT, FONT

fgColor document

filename plugin

filter style

FOCUS Event

font style

fontFamily style, tags

fontSize style, tags
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

992 Chapter 13: Document Object Properties Index
fontStyle style, tags

fontVariant style

fontWeight style, tags

form BUTTON, button, checkbox, fileUpload, hidden, OBJECT, password, radio, reset,
SELECT, submit, text, TEXTAREA

FORWARD Event

frame TABLE

frameBorder FRAME, FRAMESET, IFRAME

frameSpacing FRAMESET, IFRAME

fromElement event

hash A, AREA, location

height APPLET, FRAME, IMG, MARQUEE, OBJECT, screen, style, TABLE, TD, TH

HELP Event

hidden EMBED, layer

history window

host A, AREA, location

hostname A, AREA, location

href A, AREA, BASE, IMG, LINK, styleSheet, location

hspace APPLET, IFRAME, IMG, MARQUEE, OBJECT

htmlFor LABEL, SCRIPT

htmlText TextRange

httpEquiv httpEquiv

id A, ACRONYM, ADDRESS, APPLET, AREA, B, BASE, BASEFONT, BDO, BGSOUND, BIG,
BLOCKQUOTE, BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox, CITE,
CODE, COL, COLGROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL, DT, EM, EMBED,
FIELDSET, fileUpload, FONT, FORM, FRAME, FRAMESET, H1, H2, H3, H4, H5, H6,
HEAD, hidden, HR, HTML, I, IFRAME, IMG, INS, KBD, LABEL, layer, LEGEND, LI,
LINK, LISTING, MAP, MARQUEE, MENU, META, NOFRAMES, NOSCRIPT, OBJECT, OL,
OPTION, P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SCRIPT, SELECT,
SMALL, SPAN, STRIKE, STRONG, STYLE, styleSheet, SUB, submit, SUP, TABLE,
TBODY, TD, text, TEXTAREA, TFOOT, TH, THEAD, TITLE, TR, TT, U, UL, VAR, XMP

indeterminate checkbox

index OPTION

innerHeight window

innerHTML A, ACRONYM, ADDRESS, B, BIG, BLOCKQUOTE, BODY, BR, BUTTON, CAP-
TION, CENTER, CITE, CODE, COMMENT, DD, DEL, DFN, DIR, DIV, DL, DT, EM,
EMBED, FIELDSET, FONT, FORM, H1, H2, H3, H4, H5, H6, I, INS, KBD, LABEL, LEG-
END, LI, LISTING, MAP, MARQUEE, MENU, OL, P, PLAINTEXT, PRE, Q, S, SAMP,
SCRIPT, SELECT, SMALL, SPAN, STRIKE, STRONG, SUB, SUP, TABLE, TBODY, TD,
TFOOT, TH, THEAD, TR, TT, U, UL, VAR, XMP

innerText A, ACRONYM, ADDRESS, B, BIG, BLOCKQUOTE, BODY, BR, BUTTON, CAP-
TION, CENTER, CITE, CODE, COMMENT, DD, DEL, DFN, DIR, DIV, DL, DT, EM,
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross References

Chapter 13: Document Object Properties Index 993
EMBED, FIELDSET, FONT, FORM, H1, H2, H3, H4, H5, H6, I, INS, KBD, LABEL, LEG-
END, LI, LISTING, MAP, MARQUEE, MENU, OL, P, PLAINTEXT, PRE, Q, S, SAMP,
SCRIPT, SELECT, SMALL, SPAN, STRIKE, STRONG, SUB, SUP, TABLE, TBODY, TD,
TFOOT, TH, THEAD, TR, TT, U, UL, VAR, XMP

innerWidth window

isMap IMG

isTextEdit A, ACRONYM, ADDRESS, APPLET, AREA, B, BASE, BASEFONT, BGSOUND,
BIG, BLOCKQUOTE, BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox,
CITE, CODE, COL, COLGROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL, DT, EM,
EMBED, FIELDSET, fileUpload, FONT, FORM, FRAME, FRAMESET, H1, H2, H3, H4, H5,
H6, HEAD, hidden, HR, HTML, I, IFRAME, IMG, INS, KBD, LABEL, LEGEND, LI, LIST-
ING, MAP, MARQUEE, MENU, META, OBJECT, OL, OPTION, P, password, PLAIN-
TEXT, PRE, Q, radio, reset, S, SAMP, SCRIPT, SELECT, SMALL, SPAN, STRIKE, STRONG,
STYLE, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT, TH, THEAD,
TITLE, TR, TT, U, UL, VAR, XMP

keyCode event

KEYDOWN Event

KEYPRESS Event

KEYUP Event

lang A, ACRONYM, ADDRESS, APPLET, AREA, B, BASE, BASEFONT, BDO, BIG, BLOCK-
QUOTE, BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox, CITE, CODE,
COL, COLGROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL, DT, EM, EMBED, FIELD-
SET, fileUpload, FONT, FORM, FRAME, FRAMESET, H1, H2, H3, H4, H5, H6, HR, I,
IFRAME, IMG, INS, KBD, LABEL, LEGEND, LI, LISTING, MAP, MARQUEE, MENU,
META, NOFRAMES, NOSCRIPT, OBJECT, OL, P, password, PLAINTEXT, PRE, Q, radio,
reset, S, SAMP, SELECT, SMALL, SPAN, STRIKE, STRONG, STYLE, SUB, submit, SUP,
TABLE, TBODY, TD, text, TEXTAREA, TFOOT, TH, THEAD, TITLE, TR, TT, U, UL,
VAR, XMP

language A, ACRONYM, ADDRESS, APPLET, AREA, B, BIG, BLOCKQUOTE, BODY, BR,
BUTTON, button, CAPTION, CENTER, checkbox, CITE, CODE, COL, COLGROUP,
COMMENT, DD, DEL, DFN, DIR, DIV, DL, DT, EM, EMBED, FIELDSET, fileUpload,
FONT, FORM, FRAME, FRAMESET, H1, H2, H3, H4, H5, H6, hidden, HR, HTML, I,
IFRAME, IMG, INS, KBD, LABEL, LEGEND, LI, LISTING, MAP, MARQUEE, MENU,
META, navigator, OBJECT, OL, OPTION, P, password, PLAINTEXT, PRE, Q, radio,
reset, S, SAMP, SCRIPT, SELECT, SMALL, SPAN, STRIKE, STRONG, STYLE, SUB, sub-
mit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT, TH, THEAD, TITLE, TR, TT,
U, UL, VAR, XMP

lastModified document

layerX event

layerY event

left layer, style, tags

leftMargin BODY

length all, anchors, applets, areas, cells, children, embeds, filters, FORM, forms, frames,
history, images, links, options, plugin, plugins, rows, rules, scripts, SELECT, window

letterSpacing style
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

994 Chapter 13: Document Object Properties Index
lineHeight style

link BODY

linkColor document

listStyle style

listStyleImage style

listStylePosition style

listStyleType style, tags

LOAD Event

LOCATE Event

location document, window

locationbar window

loop BGSOUND, IMG, MARQUEE

lowsrc IMG

margin style

marginBottom style, tags

marginHeight FRAME, IFRAME

marginLeft style, tags

marginRight style, tags

margins() tags

marginTop style, tags

marginWidth FRAME, IFRAME

maxLength password, text

media LINK, STYLE

menubar window

META_MASK Event

method FORM

Methods A

mimeType A

modifiers event

MOUSEDOWN Event

MOUSEDRAG Event

MOUSEMOVE Event

MOUSEOUT Event

MOUSEOVER Event

MOUSEUP Event

MOVE Event

multiple SELECT
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross References

Chapter 13: Document Object Properties Index 995
name A, APPLET, BUTTON, button, checkbox, EMBED, fileUpload, FORM, FRAME, hid-
den, IFRAME, IMG, layer, MAP, OBJECT, password, plugin, radio, reset, SELECT, sub-
mit, text, TEXTAREA, window

nameProp A

navigator window

next history

noHref AREA

noResize FRAME, IFRAME

noShade HR

noWrap BODY, DD, DT, TD, TH

object OBJECT

offscreenBuffering window

offsetHeight A, ACRONYM, ADDRESS, APPLET, AREA, B, BGSOUND, BIG, BLOCK-
QUOTE, BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox, CITE, CODE,
COL, COLGROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL, DT, EM, EMBED, FIELD-
SET, fileUpload, FONT, FORM, H1, H2, H3, H4, H5, H6, HR, I, IFRAME, IMG, INS,
KBD, LABEL, LEGEND, LI, LISTING, MAP, MARQUEE, MENU, OBJECT, OL, OPTION,
P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SELECT, SMALL, SPAN,
STRIKE, STRONG, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT,
TH, THEAD, TR, TT, U, UL, VAR, XMP

offsetLeft A, ACRONYM, ADDRESS, APPLET, AREA, B, BGSOUND, BIG, BLOCKQUOTE,
BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox, CITE, CODE, COL, COL-
GROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL, DT, EM, EMBED, FIELDSET, file-
Upload, FONT, FORM, H1, H2, H3, H4, H5, H6, HR, I, IFRAME, IMG, INS, KBD,
LABEL, LEGEND, LI, LISTING, MAP, MARQUEE, MENU, OBJECT, OL, P, password,
PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SELECT, SMALL, SPAN, STRIKE, STRONG,
SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT, TH, THEAD, TR, TT,
U, UL, VAR, XMP

offsetParent A, ACRONYM, ADDRESS, APPLET, AREA, B, BGSOUND, BIG, BLOCK-
QUOTE, BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox, CITE, CODE,
COL, COLGROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL, DT, EM, EMBED, FIELD-
SET, fileUpload, FONT, FORM, H1, H2, H3, H4, H5, H6, HR, I, IFRAME, IMG, INS,
KBD, LABEL, LEGEND, LI, LISTING, MAP, MARQUEE, MENU, OBJECT, OL, OPTION,
P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SELECT, SMALL, SPAN,
STRIKE, STRONG, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT,
TH, THEAD, TR, TT, U, UL, VAR, XMP

offsetTop A, ACRONYM, ADDRESS, APPLET, AREA, B, BGSOUND, BIG, BLOCKQUOTE,
BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox, CITE, CODE, COL, COL-
GROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL, DT, EM, EMBED, FIELDSET, file-
Upload, FONT, FORM, H1, H2, H3, H4, H5, H6, HR, I, IFRAME, IMG, INS, KBD,
LABEL, LEGEND, LI, LISTING, MAP, MARQUEE, MENU, OBJECT, OL, P, password,
PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SELECT, SMALL, SPAN, STRIKE, STRONG,
SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT, TH, THEAD, TR, TT,
U, UL, VAR, XMP
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

996 Chapter 13: Document Object Properties Index
offsetWidth A, ACRONYM, ADDRESS, APPLET, AREA, B, BGSOUND, BIG, BLOCK-
QUOTE, BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox, CITE, CODE,
COL, COLGROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL, DT, EM, EMBED, FIELD-
SET, fileUpload, FONT, FORM, H1, H2, H3, H4, H5, H6, HR, I, IFRAME, IMG, INS,
KBD, LABEL, LEGEND, LI, LISTING, MAP, MARQUEE, MENU, OBJECT, OL, OPTION,
P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SELECT, SMALL, SPAN,
STRIKE, STRONG, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT,
TH, THEAD, TR, TT, U, UL, VAR, XMP

offsetX event

offsetY event

onLine navigator

opener window

outerHeight window

outerHTML A, ACRONYM, ADDRESS, APPLET, AREA, B, BASE, BASEFONT, BGSOUND,
BIG, BLOCKQUOTE, BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox,
CITE, CODE, COL, COLGROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL, DT, EM,
EMBED, FIELDSET, fileUpload, FONT, FORM, H1, H2, H3, H4, H5, H6, HR, I, IFRAME,
IMG, INS, KBD, LABEL, LEGEND, LI, LISTING, MAP, MARQUEE, MENU, OBJECT, OL,
P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SELECT, SMALL, SPAN,
STRIKE, STRONG, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT,
TH, THEAD, TR, TT, U, UL, VAR, XMP

outerText A, ACRONYM, ADDRESS, APPLET, AREA, B, BASE, BASEFONT, BGSOUND,
BIG, BLOCKQUOTE, BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox,
CITE, CODE, COL, COLGROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL, DT, EM,
EMBED, FIELDSET, fileUpload, FONT, FORM, H1, H2, H3, H4, H5, H6, HR, I, IFRAME,
IMG, INS, KBD, LABEL, LEGEND, LI, LISTING, MAP, MARQUEE, MENU, OBJECT, OL,
P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SELECT, SMALL, SPAN,
STRIKE, STRONG, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT,
TH, THEAD, TR, TT, U, UL, VAR, XMP

outerWidth window

overflow style

owningElement styleSheet

padding style

paddingBottom style, tags

paddingLeft style, tags

paddingRight style, tags

paddings tags

paddingTop style, tags

pageBreakAfter style

pageBreakBefore style

pageX event, layer

pageXOffset window

pageY event, layer
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross References

Chapter 13: Document Object Properties Index 997
pageYOffset window

palette EMBED

parent window

parentElement A, ACRONYM, ADDRESS, APPLET, AREA, B, BASE, BASEFONT,
BGSOUND, BIG, BLOCKQUOTE, BODY, BR, BUTTON, button, CAPTION, CENTER,
checkbox, CITE, CODE, COL, COLGROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL,
DT, EM, EMBED, FIELDSET, fileUpload, FONT, FORM, FRAME, FRAMESET, H1, H2,
H3, H4, H5, H6, HEAD, hidden, HR, HTML, I, IFRAME, IMG, INS, KBD, LABEL, LEG-
END, LI, LINK, LISTING, MAP, MARQUEE, MENU, META, OBJECT, OL, OPTION, P,
password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SCRIPT, SELECT, SMALL, SPAN,
STRIKE, STRONG, STYLE, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA,
TFOOT, TH, THEAD, TITLE, TR, TT, U, UL, VAR, XMP

parentLayer layer

parentStyleSheet styleSheet

parentTextEdit A, ACRONYM, ADDRESS, APPLET, AREA, B, BASE, BASEFONT,
BGSOUND, BIG, BLOCKQUOTE, BODY, BR, BUTTON, button, CAPTION, CENTER,
checkbox, CITE, CODE, COL, COLGROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL,
DT, EM, EMBED, FIELDSET, fileUpload, FONT, FORM, FRAME, FRAMESET, H1, H2,
H3, H4, H5, H6, hidden, HR, HTML, I, IFRAME, IMG, INS, KBD, LABEL, LEGEND, LI,
LINK, LISTING, MAP, MARQUEE, MENU, META, OBJECT, OL, OPTION, P, password,
PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SCRIPT, SELECT, SMALL, SPAN, STRIKE,
STRONG, STYLE, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT,
TH, THEAD, TITLE, TR, TT, U, UL, VAR, XMP

parentWindow document

pathname A, AREA, location

personalbar window

pixelDepth screen

pixelHeight style

pixelLeft style

pixelTop style

pixelWidth style

platform navigator

pluginspage EMBED

port A, AREA, location

posHeight style

position style

posLeft style

posTop style

posWidth style

previous history

prompt ISINDEX

protocol A, AREA, location
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

998 Chapter 13: Document Object Properties Index
protocolLong A

prototype IMG

readOnly password, rule, styleSheet, text, TEXTAREA

readyState document, EMBED, IMG, LINK, OBJECT, SCRIPT, STYLE

reason event

recordNumber A, BODY, button, checkbox, MARQUEE, radio, SELECT, TABLE, text

referrer document

rel A, LINK

RESET Event

RESIZE Event

returnValue event, window

rev A, LINK

rightMargin BODY

rowIndex TR

rows FRAMESET, TEXTAREA

rowSpan TD, TH

rules TABLE

screen window

screenX event

screenY event

scroll BODY

SCROLL Event

scrollAmount MARQUEE

scrollbars window

scrollDelay MARQUEE

scrollHeight BODY, BUTTON, CAPTION, DIV, FIELDSET, LEGEND, MARQUEE, TABLE,
TEXTAREA

scrolling FRAME, IFRAME

scrollLeft BODY, BUTTON, CAPTION, DIV, FIELDSET, LEGEND, MARQUEE, SPAN,
TABLE, TEXTAREA

scrollTop BODY, BUTTON, CAPTION, DIV, FIELDSET, LEGEND, MARQUEE, SPAN,
TABLE, TEXTAREA

scrollWidth BODY, BUTTON, CAPTION, DIV, FIELDSET, LEGEND, MARQUEE, TABLE,
TEXTAREA

search A, AREA, location

sectionRowIndex TR

SELECT Event

selected OPTION

selectedIndex SELECT

selection document
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross References

Chapter 13: Document Object Properties Index 999
selectorText rule

self window

shape AREA

shiftKey event

SHIFT_MASK Event

siblingAbove layer

siblingBelow layer

size BASEFONT, fileUpload, FONT, HR, password, text

sourceIndex A, ACRONYM, ADDRESS, APPLET, AREA, B, BASE, BASEFONT, BGSOUND,
BIG, BLOCKQUOTE, BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox,
CITE, CODE, COL, COLGROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL, DT, EM,
EMBED, FIELDSET, fileUpload, FONT, FORM, FRAME, FRAMESET, H1, H2, H3, H4, H5,
H6, HEAD, hidden, HR, HTML, I, IFRAME, IMG, INS, KBD, LABEL, LEGEND, LI, LINK,
LISTING, MAP, MARQUEE, MENU, META, OBJECT, OL, P, password, PLAINTEXT, PRE,
Q, radio, reset, S, SAMP, SCRIPT, SELECT, SMALL, SPAN, STRIKE, STRONG, STYLE,
SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT, TH, THEAD, TITLE,
TR, TT, U, UL, VAR, XMP

span COL, COLGROUP

src APPLET, BGSOUND, EMBED, FRAME, IFRAME, IMG, layer, SCRIPT

srcElement event

srcFilter event

start IMG, OL

status BUTTON, checkbox, radio, window

statusbar window

style A, ACRONYM, ADDRESS, APPLET, AREA, B, BDO, BGSOUND, BIG, BLOCKQUOTE,
BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox, CITE, CODE, COL, COL-
GROUP, DD, DEL, DFN, DIR, DIV, DL, DT, EM, EMBED, FIELDSET, fileUpload, FONT,
FORM, FRAME, FRAMESET, H1, H2, H3, H4, H5, H6, hidden, HR, HTML, I, IFRAME,
IMG, INS, KBD, LABEL, LEGEND, LI, LISTING, MAP, MARQUEE, MENU, META, NO-
FRAMES, NOSCRIPT, OBJECT, OL, OPTION, P, password, PLAINTEXT, PRE, Q, radio,
reset, rule, S, SAMP, SCRIPT, SELECT, SMALL, SPAN, STRIKE, STRONG, STYLE, SUB,
submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT, TH, THEAD, TITLE, TR,
TT, U, UL, VAR, XMP

styleFloat style

SUBMIT Event

suffixes mimeType

systemLanguage navigator

tabIndex A, APPLET, AREA, BODY, BUTTON, button, checkbox, EMBED, FIELDSET, file-
Upload, IFRAME, MARQUEE, OBJECT, password, radio, reset, SELECT, submit, TABLE,
text, TEXTAREA

tagName A, ACRONYM, ADDRESS, APPLET, AREA, B, BASE, BASEFONT, BGSOUND,
BIG, BLOCKQUOTE, BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox,
CITE, CODE, COL, COLGROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL, DT, EM,
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1000 Chapter 13: Document Object Properties Index
EMBED, FIELDSET, fileUpload, FONT, FORM, FRAME, FRAMESET, H1, H2, H3, H4, H5,
H6, HEAD, hidden, HR, HTML, I, IFRAME, IMG, INS, KBD, LABEL, LEGEND, LI, LINK,
LISTING, MAP, MARQUEE, MENU, META, OBJECT, OL, OPTION, P, password, PLAIN-
TEXT, PRE, Q, radio, reset, S, SAMP, SCRIPT, SELECT, SMALL, SPAN, STRIKE, STRONG,
STYLE, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT, TH, THEAD,
TITLE, TR, TT, U, UL, VAR, XMP

target A, AREA, BASE, event, FORM

text BODY, COMMENT, OPTION, SCRIPT, TextRange, TITLE

textAlign style, tags

textDecoration style, tags

textDecorationBlink style

textDecorationLineThrough style

textDecorationNone style

textDecorationOverline style

textDecorationUnderline style

textIndent style

textTransform style, tags

tFoot TABLE

tHead TABLE

title A, ACRONYM, ADDRESS, APPLET, AREA, B, BASE, BASEFONT, BDO, BGSOUND,
BIG, BLOCKQUOTE, BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox,
CITE, CODE, COL, COLGROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL, document,
DT, EM, EMBED, FIELDSET, fileUpload, FONT, FORM, FRAME, FRAMESET, H1, H2,
H3, H4, H5, H6, HEAD, hidden, HR, HTML, I, IFRAME, IMG, INS, KBD, LABEL, LEG-
END, LI, LINK, LISTING, MAP, MARQUEE, MENU, META, NOFRAMES, NOSCRIPT,
OBJECT, OL, P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SCRIPT, SELECT,
SMALL, SPAN, STRIKE, STRONG, STYLE, SUB, submit, SUP, TABLE, TBODY, TD, text,
TEXTAREA, TFOOT, TH, THEAD, TITLE, TR, TT, U, UL, VAR, XMP

toElement event

toolbar window

top layer, style, window, tags

topMargin BODY

trueSpeed MARQUEE

type BUTTON, button, checkbox, event, fileUpload, hidden, LI, LINK, mimeType, OBJECT,
OL, password, radio, reset, SCRIPT, SELECT, selection, STYLE, styleSheet, submit, text,
TEXTAREA, UL

units EMBED

UNLOAD Event

updateInterval screen

URL document

url META

urn A
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross References

Chapter 13: Document Object Properties Index 1001
useMap IMG

userAgent navigator

userLanguage navigator

userProfile navigator

vAlign CAPTION, COL, COLGROUP, TBODY, TD, TFOOT, TH, THEAD, TR

value BUTTON, button, checkbox, fileUpload, hidden, LI, OPTION, password, radio,
reset, SELECT, submit, text, TEXTAREA

verticalAlign style, tags

visibility layer, style, tags

visible locationbar, menubar, personalbar, scrollbars, statusbar, toolbar

vLink BODY

vlinkColor document

volume BGSOUND

vspace APPLET, IFRAME, IMG, MARQUEE, OBJECT

which event

whiteSpace tags

width APPLET, COL, COLGROUP, HR, IMG, MARQUEE, OBJECT, screen, style, TABLE,
TD, TH

wrap TEXTAREA

x event, IMG

XFER_DONE Event

y event, IMG

zIndex layer, style, tags
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1002
Dynamic HTML: The Definitive Reference
Copyright © 1999 Danny Goodman. Al
Chapter 14Cross References

14.

betically by scriptable object
ich document objects support
bjects in Navigator 4, Internet
ame method name may mean
up the details of the method

find if the method is available
and whether it does what you
objects that reflect HTML ele-
14

Document Object
Methods Index
Entries in the following index are arranged alpha
methods. You can look up a method to find out wh
it. This listing is a union of methods defined for o
Explorer 4, and a working draft of the DOM. The s
different things for different objects. Be sure to look
listing in Chapter 9, Document Object Reference, to
for the browser(s) used by your intended audience
want. Objects shown in all uppercase letters are
ments of the same name. The following objects reflect specific types of INPUT ele-
ments: button, checkbox, fileUpload, password, radio, reset, submit, and
text.

add() options

addImport() styleSheet

addReadRequest() userProfile

addRule() styleSheet

alert() window

assign() location

back() history, window

blur() A, APPLET, AREA, BUTTON, button, CAPTION, checkbox, DIV, EMBED, FIELD-
SET, fileUpload, IMG, LEGEND, MARQUEE, OBJECT, password, radio, reset, SELECT,
SPAN, submit, TABLE, TD, text, TEXTAREA, TH, TR, window

captureEvents() document, layer, window

clear() document, selection

clearInterval() window

clearRequest() userProfile

clearTimeout() window
, eMatter Edition
l rights reserved.

Cross References

Chapter 14: Document Object Methods Index 1003
click() A, ACRONYM, ADDRESS, APPLET, AREA, B, BIG, BLOCKQUOTE, BODY, BR,
BUTTON, button, CAPTION, CENTER, checkbox, CITE, CODE, DD, DEL, DFN, DIR,
DIV, DL, DT, EM, EMBED, FIELDSET, fileUpload, FONT, FORM, H1, H2, H3, H4, H5,
H6, HR, I, IMG, INS, KBD, LABEL, LEGEND, LI, LISTING, MAP, MARQUEE, MENU,
OBJECT, OL, P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SELECT, SMALL,
SPAN, STRIKE, STRONG, STYLE, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXT-
AREA, TFOOT, TH, THEAD, TR, TT, U, UL, VAR, XMP

close() document, window

collapse() TextRange

compareEndPoints() TextRange

confirm() window

contains() A, ACRONYM, ADDRESS, APPLET, AREA, B, BASE, BASEFONT, BGSOUND,
BIG, BLOCKQUOTE, BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox,
CITE, CODE, COL, COLGROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL, DT, EM,
EMBED, FIELDSET, fileUpload, FONT, FORM, FRAME, FRAMESET, H1, H2, H3, H4, H5,
H6, HEAD, hidden, HR, HTML, I, IFRAME, IMG, INS, KBD, LABEL, LEGEND, LI, LINK,
LISTING, MAP, MARQUEE, MENU, META, OBJECT, OL, OPTION, P, password, PLAIN-
TEXT, PRE, Q, radio, reset, S, SAMP, SCRIPT, SELECT, SMALL, SPAN, STRIKE, STRONG,
STYLE, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT, TH, THEAD,
TITLE, TR, TT, U, UL, VAR, XMP

createElement() document

createRange() selection

createStyleSheet() document

createTextRange() BODY, BUTTON, text, TEXTAREA

disableExternalCapture() window

doReadRequest() userProfile

duplicate() TextRange

elementFromPoint() document

empty() selection

enableExternalCapture() window

execCommand() document, TextRange

execScript() window

expand() TextRange

find() window

findText() TextRange

focus() A, APPLET, AREA, BUTTON, button, CAPTION, checkbox, DIV, EMBED, FIELD-
SET, fileUpload, IMG, LEGEND, MARQUEE, OBJECT, password, radio, reset, SELECT,
SPAN, submit, TABLE, TD, text, TEXTAREA, TH, TR, window

forward() history, window

getAttribute() A, ACRONYM, ADDRESS, APPLET, AREA, B, BASE, BASEFONT, BGSOUND,
BIG, BLOCKQUOTE, BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox,
CITE, CODE, COL, COLGROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL, DT, EM,
EMBED, FIELDSET, fileUpload, FONT, FORM, FRAME, FRAMESET, H1, H2, H3, H4, H5,
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1004 Chapter 14: Document Object Methods Index
H6, HEAD, hidden, HR, HTML, I, IFRAME, IMG, INS, KBD, LABEL, LEGEND, LI, LINK,
LISTING, MAP, MARQUEE, MENU, META, OBJECT, OL, OPTION, P, password, PLAIN-
TEXT, PRE, Q, radio, reset, S, SAMP, SCRIPT, SELECT, SMALL, SPAN, STRIKE, STRONG,
style, STYLE, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT, TH,
THEAD, TITLE, TR, TT, U, UL, userProfile, VAR, XMP

getBookmark() TextRange

getSelection() document

go() history

handleEvent() button, checkbox, document, fileUpload, FORM, layer, password, radio,
reset, submit, text, TEXTAREA, window

home() window

inRange() TextRange

insertAdjacentHTML() A, ACRONYM, ADDRESS, APPLET, AREA, B, BIG, BLOCKQUOTE,
BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox, CITE, CODE, DD, DEL,
DFN, DIR, DIV, DL, DT, EM, EMBED, FIELDSET, fileUpload, FONT, FORM, H1, H2, H3,
H4, H5, H6, HR, I, IFRAME, IMG, INS, KBD, LABEL, LEGEND, LI, LISTING, MARQUEE,
MENU, OL, P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SCRIPT, SELECT,
SMALL, SPAN, STRIKE, STRONG, STYLE, SUB, submit, SUP, TABLE, TBODY, TD, text,
TEXTAREA, TFOOT, TH, THEAD, TR, TT, U, UL, VAR, XMP

insertAdjacentText() A, ACRONYM, ADDRESS, APPLET, AREA, B, BIG, BLOCKQUOTE,
BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox, CITE, CODE, DD, DEL,
DFN, DIR, DIV, DL, DT, EM, EMBED, FIELDSET, fileUpload, FONT, FORM, H1, H2, H3,
H4, H5, H6, HR, I, IFRAME, IMG, INS, KBD, LABEL, LEGEND, LI, LISTING, MARQUEE,
MENU, OL, P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SCRIPT, SELECT,
SMALL, SPAN, STRIKE, STRONG, STYLE, SUB, submit, SUP, TABLE, TBODY, TD, text,
TEXTAREA, TFOOT, TH, THEAD, TR, TT, U, UL, VAR, XMP

isEqual() TextRange

item() all, filters, forms, frames, images, options, plugins, rows, scripts

javaEnabled() navigator

load() layer

move() TextRange

moveAbove() layer

moveBelow() layer

moveBy() layer

moveEnd() TextRange

moveStart() TextRange

moveTo() layer, window

moveToAbsolute() layer

moveToBookmark() TextRange

moveToElementText() TextRange

moveToPoint() TextRange

navigate() window
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross References

Chapter 14: Document Object Methods Index 1005
nextPage() TABLE

open() document, window

parentElement() TextRange

pasteHTML() TextRange

preference() navigator

previousPage() TABLE

print() window

prompt() window

queryCommandEnabled() document, TextRange

queryCommandIndeterm() TextRange

queryCommandState() document, TextRange

queryCommandSupported() document, TextRange

queryCommandText() document, TextRange

queryCommandValue() document, TextRange

refresh() plugin, TABLE

releaseEvents() document, layer, window

reload() location

remove() options

removeAttribute() A, ACRONYM, ADDRESS, APPLET, AREA, B, BASE, BASEFONT,
BGSOUND, BIG, BLOCKQUOTE, BODY, BR, BUTTON, button, CAPTION, CENTER,
checkbox, CITE, CODE, COL, COLGROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL,
DT, EM, EMBED, FIELDSET, fileUpload, FONT, FORM, FRAME, FRAMESET, H1, H2,
H3, H4, H5, H6, HEAD, hidden, HR, HTML, I, IFRAME, IMG, INS, KBD, LABEL, LEG-
END, LI, LINK, LISTING, MAP, MARQUEE, MENU, META, OBJECT, OL, OPTION, P,
password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SCRIPT, SELECT, SMALL, SPAN,
STRIKE, STRONG, style, STYLE, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXT-
AREA, TFOOT, TH, THEAD, TITLE, TR, TT, U, UL, VAR, XMP

replace() location

reset() FORM

resizeBy() layer, window

resizeTo() layer, window

routeEvent() document, layer, window

scroll() window

scrollBy() window

scrollIntoView() A, ACRONYM, ADDRESS, APPLET, AREA, B, BIG, BLOCKQUOTE, BR,
BUTTON, button, CAPTION, CENTER, checkbox, CITE, CODE, DD, DEL, DFN, DIR,
DIV, DL, DT, EM, EMBED, FIELDSET, fileUpload, FONT, FORM, H1, H2, H3, H4, H5,
H6, HR, I, IFRAME, IMG, INS, KBD, LABEL, LEGEND, LI, LISTING, MAP, MARQUEE,
MENU, OBJECT, OL, OPTION, P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP,
SELECT, SMALL, SPAN, STRIKE, STRONG, STYLE, SUB, submit, SUP, TABLE, TBODY,
TD, text, TEXTAREA, TextRange, TFOOT, TH, THEAD, TR, TT, U, UL, VAR, XMP

scrollTo() window
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1006 Chapter 14: Document Object Methods Index
select() fileUpload, password, text, TEXTAREA, TextRange

setAttribute() A, ACRONYM, ADDRESS, APPLET, AREA, B, BASE, BASEFONT, BGSOUND,
BIG, BLOCKQUOTE, BODY, BR, BUTTON, button, CAPTION, CENTER, checkbox,
CITE, CODE, COL, COLGROUP, COMMENT, DD, DEL, DFN, DIR, DIV, DL, DT, EM,
EMBED, FIELDSET, fileUpload, FONT, FORM, FRAME, FRAMESET, H1, H2, H3, H4, H5,
H6, HEAD, hidden, HR, HTML, I, IFRAME, IMG, INS, KBD, LABEL, LEGEND, LI, LINK,
LISTING, MAP, MARQUEE, MENU, META, OBJECT, OL, OPTION, P, password, PLAIN-
TEXT, PRE, Q, radio, reset, S, SAMP, SCRIPT, SELECT, SMALL, SPAN, STRIKE, STRONG,
style, STYLE, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT, TH,
THEAD, TITLE, TR, TT, U, UL, VAR, XMP

setEndPoint() TextRange

setInterval() window

setTimeout() window

showHelp() window

showModalDialog() window

start() MARQUEE

stop() MARQUEE

submit() FORM

tags() all, rows

taintEnabled() navigator

write() document

writeln() document
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross References
Chapter 15Cross References

E

Entries in the following index
event handlers. You can look
objects and HTML elements su
defined for objects in Navigato
dler name may mean different
details of the event handler li
find if the event handler is av
audience and whether it does w
Dynamic H
Copyright
15

15.Document Object

vent Handlers Index
are arranged alphabetically by scriptable object
up an event handler to find out which document
pport it. This listing is a union of event handlers
r 4 and Internet Explorer 4. The same event han-
things for different objects. Be sure to look up the
sting in Chapter 9, Document Object Reference, to
ailable for the browser(s) used by your intended
hat you want. Objects shown in all uppercase let-

ters are objects that reflect HTML elements of the same name. The following
objects reflect specific types of INPUT elements: button, checkbox, file-
Upload, password, radio, reset, submit, and text. All event handlers are
listed here in all lowercase, as they are in Chapter 9. You may use any case com-
bination you like when specifying the event handler as an HTML element attribute,
but you must use the all-lowercase form in scripts for cross-browser compatibility.

onabort IMG

onafterupdate APPLET, AREA, BODY, BUTTON, button, CAPTION, checkbox, DIV, docu-
ment, FIELDSET, IMG, MARQUEE, OBJECT, radio, SELECT, TABLE, TD, TEXTAREA, TH

onbeforeunload BODY, FRAMESET, TD, TEXTAREA, TH, window

onbeforeupdate APPLET, AREA, BODY, BUTTON, button, CAPTION, checkbox, DIV, doc-
ument, FIELDSET, IMG, OBJECT, radio, SELECT, TABLE

onblur A, APPLET, AREA, BUTTON, button, CAPTION, checkbox, DIV, EMBED, FIELD-
SET, fileUpload, IMG, layer, LEGEND, MARQUEE, OBJECT, password, radio, reset,
SELECT, SPAN, submit, TABLE, TD, text, TEXTAREA, TH, TR, window

onbounce MARQUEE

onchange BODY, button, CAPTION, checkbox, DIV, FIELDSET, fileUpload, IMG, LEG-
END, password, radio, SELECT, text, TEXTAREA
1007
TML: The Definitive Reference, eMatter Edition
 © 1999 Danny Goodman. All rights reserved.

1008 Chapter 15: Document Object Event Handlers Index
onclick A, ACRONYM, ADDRESS, APPLET, AREA, B, BIG, BLOCKQUOTE, BODY, BUT-
TON, button, CAPTION, CENTER, checkbox, CITE, CODE, DD, DEL, DFN, DIR, DIV,
DL, document, DT, EM, FIELDSET, fileUpload, FONT, FORM, H1, H2, H3, H4, H5, H6,
HR, I, IMG, INS, KBD, LABEL, LEGEND, LI, LISTING, MAP, MARQUEE, MENU,
OBJECT, OL, P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SELECT, SMALL,
SPAN, STRIKE, STRONG, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA,
TFOOT, TH, THEAD, TR, TT, U, UL, VAR, XMP

ondataavailable APPLET, AREA, BODY, IMG, OBJECT

ondatasetchanged APPLET, AREA, BODY, IMG, OBJECT

ondatasetcomplete APPLET, AREA, BODY, IMG, OBJECT

ondblclick A, ACRONYM, ADDRESS, APPLET, AREA, B, BIG, BLOCKQUOTE, BODY,
BUTTON, button, CAPTION, CENTER, checkbox, CITE, CODE, DD, DEL, DFN, DIR,
DIV, DL, document, DT, EM, FIELDSET, fileUpload, FONT, FORM, H1, H2, H3, H4, H5,
H6, HR, I, IMG, INS, KBD, LABEL, LEGEND, LI, LISTING, MAP, MARQUEE, MENU,
OBJECT, OL, P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SELECT, SMALL,
SPAN, STRIKE, STRONG, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA,
TFOOT, TH, THEAD, TR, TT, U, UL, VAR, XMP

ondragdrop window

ondragstart ACRONYM, ADDRESS, B, BIG, BLOCKQUOTE, BODY, BUTTON, CAPTION,
CENTER, CITE, CODE, DD, DEL, DFN, DIR, DIV, DL, document, DT, EM, FIELDSET,
FONT, FORM, H1, H2, H3, H4, H5, H6, HR, I, IMG, INS, KBD, LABEL, LEGEND, LI,
LISTING, MARQUEE, MENU, OBJECT, OL, P, PLAINTEXT, PRE, Q, S, SAMP, SELECT,
SMALL, SPAN, STRIKE, STRONG, SUB, SUP, TABLE, TBODY, TD, TEXTAREA, TFOOT,
TH, THEAD, TR, TT, U, UL, VAR, XMP

onerror IMG, LINK, OBJECT, SCRIPT, STYLE, window

onerrorupdate APPLET, AREA, BODY, button, CAPTION, checkbox, document, FIELD-
SET, OBJECT, radio, SELECT, TEXTAREA

onfilterchange ACRONYM, ADDRESS, B, BIG, BLOCKQUOTE, BODY, BUTTON, button,
CAPTION, CENTER, checkbox, CITE, CODE, DD, DEL, DFN, DIR, DL, DT, EM, FIELD-
SET, fileUpload, FONT, FORM, H1, H2, H3, H4, H5, H6, HR, I, IMG, INS, KBD, LABEL,
LI, LISTING, MENU, OBJECT, OL, P, PLAINTEXT, PRE, Q, radio, reset, S, SAMP,
SELECT, SMALL, SPAN, STRIKE, STRONG, SUB, submit, SUP, TBODY, TD, TEXTAREA,
TFOOT, TH, THEAD, TR, TT, U, UL, VAR, XMP

onfinish MARQUEE

onfocus A, APPLET, AREA, BUTTON, button, CAPTION, checkbox, DIV, EMBED, FIELD-
SET, fileUpload, IMG, layer, LEGEND, MARQUEE, OBJECT, password, radio, reset, sub-
mit, TABLE, text, TEXTAREA, window

onhelp A, ACRONYM, ADDRESS, APPLET, AREA, B, BIG, BLOCKQUOTE, BODY, BUT-
TON, button, CAPTION, CENTER, checkbox, CITE, CODE, DD, DEL, DFN, DIR, DIV,
DL, document, DT, EM, FIELDSET, fileUpload, FONT, FORM, H1, H2, H3, H4, H5, H6,
HR, I, IMG, INS, KBD, LABEL, LEGEND, LI, LISTING, MAP, MARQUEE, MENU,
OBJECT, OL, P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SELECT, SMALL,
SPAN, STRIKE, STRONG, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA,
TFOOT, TH, THEAD, TR, TT, U, UL, VAR, window, XMP

onkeydown A, ACRONYM, ADDRESS, APPLET, AREA, B, BIG, BLOCKQUOTE, BODY,
BUTTON, button, CAPTION, CENTER, checkbox, CITE, CODE, DD, DEL, DFN, DIR,
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Cross References

Chapter 15: Document Object Event Handlers Index 1009
DIV, DL, document, DT, EM, FIELDSET, fileUpload, FONT, FORM, H1, H2, H3, H4, H5,
H6, HR, I, IMG, INS, KBD, LABEL, LEGEND, LI, LISTING, MAP, MARQUEE, MENU, OL,
P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SELECT, SMALL, SPAN,
STRIKE, STRONG, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT,
TH, THEAD, TR, TT, U, UL, VAR, XMP

onkeypress A, ACRONYM, ADDRESS, APPLET, AREA, B, BIG, BLOCKQUOTE, BODY,
BUTTON, button, CAPTION, CENTER, checkbox, CITE, CODE, DD, DEL, DFN, DIR,
DIV, DL, document, DT, EM, FIELDSET, fileUpload, FONT, FORM, H1, H2, H3, H4, H5,
H6, HR, I, IMG, INS, KBD, LABEL, LEGEND, LI, LISTING, MAP, MARQUEE, MENU, OL,
P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SELECT, SMALL, SPAN,
STRIKE, STRONG, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT,
TH, THEAD, TR, TT, U, UL, VAR, XMP

onkeyup A, ACRONYM, ADDRESS, APPLET, AREA, B, BIG, BLOCKQUOTE, BODY, BUT-
TON, button, CAPTION, CENTER, checkbox, CITE, CODE, DD, DEL, DFN, DIR, DIV,
DL, document, DT, EM, FIELDSET, fileUpload, FONT, FORM, H1, H2, H3, H4, H5, H6,
HR, I, IMG, INS, KBD, LABEL, LEGEND, LI, LISTING, MAP, MARQUEE, MENU, OL, P,
password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SELECT, SMALL, SPAN, STRIKE,
STRONG, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT, TH,
THEAD, TR, TT, U, UL, VAR, XMP

onload APPLET, AREA, FRAMESET, IMG, layer, LINK, SCRIPT, STYLE, window

onmousedown A, ACRONYM, ADDRESS, APPLET, AREA, B, BIG, BLOCKQUOTE, BODY,
BUTTON, button, CAPTION, CENTER, checkbox, CITE, CODE, DD, DEL, DFN, DIR,
DIV, DL, document, DT, EM, FIELDSET, fileUpload, FONT, FORM, H1, H2, H3, H4, H5,
H6, HR, I, IMG, INS, KBD, LABEL, LEGEND, LI, LISTING, MAP, MARQUEE, MENU, OL,
P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SELECT, SMALL, SPAN,
STRIKE, STRONG, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT,
TH, THEAD, TR, TT, U, UL, VAR, XMP

onmousemove A, ACRONYM, ADDRESS, APPLET, AREA, B, BIG, BLOCKQUOTE, BODY,
BUTTON, button, CAPTION, CENTER, checkbox, CITE, CODE, DD, DEL, DFN, DIR,
DIV, DL, document, DT, EM, FIELDSET, fileUpload, FONT, FORM, H1, H2, H3, H4, H5,
H6, HR, I, IMG, INS, KBD, LABEL, LEGEND, LI, LISTING, MAP, MARQUEE, MENU, OL,
P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SELECT, SMALL, SPAN,
STRIKE, STRONG, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT,
TH, THEAD, TR, TT, U, UL, VAR, XMP

onmouseout A, ACRONYM, ADDRESS, APPLET, AREA, B, BIG, BLOCKQUOTE, BODY,
BUTTON, button, CAPTION, CENTER, checkbox, CITE, CODE, DD, DEL, DFN, DIR,
DIV, DL, document, DT, EM, FIELDSET, fileUpload, FONT, FORM, H1, H2, H3, H4, H5,
H6, HR, I, IMG, INS, KBD, LABEL, layer, LEGEND, LI, LISTING, MAP, MARQUEE,
MENU, OL, P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SELECT, SMALL,
SPAN, STRIKE, STRONG, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA,
TFOOT, TH, THEAD, TR, TT, U, UL, VAR, XMP

onmouseover A, ACRONYM, ADDRESS, APPLET, AREA, B, BIG, BLOCKQUOTE, BODY,
BUTTON, button, CAPTION, CENTER, checkbox, CITE, CODE, DD, DEL, DFN, DIR,
DIV, DL, document, DT, EM, FIELDSET, fileUpload, FONT, FORM, H1, H2, H3, H4, H5,
H6, HR, I, IMG, INS, KBD, LABEL, layer, LEGEND, LI, LISTING, MAP, MARQUEE,
MENU, OL, P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SELECT, SMALL,
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1010 Chapter 15: Document Object Event Handlers Index
SPAN, STRIKE, STRONG, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA,
TFOOT, TH, THEAD, TR, TT, U, UL, VAR, XMP

onmouseup A, ACRONYM, ADDRESS, APPLET, AREA, B, BIG, BLOCKQUOTE, BODY,
BUTTON, button, CAPTION, CENTER, checkbox, CITE, CODE, DD, DEL, DFN, DIR,
DIV, DL, document, DT, EM, FIELDSET, fileUpload, FONT, FORM, H1, H2, H3, H4, H5,
H6, HR, I, IMG, INS, KBD, LABEL, layer, LEGEND, LI, LISTING, MAP, MARQUEE,
MENU, P, password, PLAINTEXT, PRE, Q, radio, reset, S, SAMP, SELECT, SMALL, SPAN,
STRIKE, STRONG, SUB, submit, SUP, TABLE, TBODY, TD, text, TEXTAREA, TFOOT,
TH, THEAD, TR, TT, U, VAR, XMP

onmove window

onreadystatechange APPLET, AREA, document, LINK, OBJECT, SCRIPT, STYLE

onreset FORM

onresize APPLET, AREA, BUTTON, DIV, FIELDSET, FRAMESET, IMG, MARQUEE, SELECT,
TABLE, TD, TH, window

onrowenter APPLET, AREA, BODY, BUTTON, DIV, document, IMG, MARQUEE, OBJECT,
SELECT, TABLE, TD, TEXTAREA, TH

onrowexit APPLET, AREA, BODY, BUTTON, DIV, document, IMG, MARQUEE, OBJECT,
SELECT, TABLE, TD, TEXTAREA, TH

onscroll BODY, CAPTION, DIV, FIELDSET, IMG, LEGEND, MARQUEE, TABLE, TEXT-
AREA, window

onselect button, CAPTION, checkbox, FIELDSET, fileUpload, password, radio, reset, sub-
mit, text, TEXTAREA

onselectstart A, ACRONYM, ADDRESS, B, BIG, BLOCKQUOTE, BODY, BUTTON, CAP-
TION, CENTER, CITE, CODE, DD, DEL, DFN, DIR, DIV, DL, document, DT, EM, FIELD-
SET, FONT, FORM, H1, H2, H3, H4, H5, H6, HR, I, IMG, INS, KBD, LABEL, LEGEND,
LI, LISTING, MARQUEE, MENU, OBJECT, OL, P, PLAINTEXT, PRE, Q, S, SAMP,
SELECT, SMALL, SPAN, STRIKE, STRONG, SUB, SUP, TABLE, TBODY, TD, TEXTAREA,
TFOOT, TH, THEAD, TR, TT, U, UL, VAR, XMP

onstart MARQUEE

onsubmit FORM

onunload BODY, FRAMESET, window
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

IV
IV.Appendixes

This part provides quick access to useful HTML authoring and scripting informa-
tion. The glossary offers quick explanations of some of the new and potentially
confusing terminology of DHTML.
• Appendix A, Color Names and RGB Values

• Appendix B, HTML Character Entities

• Appendix C, Keyboard Event Character Values

• Appendix D, Internet Explorer Commands

• Glossary
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Appendixes
Appendix AAppendixe
s

Netscape was the first to devel
attribute and scripted object pr
values. Internet Explorer 4 also
both tag attributes and scripts
attribute or property to one of t
scripts as the hexadecimal triple
ors in this collection require 16-
Dynamic H
Copyright
A

A.Color Names and

RGB Values
op a library of color names that could be used as
operty color values in place of hexadecimal triplet
supports the use of these values. Color names in
are case insensitive. Typically, if you set a color
he named colors, the object property is reflected in
t value for that color. Also be aware that some col-
 or 24-bit color to achieve the proper hue.

Color Name Red Green Blue

aliceblue F0 F8 FF

antiquewhite FA EB D7

aqua 00 FF FF

aquamarine 7F FF D4

azure F0 FF FF

beige F5 F5 DC

bisque FF E4 C4

black 00 00 00

blanchedalmond FF EB CD

blue 00 00 FF

blueviolet 8A 2B E2

brown A5 2A 2A

burlywood DE B8 87

cadetblue 5F 9E A0

chartreuse 7F FF 00

chocolate D2 69 1E

coral FF 7F 50
1013
TML: The Definitive Reference, eMatter Edition
 © 1999 Danny Goodman. All rights reserved.

1014 Appendix A: Color Names and RGB Values
cornflowerblue 64 95 ED

cornsilk FF F8 DC

crimson DC 14 3C

cyan 00 FF FF

darkblue 00 00 8B

darkcyan 00 8B 8B

darkgoldenrod B8 86 0B

darkgray A9 A9 A9

darkgreen 00 64 00

darkkhaki BD B7 6B

darkmagenta 8B 00 8B

darkolivegreen 55 6B 2F

darkorange FF 8C 00

darkorchid 99 32 CC

darkred 8B 00 00

darksalmon E9 96 7A

darkseagreen 8F BC 8F

darkslateblue 48 3D 8B

darkslategray 2F 4F 4F

darkturquoise 00 CE D1

darkviolet 94 00 D3

deeppink FF 14 93

deepskyblue 00 BF FF

dimgray 69 69 69

dodgerblue 1E 90 FF

firebrick B2 22 22

floralwhite FF FA F0

forestgreen 22 8B 22

fuchsia FF 00 FF

gainsboro DC DC DC

ghostwhite F8 F8 FF

gold FF D7 00

goldenrod DA A5 20

gray 80 80 80

green 00 80 00

greenyellow AD FF 2F

honeydew F0 FF F0

Color Name Red Green Blue
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Appendixes

Appendix A: Color Names and RGB Values 1015
hotpink FF 69 B4

indianred CD 5C 5C

indigo 4B 00 82

ivory FF FF F0

khaki F0 E6 8C

lavender E6 E6 FA

lavenderblush FF F0 F5

lawngreen 7C FC 00

lemonchiffon FF FA CD

lightblue AD D8 E6

lightcoral F0 80 80

lightcyan E0 FF FF

lightgoldenrodyellow FA FA D2

lightgreen 90 EE 90

lightgrey D3 D3 D3

lightpink FF B6 C1

lightsalmon FF A0 7A

lightseagreen 20 B2 AA

lightskyblue 87 CE FA

lightslategray 77 88 99

lightsteelblue B0 C4 DE

lightyellow FF FF E0

lime 00 FF 00

limegreen 32 CD 32

linen FA F0 E6

magenta FF 00 FF

maroon 80 00 00

mediumaquamarine 66 CD AA

mediumblue 00 00 CD

mediumorchid BA 55 D3

mediumpurple 93 70 DB

mediumseagreen 3C B3 71

mediumslateblue 7B 68 EE

mediumspringgreen 00 FA 9A

mediumturquoise 48 D1 CC

mediumvioletred C7 15 85

midnightblue 19 19 70

Color Name Red Green Blue
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1016 Appendix A: Color Names and RGB Values
mintcream F5 FF FA

mistyrose FF E4 E1

moccasin FF E4 B5

navajowhite FF DE AD

navy 00 00 80

oldlace FD F5 E6

olive 80 80 00

olivedrab 6B 8E 23

orange FF A5 00

orangered FF 45 00

orchid DA 70 D6

palegoldenrod EE E8 AA

palegreen 98 FB 98

paleturquoise AF EE EE

palevioletred DB 70 93

papayawhip FF EF D5

peachpuff FF DA B9

peru CD 85 3F

pink FF C0 CB

plum DD A0 DD

powderblue B0 E0 E6

purple 80 00 80

red FF 00 00

rosybrown BC 8F 8F

royalblue 41 69 E1

saddlebrown 8B 45 13

salmon FA 80 72

sandybrown F4 A4 60

seagreen 2E 8B 57

seashell FF F5 EE

sienna A0 52 2D

silver C0 C0 C0

skyblue 87 CE EB

slateblue 6A 5A CD

slategray 70 80 90

snow FF FA FA

springgreen 00 FF 7F

Color Name Red Green Blue
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Appendixes

Appendix A: Color Names and RGB Values 1017
steelblue 46 82 B4

tan D2 B4 8C

teal 00 80 80

thistle D8 BF D8

tomato FF 63 47

turquoise 40 E0 D0

violet EE 82 EE

wheat F5 DE B3

white FF FF FF

whitesmoke F5 F5 F5

yellow FF FF 00

yellowgreen 9A CD 32

Color Name Red Green Blue
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1018
Dynamic HTML: The Definitive Reference
Copyright © 1999 Danny Goodman. Al
Appendix BAppendix
es

B.

ction of common ASCII alpha-
ial coding that lets you insert
entity characters start with an

). Between those symbols goes
hese characters has a numeric
of that value in the entity. For
ymbol is 169. An HTML state-
B

HTML Character
Entities
To display symbols and characters beyond the colle
numeric values (0-127), browsers recognize a spec
such characters into HTML document content. These
ampersand symbol (&) and end with a semicolon (;
a representation for the desired character. Each of t
value associated with it. You can insert the number
example, the numeric entity value for a copyright s
ment using that symbol looks as follows:

<P STYLE="align: center">©1998 MegaCorp, Inc. All Rights Reserved.</P>

Because the numbering system is not easy to remember, entities also have case-
sensitive word or abbreviation equivalents for their values. For the copyright sym-
bol, for example, the entity is ©. This makes the code more readable, as in
the following:

<P STYLE="align: center">©1998 MegaCorp, Inc. All Rights Reserved.</P>

In this appendix, every entity defined in the HTML 4.0 specification is listed in
alphabetical order. For each entity, the version of Navigator and Internet Explorer
that first supported the entity is shown in the table. Browser support is indicated
for the Win32 version of the browser as run under Windows 95. Some characters
may not be available in all fonts or on all operating system platforms. A large
number of entities in the table for math and technical symbols in Greek are not
implemented in the Version 4 browsers at all, but support should improve with
each new generation of browser.

Entity Description NN IE

Á Capital letter A with acute 2 3

á Small letter a with acute 2 3
, eMatter Edition
l rights reserved.

Appendixes

Appendix B: HTML Character Entities 1019
Â Capital letter A with circumflex 2 3

â Small letter a with circumflex 2 3

´ Acute accent 3 3

Æ Capital letter AE 2 3

æ Small letter ae 2 3

À Capital letter A with grave 2 3

à Small letter a with grave 2 3

ℵ Alef symbol - -

Α Capital letter alpha - -

α Small letter alpha - -

& Ampersand 2 3

∧ Logical and - -

∠ Angle - -

Å Capital letter A with ring above 2 3

å Small letter a with ring above 2 3

≈ Almost equal to - -

Ã Capital letter A with tilde 2 3

ã Small letter a with tilde 2 3

Ä Capital letter A with diaeresis 2 3

ä Small letter a with diaeresis 2 3

„ Double low-9 quotation mark - 4

Β Capital letter beta - -

β Small letter beta - -

¦ Broken vertical bar 3 3

• Bullet - 4

∩ Intersection - -

Ç Capital letter C with cedilla 2 3

ç Small letter c with cedilla 2 3

¸ Cedilla 3 3

¢ Cent sign 3 3

Χ Capital letter chi - -

χ Small letter chi - -

ˆ Modifier letter circumflex accent - 4

♣ Black club suit - -

≅ Approximately equal to - -

© Copyright sign 2 3

↵ Downwards arrow with corner leftwards (carriage return) - -

Entity Description NN IE
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1020 Appendix B: HTML Character Entities
∪ Union - -

¤ Currency sign 3 3

† Dagger - 4

‡ Double dagger - 4

↓ Downwards arrow - -

⇓ Downwards double arrow - -

° Degree sign 3 3

Δ Capital letter delta - -

δ Small letter delta - -

♦ Black diamond suit - -

÷ Division sign 3 3

É Capital letter E with acute 2 3

é Small letter e with acute 2 3

Ê Capital letter E with circumflex 2 3

ê Small letter e with circumflex 2 3

È Capital letter E with grave 2 3

è Small letter e with grave 2 3

∅ Empty set/null set/diameter - -

  Em space - -

  En space - -

Ε Capital letter epsilon - -

ε Small letter epsilon - -

≡ Identical to - -

Η Capital letter eta - -

η Small letter eta - -

Ð Capital letter ETH 2 3

ð Small letter eth 2 3

Ë Capital letter E with diaeresis 2 3

ë Small letter e with diaeresis 2 3

€ Euro sign - -

∃ There exists - -

ƒ Small f with hook - 4

∀ For all - -

½ Fraction one-half 3 3

¼ Fraction one-quarter 3 3

¾ Fraction three-quarters 3 3

⁄ Fraction slash - -

Entity Description NN IE
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Appendixes

Appendix B: HTML Character Entities 1021
Γ Capital letter gamma - -

γ Small letter gamma - -

≥ Greater-than or equal to - -

> Greater-than sign 2 3

↔ Left right arrow - -

⇔ Left right double arrow - -

♥ Black heart suit - -

… Horizontal ellipsis - 4

Í Capital letter I with acute 2 3

í Small letter i with acute 2 3

Î Capital letter I with circumflex 2 3

î Small letter i with circumflex 2 3

¡ Inverted exclamation mark 3 3

Ì Capital letter I with grave 2 3

ì Small letter i with grave 2 3

ℑ Blackletter capital I - -

∞ Infinity - -

∫ Integral - -

Ι Capital letter iota - -

ι Small letter iota - -

¿ Inverted question mark 3 3

∈ Element of - -

Ï Capital letter I with diaeresis 2 3

ï Small letter i with diaeresis 2 3

Κ Capital letter kappa - -

κ Small letter kappa - -

Λ Capital letter lambda - -

λ Small letter lambda - -

⟨ Left-pointing angle bracket (bra) - -

« Left-pointing double angle
quotation mark (guillemet)

3 3

← Leftwards arrow - -

⇐ Leftwards double arrow - -

⌈ Left ceiling - -

“ Left double quotation mark - 4

≤ Less-than or equal to - -

⌊ Left floor - -

∗ Asterisk operator - -

Entity Description NN IE
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1022 Appendix B: HTML Character Entities
◊ Lozenge - -

‎ Left-to-right mark - -

‹ Single left-pointing angle
quotation mark

- 4

‘ Left single quotation mark - 4

< Less-than sign 2 3

¯ Macron (overline) 3 3

— Em dash - 4

µ Micro sign 3 3

· Georgian comma 3 3

− Minus sign - -

Μ Capital letter mu - -

μ Small letter mu - -

∇ Nabla - -

 Nonbreaking space 2 3

– En dash - 4

≠ Not equal to - -

∋ Contains as member - -

¬ Not sign (discretionary hyphen) 3 3

∉ Not an element of - -

⊄ Not a subset of - -

Ñ Capital letter N with tilde 2 3

ñ Small letter n with tilde 2 3

Ν Capital letter nu - -

ν Small letter nu - -

Ó Capital letter O with acute 2 3

ó Small letter o with acute 2 3

Ô Capital letter O with circumflex 2 3

ô Small letter o with circumflex 2 3

Œ Capital ligature OE - 4

œ Small ligature oe - 4

Ò Capital letter O with grave 2 3

ò Small letter o with grave 2 3

‾ Overline - -

Ω Capital letter omega - -

ω Small letter omega - -

Ο Capital letter omicron - -

ο Small letter omicron - -

Entity Description NN IE
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Appendixes

Appendix B: HTML Character Entities 1023
⊕ Circled plus - -

∨ Logical or - -

ª Feminine ordinal indicator 3 3

º Masculine ordinal indicator 3 3

Ø Capital letter O with stroke 2 3

ø Small letter o with stroke 2 3

Õ Capital letter O with tilde 2 3

õ Small letter o with tilde 2 3

⊗ Circled times - -

Ö Capital letter O with diaeresis 2 3

ö Small letter o with diaeresis 2 3

¶ Paragraph sign 3 3

∂ Partial differential - -

‰ Per mille sign - 4

⊥ Up tack/orthogonal
to/perpendicular

- -

Φ Capital letter phi - -

φ Small letter phi - -

Π Capital letter pi - -

π Small letter pi - -

ϖ π symbol - -

± Plus-or-minus sign 3 3

£ Pound sign 3 3

′ Prime/minutes/feet - -

″ Double prime/seconds/inches - -

∏ N-ary product (product sign) - -

∝ Proportional to - -

Ψ Capital letter psi - -

ψ Small letter psi - -

" Quotation mark 2 3

√ Square root - -

⟩ Right-pointing angle bracket (ket) - -

» Right-pointing double angle quotation mark (guillemet) 3 3

→ Rightwards arrow - -

⇒ Rightwards double arrow - -

⌉ Right ceiling - -

” Right double quotation mark - 4

ℜ Blackletter capital R - -

Entity Description NN IE
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1024 Appendix B: HTML Character Entities
® Registered trademark sign 2 3

⌋ Right floor - -

Ρ Capital letter rho - -

ρ Small letter rho - -

‏ Right-to-left mark - -

› Single right-pointing angle quotation mark - 4

’ Right single quotation mark - 4

‚ Single low-9 quotation mark - 4

Š Capital letter S with caron - 4

š Small letter s with caron - 4

⋅ Dot operator - -

§ Section sign 3 3

­ Soft hyphen (discretionary hyphen) 3 3

Σ Capital letter sigma - -

σ Small letter sigma - -

ς Small letter final sigma - -

∼ Tilde operator - -

♠ Black spade suit - -

⊂ Subset of - -

⊆ Subset of or equal to - -

∑ N-ary sumation - -

¹ Superscript digit one 3 3

² Superscript digit two (squared) 3 3

³ Superscript digit three (cubed) 3 3

⊃ Superset of - -

⊇ Superset of or equal to - -

ß Small letter sharp s (ess-zed) 2 3

Τ Capital letter tau - -

τ Small letter tau - -

∴ Therefore - -

Θ Capital letter theta - -

θ Small letter theta - -

ϑ Small letter theta symbol - -

  Thin space - -

Þ Capital letter thorn 2 3

þ Small letter thorn 2 3

˜ Small tilde - 4

Entity Description NN IE
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Appendixes

Appendix B: HTML Character Entities 1025
× Multiplication sign 3 3

™ Trademark sign - 3

Ú Capital letter U with acute 2 3

ú Small letter u with acute 2 3

↑ Upwards arrow - -

⇑ Upwards double arrow - -

Û Capital letter U with circumflex 2 3

û Small letter u with circumflex 2 3

Ù Capital letter U with grave 2 3

ù Small letter u with grave 2 3

¨ Diaeresis 3 3

ϒ Upsilon with hook symbol - -

Υ Capital letter upsilon - -

υ Small letter upsilon - -

Ü Capital letter U with diaeresis 2 3

ü Small letter u with diaeresis 2 3

℘ Script capital P - -

Ξ Capital letter xi - -

ξ Small letter xi - -

Ý Capital letter Y with acute 2 3

ý Small letter y with acute 2 3

¥ Yen/yuan sign 3 3

ÿ Small letter y with diaeresis 2 3

Ÿ Capital letter Y with diaeresis - 4

Ζ Capital letter zeta - -

ζ Small letter zeta - -

‍ Zero width joiner - -

‌ Zero width nonjoiner - -

Entity Description NN IE
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1026
Dynamic HTML: The Definitive Reference
Copyright © 1999 Danny Goodman. Al
Appendix CAppendix
es

C.

capturing keyboard action.
se the character information
Events), the values associated
s of all browsers pass through

ete keys. For example, Naviga-
hen typing into a text INPUT

orm work to focus only on the
d punctuation). Function keys
C

Keyboard Event
Character Values
Version 4 browsers include event handlers for
Although Navigator and Internet Explorer expo
through different means (see Chapter 6, Scripting
with each character key are the same. Not all version
values for action keys such as the Backspace or Del
tor 4 passes these values with the event object w
element, but IE 4 does not. It is safest for cross-platf
keys that generate characters (letters, numbers, an
and navigation keys do not generate key values (except for navigation keys on
Navigator 4 for the Macintosh). All of these values come from the ASCII and Uni-
code values for the first 128 characters. The characters and their values are listed
here.
Key Value

Backspace 8

Tab 9

Enter (Return
on Mac)

13

Space 32

! 33

" 34

35

$ 36

% 37

& 38

’ 39

(40

) 41

* 42

+ 43

, 44

- 45

. 46

/ 47

0 48

1 49

2 50

3 51

Key Value
, eMatter Edition
l rights reserved.

Appendixes

Appendix C: Keyboard Event Character Values 1027
4 52

5 53

6 54

7 55

8 56

9 57

: 58

; 59

< 60

= 61

> 62

? 63

@ 64

A 65

B 66

C 67

D 68

E 69

F 70

G 71

H 72

I 73

J 74

K 75

L 76

M 77

N 78

O 79

P 80

Q 81

R 82

S 83

T 84

U 85

V 86

W 87

X 88

Y 89

Key Value

Z 90

[91

\ 92

] 93

^ 94

_ 95

` 96

a 97

b 98

c 99

d 100

e 101

f 102

g 103

h 104

i 105

j 106

k 107

l 108

m 109

n 110

o 111

p 112

q 113

r 114

s 115

t 116

u 117

v 118

w 119

x 120

y 121

z 122

{ 123

| 124

} 125

~ 126

Delete 127

Key Value
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1028
Dynamic HTML: The Definitive Reference
Copyright © 1999 Danny Goodman. Al
Appendix DAppendix
es

D.

t work directly with the docu-
many cases, these commands
perties or invoking methods of
ide of the primary document
this appendix.

ment and TextRange object
t Object Reference. These com-
D

Internet Explorer
Commands
Internet Explorer 4 includes a set of commands tha
ment and (Win32 only) TextRang<e objects. In
mimic the functionality available through setting pro
the objects. Even so, these commands exist outs
object model and are therefore treated separately in

Access to these commands is through a set of docu
methods that are described in Chapter 9, Documen
mands and syntax are:

execCommand("commandName"[, UIFlag[, value]])
queryCommandEnabled("commandName")
queryCommandIndeterm("commandName")
queryCommandState("commandName")
queryCommandSupported("commandName")
queryCommandText("commandName")

This appendix focuses on the commands and values that may be applied to the
execCommand() method (the commands may also be applied to the other meth-
ods).

Some commands work on the current selection in a document, which means that
the selection must be made manually by the user or via a script and the Text-
Range object. For example, the following function locates every instance of a
string passed as a parameter and turns its text color to red:

function redden(txt) {
var rng = document.body.createTextRange()
for (var i = 0; rng.findText(txt) != false; i++) {

rng.select()
, eMatter Edition
l rights reserved.

Appendixes

Appendix D: Internet Explorer Commands 1029
document.execCommand("ForeColor","false","red")
rng.collapse(false)
rng.select()

}
}

The process is iterative. After creating a text range for the entire document body,
the function repeatedly looks for a match of the string. Whenever there is a match,
the matched word is selected, and the execCommand() method invokes the
ForeColor command, passing the value red as the color. To continue searching
through the range, the range is collapsed after the previously found item, and the
selection is removed (by selecting a range of zero length).

In general, I recommend using a regular object model method or property setting
when one exists for the action you wish to take. Because these commands tend to
work only with IE 4 on Win32 operating systems, you may be forced to avoid
them if your audience has a wider browser base.

Command Description Parameter

BackColor Sets background color of
current selection

Color value (name or hex
triplet)

Bold Wraps a tag around
the range

None

Copy Copies the range to the
Clipboard

None

CreateBookmark Wraps an tag
around the range or modi-
fies an existing <A> tag

A string of the anchor
name; tag is removed if
value is omitted

CreateLink Wraps an <A HREF...>
tag around the current
selection

A string of a complete or
relative URL

Cut Copies the range to the
Clipboard, then deletes
range

None

Delete Deletes the range None

FontName Sets the font face for
current selection

A string of the FACE
attribute

FontSize Sets the font size of current
selection

A string of the font size

ForeColor Sets the foreground (text)
color of current selection

Color value (name or hex
triplet)

FormatBlock Wraps a block tag around
the current object

Unknown

Indent Indents current selection None

InsertButton Inserts a <BUTTON> tag at
current insertion point

A string for the element ID
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1030 Appendix D: Internet Explorer Commands
InsertFieldset Inserts a <FIELDSET> tag
at current insertion point

A string for the element ID

InsertHorizontalRule Inserts <HR> at current
insertion point

A string of the rule size (not
working)

InsertIFrame Inserts an <IFRAME> tag at
current insertion point

A string of a URL for the
src property

InsertInputButton Inserts an <INPUT
TYPE="button"> tag at
current insertion point

A string for the element ID

InsertInputCheckbox Inserts an <INPUT
TYPE="checkbox"> tag at
the current insertion point

A string for the element ID

InsertInputFileUpload Inserts an <INPUT
TYPE="FileUpload"> tag
at the current insertion
point

A string for the element ID

InsertInputHidden Inserts an <INPUT
TYPE="hidden"> tag at
current insertion point

A string for the element ID

InsertInputImage Inserts an <INPUT
TYPE="image"> tag at
current insertion point

A string for the element ID

InsertInputPassword Inserts an <INPUT
TYPE="password"> tag at
current insertion point

A string for the element ID

InsertInputRadio Inserts an <INPUT
TYPE="radio"> tag at
current insertion point

A string for the element ID

InsertInputReset Inserts an <INPUT
TYPE="reset"> tag at
current insertion point

A string for the element ID

InsertInputSubmit Inserts an <INPUT
TYPE="submit"> tag at
current insertion point

A string for the element ID

InsertInputText Inserts an <INPUT
TYPE="text"> tag at
current insertion point

A string for the element ID

InsertMarquee Inserts a <MARQUEE> tag at
current insertion point

A string for the element ID

InsertOrderedList Inserts an tag at cur-
rent insertion point

A string for the element ID

InsertParagraph Inserts a <P> tag at current
insertion point

A string for the element ID

InsertSelectDropdown Inserts a <SELECT> tag
whose type is select-one
at current insertion point

A string for the element ID

Command Description Parameter
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Appendixes

Appendix D: Internet Explorer Commands 1031
InsertSelectListbox Inserts a <SELECT> tag
whose type is select-
multiple at current
insertion point

A string for the element ID

InsertTextArea Inserts a <TEXTAREA> tag
at current insertion point

A string for the element ID

InsertUnorderedList Inserts a tag at
current insertion point

A string for the element ID

Italic Wraps an <I> tag around
the range

None

JustifyCenter Centers the current
selection

None

JustifyFull Full justifies the current
selection

None

JustifyLeft Left justifies the current
selection

None

JustifyRight Right justifies the current
selection

None

Outdent Outdents the current
selection

None

OverWrite Sets the input-typing mode
to overwrite or insert

Boolean (true if mode is
overwrite)

Paste Pastes contents of the Clip-
board at current insertion
point or over the current
selection

None

PlayImage Starts playing dynamic
images (if assigned to the
dynsrc property) associ-
ated with an IMG element

None

Refresh Reloads the current
document

None

RemoveFormat Removes formatting from
current selection

None

SelectAll Selects entire text of the
document

None

StopImage Stops playing a dynamic
image

None

UnBookmark Removes anchor tags from
the selection or text range

Underline Wraps a <U> tag around
the range

None

Command Description Parameter
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1032 Appendix D: Internet Explorer Commands
Unlink Removes a link from the
selection or text range

None

Unselect Clears a selection from the
document

None

Command Description Parameter
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Appendixes

absolute positioning
Setting the precise location
next outermost container.
transparent layer; it is remo
the HTML source code.

accessibility
The design concern for allo
Dynamic H
Copyright
Glossary
of an element within the coordinate system of the
An absolute-positioned element exists in its own
ved from the flow of content that surrounds it in

wing users with physical disabilities to make as full
a use of web content as possible. For example, aural style sheets provide
increased web accessibility to users who have vision impairments.

API
Application Programming Interface, which is usually a collection of methods
and properties that operate as a convenient layer between programmers and
more complex internal computer activity. In Dynamic HTML, it is common to
use or create a custom API to act as a buffer between the browser-specific
implementations of element positioning and the programmer’s desire to use a
single coding scheme regardless of browser.

at-rule
A type of CSS command used inside a style sheet definition. Typical at-rule
commands import external style sheets or download font specifications. An at-
rule statement begins with the @ symbol.

attribute
A property of an HTML element or CSS style sheet. Attributes are usually
assigned values by way of operators (the = symbol for HTML; the : symbol for
CSS). In HTML, sometimes the presence of the attribute name is enough to
turn on a feature associated with that attribute. HTML attribute names are case
insensitive; CSS attribute names are case sensitive.
1033
TML: The Definitive Reference, eMatter Edition
 © 1999 Danny Goodman. All rights reserved.

1034 Glossary
block-level element
An HTML element that automatically forces a new line before and after the
element, assuring that no other element appears in the same horizontal band
of the page (unless another element is absolute-positioned on top of it). An
example of a block-level element is the H1 element.

border
In CSS, a region that exists outside of the content and padding area of a block-
level element. The border is always present, even if its thickness is zero, and it
can’t be seen. A border is sandwiched between the margin and padding.

cascading rule
One of the sequence of decisions that a CSS-equipped browser uses to deter-
mine which one of possibly several overlapping style sheet rules applies to a
given element. Each cascading rule assigns a value to a specificity rating that
helps determine which style sheet rule applies to the element.

class
In CSS, a collection of one or more elements (of the same or different tag
type) that are grouped together for the purpose of assigning the same style
sheet rule throughout the document. Assigning a class identifier to elements
via the CLASS attribute (and using that class selector in a style sheet rule) lets
authors create element groupings that cannot be created only out of tag names
or IDs.

collection
Microsoft’s terminology for an array of scriptable objects. To reference an item
of a collection in a script statement in Internet Explorer 4, you may use either
array notation (collectionName[index]) or collection notation (collec-
tionName(index)).

container
Any element that holds other elements of any type. Tags for contained ele-
ments appear between the container’s start and end tags.

contextual selector
In CSS, a way of specifying under what containment circumstances a particu-
lar type of element should have a style sheet rule applied to it. The contain-
ment hierarchy is denoted in the selector by a space-delimited list. Thus, the
rule P EM {color: red} applies the red text color to all EM elements that are
contained by P elements; an EM element inside an LI element is unaffected
by this style sheet rule.

CSS
Acronym for Cascading Style Sheets, a recommended standard created under
the auspices of the World Wide Web Consortium (W3C). The acronym is com-
monly followed by a number designating the version number of the standard.
Level 1 of CSS is known as CSS1.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Glossary 1035
CSS-P
Acronym for Cascading Style Sheets-Positioning. Initially undertaken as an
effort separate from the CSS work, the two standards come together in CSS2.

data binding
A facility in Microsoft Internet Explorer 4 for Win32 platforms that allows web
page content to be dynamically linked to a data source, such as a server data-
base. For example, a MARQUEE element can grab the latest headlines from a
database field as the page loads into the client and display those headlines as
a scrolling tickertape.

declaration
In CSS, the combination of an attribute name, colon operator, and value
assigned to the attribute. Multiple declarations in a single style sheet rule are
separated by semicolons.

deprecated
In web standards, a feature (commonly an HTML element or attribute) that is
still supported in a standards release version, but whose use is discouraged in
documents that support the version. A term that is deprecated in one version
release is usually removed in the following release. Browser support for dep-
recated items usually continues for many generations for backward compatibil-
ity with existing documents that use the element or attribute.

DHTML
Acronym for Dynamic Hypertext Markup Language. DHTML is an amalgam of
several standards, including HTML, CSS, and DOM.

DOM
Acronym for the Document Object Model standards effort headed by the W3C.
The term is commonly applied to a specific implementation of a document
object model in a particular browser, but this is not entirely accurate.

dynamic content
Any HTML content that changes after the document has loaded. Content that
does not require a reflow of the page can be accommodated in Navigator 3
and onward and Internet Explorer 4 and onward. The replaced IMG element
is an example. IE 4 also allows body content to be changed after the docu-
ment loads by automatically reflowing the page after the content changes.

ECMA
A Switzerland-based standards body formerly known as the European Com-
puter Manufacturers Association.

ECMAScript
The common name for the JavaScript-based scripting language standard
ECMA-262. The standard defines a core scripting language, without any spe-
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1036 Glossary
cific references to web-based content. The functionality of ECMA-262 is
roughly equivalent to JavaScript 1.1 as deployed in Navigator 3.

element
Refers to an HTML element, which is an item created by an HTML tag in a
document. For example, the <BODY> tag creates a BODY element in the docu-
ment.

event bubbling
The Internet Explorer 4 event model that propagates events from the target
element upward through the HTML element hierarchy. After the event is pro-
cessed (at the scripter’s option) by the target element, event handlers further
up the hierarchy may perform further processing on the event. Event propaga-
tion can be halted at any point via the cancelBubble property.

event handler
A script-oriented keyword that intercepts an event action (such as a mouse
click) and initiates the execution of one or more script statements. An event
handler can be specified as an attribute of an HTML element or assigned as a
property of the scriptable object version of the element. Each element has its
own set of events that it recognizes and corresponding event handlers (e.g.,
an onKeyPress event handler for the keyPress event) to bind to script state-
ments.

event propagation
The process of event information coursing its way through the element or
object hierarchy of a document. Navigator 4 events trickle down from the win-
dow level toward the target element; Internet Explorer 4 events bubble
upward from the target element toward the BODY element. If event process-
ing is to be handled by objects other than the target element (in which case
the element’s event handler is treated the same way in both browsers), differ-
ent event scripting is required to accommodate both event propagation
schemes within a single document.

filter
A rendering feature of Internet Explorer 4 (for the Win32 platform) that adds
typographic effects to text content. A filter is assigned to an element by way of
CSS syntax.

HTML
Acronym for Hypertext Markup Language, a simplified version of SGML tai-
lored for content that is published across a network via the Hypertext Trans-
fer Protocol (HTTP). Version 4.0 of the HTML standard (under the auspices of
the W3C) extends the notion of separating content from form by letting HTML
elements define the context of content, rather than its specific look.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Glossary 1037
ID
An identifier for an HTML element that should be unique among all elements
within a single document. The ID of an element is assigned by the ID
attribute supported by virtually every HTML 4.0 tag. An ID is used for many
purposes but primarily for associating a CSS style sheet rule with a single ele-
ment among all elements of a document. An element can belong to a class
and have a unique ID at the same time.

identifier
A name assigned to an ID, CLASS, or NAME attribute of an element. An identi-
fier is also used in script references, especially in Internet Explorer 4. The
names can begin with any uppercase or lowercase letter of the English alpha-
bet, but subsequent characters may include letters, numerals, or the under-
score character.

inline element
An HTML element that is rendered as part of the same text line as its sur-
rounding HTML content. An EM element that signifies an emphasized portion
of a paragraph is an inline element because its content does not disturb the
regular linear flow of the content. The opposite of an inline element is a
block-level element.

intrinsic events
Event handlers defined by the HTML 4.0 standard as belonging to virtually
every element that is rendered on the page. These events are primarily the
common mouse and keyboard events.

JavaScript
A programming language devised by Brendan Eich at Netscape for simplified
server and client programming. Originally developed under the name Live-
Script, the name changed (under license from Sun Microsystems) before the
first commercial release of a scriptable browser, Navigator 2. JavaScript
became the basis for ECMAScript. Microsoft’s name for its implementation of
JavaScript is JScript.

JavaScript Style Sheets
A Navigator-only syntax for defining style sheet rules.

JScript
Microsoft’s formal name for the JavaScript-based scripting language built into
Internet Explorer 3 and later. JScript is compatible with ECMAScript and Java-
Script.

layer
Navigator’s model for a positionable element. A layer can be created via the
<LAYER> tag or by associating a CSS-P position:absolute style sheet decla-
ration with an element. Navigator scripts for accessing a positionable element
(regardless of how the element is created) refer to the element as a layer
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1038 Glossary
object. Although Internet Explorer does not use the layer terminology, each
absolute-positioned element exists in its own transparent layer above the main
document body.

margin
In CSS, a region that extends outside of an element’s border. Every element
has a margin, even if its thickness is zero.

method
A scriptable object’s action that can be initiated by any script statement. A ref-
erence to a JavaScript method is easily recognizable by the set of parentheses
that follows the method name. Zero or more parameters may be included
inside the parentheses. A method may return a value depending on what it
has been programmed to do, but this is not a requirement.

modifier key
A keyboard key that is usually pressed in concert with a character key to ini-
tiate a special action. Modifier keys common to all operating system platforms
include the Shift, Control, and Alt keys. Modern Microsoft keyboards also have
the Windows key; Macintosh keyboards have the Command key. Keyboard
events can be examined for which (if any) modifier keys were being held
down at the time of the character key’s event.

object
A representation of an HTML element or other programmable item in a script-
ing language, such as JavaScript. An object may have properties and methods
that define the behavior and/or appearance of the object. Scripts typically read
or modify object properties or invoke object methods to affect some change of
value or appearance of the object. Objects in a browser’s document object
model reflect HTML elements defined by the document source code. For
example, in recent browser versions, if a script assigns a new URL to the value
of the src property of an image object, the new image replaces the old within
the rectangular space occupied by the IMG element on the page. Other types
of objects, such as dates and strings, do not appear on the screen directly but
are used in script execution.

padding
In CSS, a region that extends between the element’s content and the border.
Padding provides some “breathing space” between the content and a border
(if one is specified). Every element has padding, even if its thickness is zero.
Navigator 4 automatically adds padding to all elements.

parent
For HTML elements, the next outermost element in source code order (the P
element that surrounds an EM element, for example). For positioned elements,
the element that is the next outermost container that determines the coordi-
nate plane for the element’s positioning. For scriptable window objects, the
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Glossary 1039
window or frame that contains a frameset document that defines the frame
holding the current document.

platform
A software or hardware system that forms the basis for further product devel-
opment. For web browsers, the term may apply to a browser brand (Netscape
Navigator, Microsoft Internet Explorer, etc.) or the operating system on which
a browser brand operates (Windows 95, Windows 3.1, Macintosh, Solaris,
etc.). In this book, platform usually applies to the browser brand.

positioning
Specifying the precise location of an element on the page. An element may be
absolute-positioned or relative-positioned.

property
A single characteristic of an object, such as its ID or value, which can be
retrieved (and sometimes set) with the help of scripting. Style sheet attributes
are also sometimes referred to as properties.

pseudo-class
A style sheet selector that points to a particular state or behavior of an HTML
element, such as an A element set up as a link that has been visited recently
by the user (A:visited).

pseudo-element
A style sheet selector that points to a very specific piece of an element, such
as the first letter of a paragraph (P:first-letter).

relative positioning
Setting the precise location of an element within the coordinate system estab-
lished by the location where the element would normally appear if it were not
positioned. Documents preserve the space originally designated for a relative-
positioned element so that surrounding content does not cinch up around the
place left vacant by a positioned element.

replaced element
An inline or block-level element that can have its content replaced without
requiring any adjustment of the document. An IMG element, for example, can
have its content replaced by a script after the page has loaded.

rule
In CSS, a set of style declarations that are associated with one selector. A rule
can also be embedded within an element as the value assigned to the STYLE
attribute of the element’s tag.

selector
In CSS, the name of the element(s), ID(s), class(es), or other permissible ele-
ment groupings to which a style declaration is bound. The combination of a
selector and declaration creates a style sheet rule.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1040 Glossary
style sheet
In CSS, one or more rules that defines how a particular segment of document
content should be rendered by the browser. A style sheet may be defined in
an external document, in the STYLE element, or assigned to an element via its
STYLE attribute.

transition
In Internet Explorer 4, a visual effect for hiding and showing elements. Transi-
tions are available only in the Win32 version of IE 4.

VBScript
A scripting language alternate to JScript in Internet Explorer 4. This language is
not available in any version of Navigator.
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Index

Symbols
@ for at-rules, 44, 840–841
& (bitwise AND) operator, 958
&& (AND) operator, 957
* (multiplication) operator, 965
* for universal selectors, 53
!== (nonidentity) operator, 966
! (NOT) operator, 966
!= (inequality) operator, 963

+= (add-by-value) operator, 957
++ (increment) operator, 963
?: (conditional) operator, 960
; (semicolons) and attribute

declarations, 38
/ (division) operator, 961
//, /*...*/ (comment statements), 976
~ (bitwise NOT) operator, 959
| (bitwise OR) operator, 959
Dynamic H
Copyright
^ (exclusive OR) operator, 959
: (colon) operator, 38
, (comma) operator, 960
= (assignment) operator, 958
== (equality) operator, 961
=== (identity) operator, 963
! for important declarations, 60
> (greater-than) operator, 962
> for parent-child selectors, 53
>= (greater-than-or-equal) operator, 962
>> (right-shift) operator, 959
for ID selectors, 48
- (negation) operator, 965
- (subtraction) operator, 967
- - (decrement) operator, 960
< (less-than) operator, 964
<= (less-than-or-equal) operator, 964
<< (left-shift) operator, 959
>>> (zero-fill right-shift) operator, 960
% (modulus) operator, 964
. for free-range class selectors, 47
+ (addition) operator, 956
+ for adjacent selectors, 53

|| (OR) operator, 966

A
A elements, 174–183

javascript: pseudo-URL in, 108
pseudo-classes of, 52, 839

A objects, 475–483
ABBR attribute

TD elements, 422
TH elements, 440

ABBR elements, 183–184
abbreviations, 183–184
ABOVE attribute

ILAYER elements, 298
LAYER elements, 332

above property (layer objects), 627
absbottom (value), 169
absmiddle (value), 169
absolute positioning, 67–71
ACCEPT attribute

FORM elements, 265
INPUT elements, 314
1041
TML: The Definitive Reference, eMatter Edition
 © 1999 Danny Goodman. All rights reserved.

1042 Index
ACCEPT-CHARSET attribute (FORM
elements), 266

accessibility, 158
ACCESSKEY attribute

A elements, 176
AREA elements, 194
BUTTON elements, 216
INPUT elements, 314
LABEL elements, 329
LEGEND elements, 338
OBJECT elements, 364
SELECT elements, 393
TEXTAREA elements, 430

accessKey property
A objects, 476
APPLET objects, 488
BODY objects, 507
BUTTON objects, 516
button objects, 522
checkbox objects, 531
EMBED objects, 566
FIELDSET objects, 579
fileUpload objects, 583
LABEL objects, 625
LEGEND objects, 635
MARQUEE objects, 651
OBJECT objects, 669
password objects, 683
radio objects, 694
reset objects, 700
SELECT objects, 713
submit objects, 751
text objects, 772
TEXTAREA objects, 779

ACRONYM elements, 184–185
ACRONYM objects, 483–484
ACTION attribute (FORM elements), 266
action property (FORM objects), 590
activeElement property (document

objects), 548
add() (options objects), 679
add-by-value (+=) operator, 957
addImport() (styleSheet objects), 748
addition (+) operator, 956
addReadRequest() (userProfile

objects), 811
ADDRESS elements, 185–186
ADDRESS objects, 484–485

addRule() (styleSheet objects), 748
adjacent selectors, 53
advisory content for non-plugin

browsers, 360
alert() (window objects), 822
ALIGN attribute

APPLET elements, 187
CAPTION elements, 221
COL elements, 226
COLGROUP elements, 231
DIV elements, 241
EMBED elements, 251
FIELDSET elements, 259
FRAME elements, 119
H1, H2, ... elements, 283
HR elements, 287
IFRAME elements, 291
IMG elements, 304
INPUT elements, 315
LEGEND elements, 339
OBJECT elements, 364
P elements, 379
SELECT elements, 393
SPACER elements, 398
TABLE elements, 410
TBODY elements, 419
TD elements, 423
TEXTAREA elements, 431
TFOOT elements, 437
TH elements, 440
THEAD elements, 448
TR elements, 451

align attribute (JSS), 866
align property

APPLET objects, 489
CAPTION objects, 527
COL, COLGROUP objects, 537
DIV objects, 544
FIELDSET objects, 580
H1, H2, ... objects, 602
HR objects, 608
IFRAME objects, 611
IMG objects, 616
LEGEND objects, 636
OBJECT objects, 669
P objects, 681
TABLE objects, 755
TBODY objects, 765
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Index 1043
TD objects, 768
TFOOT objects, 796
TH objects, 798
THEAD objects, 803
TR objects, 806

alignment
CENTER elements, 222
centering objects, 93–96
constants for, 169–170

ALINK attribute (BODY elements), 209
aLink property (BODY objects), 508
alinkColor property (document

objects), 549
all keyword (IE 4), 83
all objects, 485–486
all[], 474
ALT attribute

APPLET elements, 188
AREA elements, 194
EMBED elements, 252
IMG elements, 305
INPUT elements, 315

alt property
AREA objects, 494
IMG objects, 617

altHTML property (APPLET objects), 489
altHtml property (OBJECT objects), 669
altKey property (event objects), 146, 570
& character entities, 1018–1025
anchors, 174–183
anchors objects, 486–487
anchors[] (document objects), 561
AND (&), 958
AND (&&) operator, 957
animation around screen, 96–101
APIs, customizing for compatibility, 25–27

scripting position, 89–93
appCodeName property (navigator

objects), 662
APPLET elements, 186–193

PARAM elements, 379–382
APPLET objects, 487–492
applets objects, 492–493
applets[] (document objects), 561
appMinorVersion property (navigator

objects), 662
appName property (navigator objects), 662
appVersion property (navigator

objects), 663

ARCHIVE attribute
APPLET elements, 188
OBJECT elements, 365

AREA elements, 193–198
(see also MAP elements)

AREA objects, 493–498
areas objects, 498–499
areas[] (MAP objects), 649
Array objects (JavaScript), 911–915
assign() (location objects), 646
assignment (=) operator, 958
at-rules, 44, 840–841
attribute declarations (see declarations)
attribute selectors, 52
attributes for HTML tags

changing values dynamically, 112
common, list of, 171–174
event handlers as, 135–137
HTML 4.0 changes, 161–163
list of, 981–986
value types, 168–171

attributes for positioning, 74–80
scripting, 80–85

cross-platform strategies, 86–93
attributes for style sheets (see style sheet

attributes)
authoring

DEL elements, 235–238
INS elements, 323–325

automatic event bubbling (IE 4), 145
availHeight, availWidth properties (screen

objects), 706
availLeft, availTop properties (screen

objects), 706
AXIS attribute

TD elements, 423
TH elements, 441

azimuth attribute (CSS), 842

B
B elements, 199
B objects, 499–500
back()

history objects, 607
window objects, 822

BackColor command, 1029
background-attachment attribute (CSS), 843
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1044 Index
BACKGROUND attribute
BODY elements, 209
ILAYER elements, 298
LAYER elements, 332
TABLE elements, 411
TD elements, 423
TH elements, 441

background attribute (CSS), 843
background-color attribute (CSS), 844
background-image attribute (CSS), 845
background-position attribute (CSS), 845
background property, 84

BODY objects, 508
layer objects, 627
style objects, 725
TABLE objects, 755
TD objects, 768
TH objects, 798

background-repeat attribute (CSS), 846
backgroundAttachment, backgroundColor,

backgroundImage, background-
Position properties (style
objects), 726

backgroundColor attribute (JSS), 844
backgroundColor property (style

objects), 84
backgroundImage attribute (JSS), 845
backgroundPositionX,

backgroundPositionY properties
(style objects), 727

backgroundRepeat property (style
objects), 727

BALANCE attribute (BGSOUND
elements), 204

balance property (BGSOUND objects), 504
BASE elements, 200–201
BASE objects, 500–501
BASEFONT elements, 201–203
BASEFONT objects, 501–503
baseline (value), 169
basic events, 132–135
BDO elements, 203
BDO objects, 503
BEHAVIOR attribute (MARQUEE

elements), 349
behavior property (MARQUEE objects), 651
BELOW attribute

ILAYER elements, 299
LAYER elements, 333

below property (layer objects), 627
beta browser versions, 4
BGCOLOR attribute

BODY elements, 210
ILAYER elements, 299
LAYER elements, 333
MARQUEE elements, 349
TABLE elements, 411
TBODY elements, 420
TD elements, 424
TFOOT elements, 437
TH elements, 442
THEAD elements, 449
TR elements, 452

bgColor property
BODY objects, 508
document objects, 549
layer objects, 84, 627
MARQUEE objects, 651
TABLE objects, 755
TBODY objects, 766
TD objects, 768
TFOOT objects, 796
TH objects, 799
THEAD objects, 803
TR objects, 806

BGPROPERTIES attribute (BODY
elements), 210

bgProperties property (BODY objects), 508
BGSOUND elements, 203–205
BGSOUND objects, 503–505
bidirectional overrides, 203
BIG elements, 205–206
BIG objects, 499–500
binding data, 21
binding to elements

class selectors, 45–47, 56
CSS style sheets, 39
event handlers, 135–139
JavaScript style sheets, 39, 54–59

bitwise AND (&) operator, 958
bitwise exclusive OR (^) operator, 959
bitwise left-shift (<<) operator, 959
bitwise NOT (~) operator, 959
bitwise OR(|) operator, 959
bitwise right-shift (>>) operator, 959
bitwise zero-fill right-shift (>>>)

operator, 960
BLINK elements, 206
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Index 1045
block-level elements
DD elements, 234–235
DIV elements, 240–246
P elements, 378–379
PLAINTEXT elements, 382–383
PRE elements, 383–385
SPAN elements, 399–404

block-level structures, 31–33
BLOCKQUOTE elements, 206–207
BLOCKQUOTE objects, 505–506
blur()

A objects, 483
APPLET objects, 492
AREA objects, 498
BUTTON objects, 520
button objects, 525
CAPTION objects, 528
checkbox objects, 535
EMBED objects, 569
FIELDSET objects, 581
fileUpload objects, 585
IMG objects, 621
LEGEND objects, 637
MARQUEE objects, 656
password objects, 686
radio objects, 698
reset objects, 702
SELECT objects, 717
SPAN objects, 721
submit objects, 753
TABLE objects, 762
TD objects, 771
text objects, 777
TEXTAREA objects, 784
TH objects, 801
TR objects, 808
window objects, 823

BODY elements, 207–214
BODY objects, 506–513
body property (document objects), 549
Bold command, 1029
boldface, 199, 499–500
Boolean objects (JavaScript), 915–916
BORDER attribute

EMBED elements, 252
FRAMESET elements, 277
IFRAME elements, 291
IMG elements, 111, 306

INPUT elements, 316
OBJECT elements, 365
TABLE elements, 412

border attribute (CSS), 847
border-bottom, border-left, border-right,

border-top attributes (CSS), 847
border-bottom-color, border-left-color,

border-right-color, border-top-
color attributes (CSS), 848

border-bottom-style, border-left-style,
border-right-style, border-top-style
attributes (CSS), 849

border-bottom-width, border-left-width,
border-right-width, border-top-
width attributes (CSS), 850

border-collapse attribute (CSS), 851
border-color attribute (CSS), 852
border property

FRAMESET objects, 599
IMG objects, 617
style objects, 728
TABLE objects, 756

border-style attribute (CSS), 853
border-width attribute (CSS), 854
borderBottom, borderLeft, borderRight,

borderTop properties (style
objects), 728

borderBottomColor, borderLeftColor,
borderRightColor, borderTopColor
properties (style objects), 728

borderBottomStyle, borderLeftStyle,
borderRightStyle, borderTopStyle
properties (style objects), 729

borderBottomWidth, borderLeftWidth,
borderRightWidth, borderTop-
Width attributes (JSS), 850

borderBottomWidth, borderLeftWidth,
borderRightWidth, borderTop-
Width properties (style
objects), 729

BORDERCOLOR attribute
FRAME elements, 270, 292
FRAMESET elements, 278
TABLE elements, 412
TD elements, 424
TH elements, 442
TR elements, 453

borderColor attribute (JSS), 852
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1046 Index
borderColor property
FRAME objects, 595
FRAMESET objects, 600
style objects, 730
TABLE objects, 756
TD objects, 768
TH objects, 799
TR objects, 806

BORDERCOLORDARK attribute
TABLE elements, 413
TD elements, 425
TH elements, 442
TR elements, 453

borderColorDark, borderColorLight
properties

TABLE objects, 756
TD objects, 769
TH objects, 799
TR objects, 807

BORDERCOLORLIGHT attribute
TABLE elements, 413
TD elements, 425
TH elements, 442
TR elements, 453

borders, 32
borderStyle attribute (JSS), 853
borderStyle property (style objects), 730
borderWidth property (style objects), 731
borderWidths() (JSS), 854
bottom attribute (CSS), 855
bottom (value), 170
BOTTOMMARGIN attribute (BODY

elements), 210
bottomMargin property (BODY

objects), 509
boundingHeight, boundingWidth properties

(TextRange objects), 786
boundingLeft, boundingTop properties

(TextRange objects), 787
box containers, 32–33
BR elements, 214–215
BR objects, 513–514
branching for different browsers, 21–24

binding handlers to objects, 137
scripting position, 87

break statement (JavaScript), 967
browser flags, 86–87
browserLanguage property (navigator

objects), 663

browsers (see web browsers)
bubbling events (IE 4), 20, 144–147, 464
bufferDepth property (screen objects), 706
bulleted lists (see unordered lists)
BUTTON elements, 215–219
button identifiers (mouse), 150–151
BUTTON objects, 514–520
button objects, 520–525
button property (event objects), 146, 152,

570
buttons, 215–219

C
caching images, 109
cancelBubble property (event

objects), 145–146, 571
capitalization of event handlers names, 133
CAPTION elements, 219–222
CAPTION objects, 525–528
caption property (TABLE objects), 757
caption-side attribute (CSS), 855
captureEvents(), 140

document objects, 555
layer objects, 631
window objects, 823

capturing events (Navigator 4), 18, 140–141
carriage returns (see line breaks)
cascading, 35

events (see events, propagating)
precedence rules, 59–61

cascading style sheets (CSS), 7–9, 35–36
assigning attributes, syntax for, 38
attributes (see style sheet attributes)
binding to elements, 39
embedding, 39–44
Level 1 (CSS1), 7

Internet Explorer and, 19
Navigator and, 16

Level 2 (CSS2), 9
at-rules, 44, 840–841
selectors, 51–54

Positioning (CSS-P), 8, 65
elements of, 66–67
Internet Explorer and, 19
Navigator and, 17

(see also style sheets)
cell-spacing attribute (CSS), 856
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Index 1047
cellIndex property
TD objects, 769
TH objects, 800

CELLPADDING attribute (TABLE
elements), 414

cellPadding property (TABLE objects), 757
cells objects, 529
cells[] (TR objects), 809
CELLSPACING attribute (TABLE

elements), 414
cellSpacing property (TABLE objects), 757
CENTER elements, 222
CENTER objects, 529–530
centering HTML elements, 222
centering objects, 93–96
CHALLENGE attribute (KEYGEN

elements), 327
CHAR attribute

COL elements, 227
COLGROUP elements, 232
TBODY elements, 420
TD elements, 425
TFOOT elements, 438
TH elements, 443
THEAD elements, 449
TR elements, 454

character codes, keyboard, 150–151,
1026–1027

character entities, 1018–1025
CHAROFF attribute

COL elements, 227
COLGROUP elements, 232
TBODY elements, 420
TD elements, 425
TFOOT elements, 438
TH elements, 443
THEAD elements, 449
TR elements, 454

CHARSET attribute
A elements, 176
DIV elements, 241
LINK elements, 343
SCRIPT elements, 388
SPAN elements, 400

charset property
document objects, 550
META objects, 659

checkbox objects, 530–536
CHECKED attribute (INPUT elements), 316

checked property
checkbox objects, 531
radio objects, 695

checkMods() example, 148–150
children objects, 536
children[], 474
citations, 223
CITE attribute

BLOCKQUOTE elements, 207
DEL elements, 236
INS elements, 324
Q elements, 386

CITE elements, 223
CITE objects, 483–484
cite property

BLOCKQUOTE objects, 506
DEL objects, 541
INS objects, 623

CLASS attribute, 45, 171
HEAD elements, 284

class selectors
cascading style sheets, 45–47
JavaScript style sheets, 56

classes objects (JSS), 56
classes[] (document objects), 561
CLASSID attribute (OBJECT elements), 365
classid property (OBJECT objects), 670
className property, 465
CLEAR attribute (BR elements), 214
clear attribute (CSS, JSS), 856
clear property

BR objects, 514
style objects, 731

clear()
document objects, 104, 555
selection objects, 719

clearInterval(), 100
window objects, 823

clearRequest() (userProfile objects), 812
clearTimeout() (window objects), 823
click(), 471
clickable image maps

AREA elements, 193–198
AREA objects, 493–498
MAP elements, 193, 347–348
MAP objects, 648–649

clientHeight, clientWidth properties, 463
BODY objects, 509
BUTTON objects, 516
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1048 Index
clientHeight, clientWidth properties
(continued)

CAPTION objects, 527
DIV objects, 544
EMBED objects, 566
FIELDSET objects, 580
LEGEND objects, 636
MARQUEE objects, 652
TABLE objects, 758
TD objects, 769
TEXTAREA objects, 780
TH objects, 800
TR objects, 807

clientInformation property (window
objects), 815

clientLeft, clientTop properties, 463
BODY objects, 509
BUTTON objects, 516
CAPTION objects, 527
EMBED objects, 566
FIELDSET objects, 580
LEGEND objects, 636
MARQUEE objects, 652
TEXTAREA objects, 780

clientX, clientY properties (event
objects), 146, 571

CLIP attribute
ILAYER elements, 299
LAYER elements, 74, 334

clip attribute (CSS), 74–77, 857
clip property

layer objects, 628
style objects, 731

clip.bottom, clip.left, clip.right, clip.top
attributes (JSS), 857

clip.height property (layer), 84
clipping regions, 76
clip.width property (layer), 84
close()

document objects, 104, 556
window objects, 824

closed property (window objects), 815
CODE attribute

APPLET elements, 189
EMBED elements, 252
OBJECT elements, 366

CODE elements, 223–224
CODE objects, 483–484

code property
APPLET objects, 489
OBJECT objects, 670

CODEBASE attribute
APPLET elements, 189
EMBED elements, 253
OBJECT elements, 366

codeBase property
APPLET objects, 489
OBJECT objects, 670

CODETYPE attribute (OBJECT
elements), 367

codeType property (OBJECT objects), 671
COL elements, 224–229
COL objects, 537–538
COLGROUP elements, 229–234
COLGROUP objects, 537–538
collapse() (TextRange objects), 123, 788
colon (:) operator, 38
COLOR attribute

BASEFONT elements, 202
FONT elements, 261
HR elements, 287

color attribute (CSS, JSS), 858
color property

BASEFONT objects, 502
FONT objects, 588
HR objects, 609
style objects, 732

color values, 170–171, 462, 838, 1013–1017
colorDepth property (screen objects), 707
COLS attribute

FRAMESET elements, 278
MULTICOL elements, 358
PRE elements, 384
TABLE elements, 414
TEXTAREA elements, 431

cols property
FRAMESET objects, 600
TABLE objects, 758
TEXTAREA objects, 780

COLSPAN attribute
TD elements, 426
TH elements, 443

colSpan property
TD objects, 770
TH objects, 800

column-span attribute (CSS), 859
columns, page, 358–359
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Index 1049
columns, table, 224–234, 537–538
comma (,) operator, 960
COMMENT elements, 234
COMMENT objects, 538–539
comment statements (JavaScript), 976
common denominator design, 24–27

scripting position, 88–89
COMPACT attribute

DIR elements, 239
DL elements, 247
MENU elements, 355
OL elements, 373
UL elements, 457

compact property
DL objects, 547
OL objects, 675
UL objects, 810

compareEndPoints() (TextRange
objects), 124, 788

compatibility between platforms, 12–15
client- and offset- properties, 463
Internet Explorer 4 DHTML, 19–21
keyboard character codes, 152
mouse button identifiers

mouse button identifiers, 152
Navigator 4 DHTML, 15–19
style differences, 62–64
(see also cross-platform strategies)

complete property (IMG objects), 617
conditional (?:) operator, 960
confirm() (window objects), 824
constants

alignment, 169–170
color values, 170–171, 462, 838,

1013–1017
constant-width styles (see monospaced

fonts)
containment, 29–35

block-level structures, 31–33
contextual selectors, 49–50, 57–59
element containment, 34–35
fixed-size containers, 117–119
object containment, 33
variable-length containers, 119–125

contains(), 471
content attribute (CSS), 859
CONTENT attribute (META elements), 356
content property (META objects), 659
contextual(), 57

contextual selectors
cascading style sheets, 49–50
JavaScript style sheets, 57–59

continue statement (JavaScript), 968
control statements, JavaScript

(list), 967–972
cookie property (document objects), 550
cookieEnabled property (navigator

objects), 663
coordinate systems, 153
COORDS attribute

A elements, 176
AREA elements, 195

coords property (AREA objects), 494
Copy command, 1029
core JavaScript objects (list), 911–956
cpuClass property (navigator objects), 664
CreateBookmark command, 1029
createElement() (document objects), 556
CreateLink command, 1029
createRange() (selection objects), 719
createStyleSheet() (document objects), 556
createTextRange()

BODY objects, 513
BUTTON objects, 520
text objects, 777
TEXTAREA objects, 785

cross-platform strategies, 21–27
changing style attribute values, 113–117
position scripting, 86–93
(see also platforms, incompatibilities

between)
CSS (cascading style sheets), 7–9, 35–36

assigning attributes, syntax for, 38
attributes (see style sheet attributes)
binding to elements, 39
embedding, 39–44
Level 1 (CSS1), 7

Internet Explorer and, 19
Navigator and, 16

Level 2 (CSS2), 9
at-rules, 44, 840–841
selectors, 51–54

Positioning (CSS-P), 8, 65
elements of, 66–67
Internet Explorer and, 19
Navigator and, 17

(see also style sheets)
cssText property (style objects), 732
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1050 Index
ctrlKey property (event objects), 146, 571
cue-after, cue-before attributes (CSS), 860
cue attribute (CSS), 860
current property (history objects), 606
cursor attribute (CSS), 861
cursor property (style objects), 733
cursor, tracking, 153
custom APIs for compatibility, 25–27

scripting position, 89–93
Cut command, 1029

D
DATA attribute (OBJECT elements), 367
data binding, 21
data property

event objects, 143, 572
OBJECT objects, 671

DATAFLD attribute
A elements, 177
BUTTON elements, 216
DIV elements, 242
FRAME elements, 270
IFRAME elements, 292
IMG elements, 306
INPUT elements, 317
LABEL elements, 329
MARQUEE elements, 350
OBJECT elements, 368
PARAM elements, 380
SELECT elements, 393
SPAN elements, 401
TD elements, 426
TEXTAREA elements, 431
TH elements, 444

dataFld property
A objects, 476
APPLET objects, 490
BUTTON objects, 516
button objects, 522
checkbox objects, 532
DIV objects, 544
FRAME objects, 595
hidden objects, 604
IFRAME objects, 611
IMG objects, 617
LABEL objects, 625
MARQUEE objects, 652
OBJECT objects, 671
password objects, 683

radio objects, 695
SELECT objects, 713
SPAN objects, 720
TABLE objects, 758
text objects, 773
TEXTAREA objects, 780

DATAFORMATAS attribute
DIV elements, 242
LABEL elements, 330
MARQUEE elements, 350
PARAM elements, 380
SPAN elements, 401

DATAFORMATAS attributes (BUTTON
elements), 217

dataFormatAs property
BUTTON objects, 517
DIV objects, 544
LABEL objects, 625
MARQUEE objects, 652
SPAN objects, 721

DATAPAGESIZE attribute (TABLE
elements), 415

dataPageSize property (TABLE
objects), 758

DATASRC attribute
A elements, 177
BUTTON elements, 217
DIV elements, 242
FRAME elements, 271
IFRAME elements, 293
IMG elements, 306
INPUT elements, 317
LABEL elements, 330
MARQUEE elements, 351
OBJECT elements, 368
PARAM elements, 380
SELECT elements, 394
SPAN elements, 401
TABLE elements, 415
TEXTAREA elements, 432

dataSrc property
A objects, 476
APPLET objects, 490
BUTTON objects, 517
button objects, 522
checkbox objects, 532
DIV objects, 545
FRAME objects, 595
hidden objects, 604
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Index 1051
IFRAME objects, 611
IMG objects, 618
LABEL objects, 626
MARQUEE objects, 653
OBJECT objects, 671
password objects, 683
radio objects, 695
SELECT objects, 714
SPAN objects, 721
TABLE objects, 759
text objects, 773
TEXTAREA objects, 781

Date objects (JavaScript), 916–929
DATETIME attribute

DEL elements, 236
INS elements, 325

dateTime property
DEL objects, 541
INS objects, 623

DD elements, 234–235
DD objects, 539–540
declarations, 38

making important, 60
DECLARE attribute (OBJECT elements), 368
decrement (- -) operator, 960
defaultCharset property (document

objects), 551
defaultChecked property

checkbox objects, 532
radio objects, 695

defaultSelected property (OPTION
objects), 677

defaultStatus property (window
objects), 815

defaultValue property
password objects, 683
text objects, 773
TEXTAREA objects, 781

DEFER attribute (SCRIPT elements), 388
defer property (SCRIPT objects), 709
defining instances, 238
definition lists

DD elements, 234–235
DL elements, 246–248
DT elements, 248–249

DEL elements, 235–238
DEL objects, 540–541
Delete command, 1029
delete operator (JavaScript), 961

deprecated items for HTML 4.0, 161–163
description property

mimeType objects, 660
plugin objects, 689

DFN elements, 238
DFN objects, 483–484
DHTML (see Dynamic HTML)
dialogArguments property (window

objects), 816
dialogHeight, dialogLeft, dialogTop,

dialogWidth properties (window
objects), 816

DIR attribute, 172
TABLE elements, 416

DIR elements, 239–240
DIR objects, 542
dir property

BDO objects, 503
NOFRAMES, NOSCRIPT objects, 667

direction attribute (CSS), 862
DIRECTION attribute (MARQUEE

elements), 351
direction property (MARQUEE objects), 653
directory lists (DIR elements), 239–240
DISABLED attribute

BUTTON elements, 217
INPUT elements, 317
LINK elements, 343
OPTGROUP elements, 375
OPTION elements, 377
SELECT elements, 394
STYLE elements, 406
TEXTAREA elements, 432

disabled property
BUTTON objects, 517
button objects, 522
checkbox objects, 533
fileUpload objects, 583
hidden objects, 604
LINK objects, 640
password objects, 684
radio objects, 696
reset objects, 700
SELECT objects, 714
STYLE objects, 723
styleSheet objects, 746
submit objects, 751
text objects, 774
TEXTAREA objects, 781
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1052 Index
disableExternalCapture() (window
objects), 824

display attribute (CSS)
visibility attribute (CSS-P) vs., 78

display attribute (CSS, JSS), 862
display property (style objects), 733
DIV elements, 30, 240–246
DIV objects, 543–546
division (› operator, 961
DL elements, 246–248
DL objects, 546–547
document object model (see DOM)
document objects, 460, 547–563

containment, 33
IE 4 commands for (list), 1028–1032
list of (reference), 475–835
properties

common, list of, 465–474
event handlers as, 137, 464
value types, 461–463

(see also specific object name)
document property, 466
documents (see pages)
DOM (document object model), 9–11
domain property (document objects), 551
doReadRequest() (userProfile objects), 812
do/while statement (JavaScript), 968
downloading fonts (Navigator), 18, 21
dragging HTML elements

(example), 152–156
DT elements, 248–249
DT objects, 563–564
duplicate() (TextRange objects), 124, 788
dynamic content, 102–104

changing loaded content, 117–131
changing style attribute values, 113–117
IE 4 custom newsletter

(example), 125–131
multiple frames (see frames)
multiple windows (see windows)
style attribute values, 113–117
tag attribute values, 112

Dynamic HTML
API libraries, 25–27

scripting position, 89–93
common denominator design, 24–27

scripting position, 88–89
platform differences (see platforms,

incompatibilities between)

standards for, 4
versions of, 4–5

dynamic positioning
absolute vs. relative positioning, 67–71
common tasks, 93–101
creating elements for, 66–74
positionable attributes, 74–80
scripts for, 80–85

cross-platform strategies, 86–93
units of position, 75–76

DYNSRC attribute (IMG elements), 307
dynsrc property (IMG objects), 618

E
ECMAScript, 11–12
element containment, 34–35

contextual selectors with, 49–50, 57–59
elementFromPoint() (document

objects), 557
elements (see HTML elements)
elements objects, 564–565
elements[] (FORM objects), 593
elevation attribute (CSS), 863
EM elements, 249–250
EM objects, 483–484
EMBED elements, 250–258
EMBED objects, 565–569
embedding, 250–258

advisory content for non-plugin
browsers, 360

context, 160
Java in APPLET elements, 186–193
objects, 159
style sheets, 39–44

embeds objects, 569–570
embeds[] (document objects), 562
emphasis tags, 249–250
empty() (selection objects), 719
enabledPlugin property (mimeType

objects), 660
enableExternalCapture() (window

objects), 824
encoding property (FORM objects), 591
encryption, tagging forms for, 327–328
ENCTYPE attribute (FORM elements), 267
end tags, HTML, 29
entities for characters, 1018–1025
equality (++) operator, 961
escape() (JavaScript), 972
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Index 1053
eval() (JavaScript), 972
EVENT attribute (SCRIPT elements), 138,

389
event handlers, 133–135, 464

binding to elements, 135–139
dragging elements (example), 152–156
list of, 1007–1010
return values, 139
(see also events)

event objects, 570–577
Internet Explorer 4, 145–147
Navigator 4, 141, 143–144

Event objects (Navigator), 140, 578
event property

SCRIPT objects, 709
window objects, 817

events, 132–135, 156
basic (intrinsic) events, 132–135
bubbling (IE 4), 20, 144–147, 464
dragging elements (example), 152–156
keyboard

character codes, 1026–1027
keyboard character codes, 150–151
modifier keys and, 147–150
mouse button identifiers, 150–151
Navigator 4, handling, 18, 140–144
propagating, 139–147
(see also event handers)

exclusive OR (^) operator, 959
execCommand()

commands for (list), 1028–1032
document objects, 557
TextRange objects, 124, 789

execScript() (window objects), 825
expand() (TextRange objects), 123, 789
expando property (document objects), 551
Explorer (see Internet Explorer 4)
EXPORT attribute (OBJECT elements), 369
external objects, 578
external style sheets, 42–44

F
FACE attribute

BASEFONT elements, 202
FONT elements, 261

face property
BASEFONT objects, 502
FONT objects, 589

fgColor property (document objects), 552

FIELDSET elements, 258–260
LEGEND elements, 338–339

FIELDSET objects, 578–582
filename property (plugin objects), 689
files for style sheets, 42–43
fileUpload objects, 582–586
filter attribute, 20
filter attribute (CSS), 864
filter property (style objects), 733
filters objects, 586–587
filters[], 474
find() (window objects), 825
findText() (TextRange objects), 123, 789
:first-letter pseudo-element, 51
:first-line pseudo-element, 51
fixed-size containers, 117–119
float attribute (CSS), 72, 866
flying objects (example), 96–101
focus()

A objects, 483
APPLET objects, 492
AREA objects, 498
BUTTON objects, 520
button objects, 525
CAPTION objects, 528
checkbox objects, 536
EMBED objects, 569
FIELDSET objects, 582
fileUpload objects, 586
IMG objects, 622
LEGEND objects, 637
MARQUEE objects, 656
password objects, 687
radio objects, 699
reset objects, 702
SELECT objects, 717
SPAN objects, 722
submit objects, 753
TABLE objects, 762
TD objects, 771
text objects, 777
TEXTAREA objects, 785
TH objects, 802
TR objects, 808
window objects, 825

font attribute (CSS), 867
FONT elements, 260–263
@font-face rule, 840
font-family attribute (CSS), 868
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1054 Index
font, fontFamily, fontSize, fontStyle, font-
Variant, fontWeight properties

style objects, 734–736
FONT objects, 587–589
font-size attribute, 869
font-size-adjust attribute (CSS), 871
font-style attribute (CSS), 871
font-variant attribute (CSS), 872
font-weight attribute (CSS), 872
fontFamily attribute (JSS), 868
FontName command, 1029
fonts

BASEFONT elements, 201–203
downloading

Internet Explorer, 21
Navigator, 18

FONT elements, 260–263
style elements/objects

B, 199, 499–500
BIG, 205–206, 499–500
I, 289–290, 499–500
LISTING, 346–347, 643–644
S, 386, 499–500
SMALL, 397–398, 499–500
STRIKE, 404–405, 499–500
TT, 455, 499–500
U, 455, 499–500
XMP elements, 459
(see also phrase elements)

fontSize attribute (JSS), 869
FontSize command, 1029
fontStyle attribute (JSS), 871
fontWeight attribute (JSS), 872
FOR attribute

LABEL elements, 330
SCRIPT elements, 138, 389

for statement (JavaScript), 968
ForeColor command, 1029
for/in statement (JavaScript), 969
FORM elements, 263–269

FIELDSET elements with, 258
FORM objects, 589–593
form property

BUTTON objects, 517
button objects, 523
checkbox objects, 533
fileUpload objects, 584
hidden objects, 604

OBJECT objects, 672
password objects, 684
radio objects, 696
reset objects, 701
SELECT objects, 714
submit objects, 751
text objects, 774
TEXTAREA objects, 781

FormatBlock command, 1029
formatting

cascading (see cascading)
DOM (document object model), 9–11
HTML 4.0 and, 5–6
importing external style sheets, 42–44
in-document styles, 39–42
inheritance and, 34
style sheets (see style sheets)

forms, 263–269
button objects, 520–525
checkbox objects, 530–536
FIELDSET elements/objects, 258–260,

578–582
fileUpload objects, 582–586
hidden objects, 603–606
HTML 4.0, 159
INPUT elements/objects, 313–323, 622
KEYGEN elements, 327–328
LABEL elements/objects, 328–331,

624–626
LEGEND elements/objects, 338–339,

634–637
password objects, 682–687
radio objects, 693–699
reset objects, 699–703
submit objects, 750–754
text objects, 771–778
TEXTAREA elements/objects, 429–435,

778–785
forms objects, 593–594
forms[] (document objects), 562
forward()

history objects, 607
window objects, 826

FRAME attribute (TABLE elements), 416
FRAME elements, 269–274

javascript: pseudo-URL in, 105
FRAME objects, 594–598
frame property (TABLE objects), 759
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Index 1055
FRAMEBORDER attribute
EMBED elements, 253
FRAME elements, 271
FRAMESET elements, 279
IFRAME elements, 293

frameBorder property
FRAME objects, 596
FRAMESET objects, 601
IFRAME objects, 612

frames, 269–274
FRAMESET elements, 269, 275–281
IFRAME elements, 290–297
linking multiple, 108–109
NOFRAMES elements, 360–361
sending content to, 104–106

frames objects, 598–599
frames[]

document objects, 562
window objects, 835

FRAMESET elements, 269, 275–281
FRAMESET objects, 599–601
framesets, 104–106
FRAMESPACING attribute

FRAMESET elements, 279
IFRAME elements, 293

frameSpacing property
FRAMESET objects, 601
IFRAME objects, 612

fromElement property (event objects), 146,
572

Function objects (JavaScript), 929–932
functions (global), JavaScript, 972–976

G
getAttribute(), 471

style objects, 85
userProfile objects, 813

getBookmark() (TextRange objects), 123,
790

getSelection() (document objects), 557
global functions, JavaScript (list), 972–976
go() (history objects), 607
graphics (see images)
greater-than (>) operator, 962
greater-than-or-equal (>=) operator, 962
GUTTER attribute

MULTICOL elements, 359

H
H1, H2, ... elements, 31, 281–283
H1, H2, ... objects, 601–602
handleEvent(), 142

button objects, 525
checkbox objects, 536
document objects, 558
fileUpload objects, 586
FORM objects, 592
layer objects, 631
password objects, 687
radio objects, 699
reset objects, 703
submit objects, 753
text objects, 777
TXETAREA objects, 785
window objects, 826

handling events (see event handlers;
events)

hash property
A objects, 477
AREA objects, 495
location objects, 644

HEAD elements, 283–286
HEAD objects, 603
HEADERS attribute

TD elements, 426
TH elements, 444

headers, table, 439–447, 797–802
headings, 31, 281–283, 601–602
HEIGHT attribute

APPLET elements, 190
EMBED elements, 253
FRAME elements, 271
IFRAME elements, 294
ILAYER elements, 300
IMG elements, 307
LAYER elements, 74, 334
MARQUEE elements, 351
OBJECT elements, 369
SPACER elements, 398
TABLE elements, 416
TD elements, 427
TH elements, 444

height attribute (CSS, JSS), 74, 873
height property

APPLET objects, 490
FRAME objects, 596
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1056 Index
height property (continued)
IMG objects, 618
MARQUEE objects, 653
OBJECT objects, 672
screen objects, 707
style objects, 736
TABLE objects, 759
TD objects, 770
TH objects, 800

HIDDEN attribute (EMBED elements), 254
hidden objects, 603–606
hidden property

EMBED objects, 567
layer objects, 628

hiding elements
clipping regions, 76–78
visibility attribute (CSS, JSS), 74, 78, 903
visible property, 648

history objects, 606–607
history property (window objects), 817
home() (window objects), 826
horizontal rules, 286–288
host property

A objects, 477
AREA objects, 495
location objects, 645

hostname property
A objects, 477
AREA objects, 495
location objects, 645

HR elements, 286–288
HR objects, 607–609
HREF attribute

A elements, 174–175, 177
AREA elements, 195
BASE elements, 200
DIV elements, 243
LINK elements, 343
SPAN elements, 402

href property
A objects, 477
AREA objects, 495
BASE objects, 501
IMG objects, 618
LINK objects, 640
location objects, 645
styleSheet objects, 746

HREFLANG attribute
A elements, 178

DIV elements, 243
LINK elements, 343
SPAN elements, 402

HSPACE attribute
APPLET elements, 191
EMBED elements, 254
IFRAME elementsVSPACE attribute

IFRAME elements, 294
IMG elements, 308
MARQUEE elements, 352
OBJECT elements, 370

hspace property
APPLET objects, 490
IMG objects, 619
MARQUEE objects, 653
OBJECT objects, 672

HTML, 167
containment (see containment)
structuring for style sheets, 28–31
style sheets (see style sheets)
version 4.0, 5–6, 157–163

HTML attributes
changing values dynamically, 112
common, list of, 171–174
event handlers as, 135–137
HTML 4.0 changes, 161–163
list of, 981–986
value types, 168–171

HTML DOM, 10
HTML elements, 288–289

binding to (see binding to elements)
centering, 93–96
containment, 34–35

contextual selectors with, 49–50,
57–59

dragging (example), 152–156
HTML 4.0 changes, 160–161
list of (reference), 174–459
moving around screen, 96–101
overlapping vs. wrapping, 71
positionable, 66–74

absolute vs. relative
positioning, 67–71

attributes for, 74–80
common positioning tasks, 93–101
scripting position, 80–93
units of position, 75–76

pseudo-elements, 51, 839–840
(see also specific element name)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Index 1057
HTML files (see pages)
HTML objects, 610
htmlFor property

LABEL objects, 626
SCRIPT objects, 709

htmlText property (TextRange objects), 787
HTTP-EQUIV attribute (META

elements), 357
httpEquiv property (META objects), 659
hyperlinks, 174–183

I
I elements, 289–290
I objects, 499–500
ID attribute, 48, 172

A elements, 178
APPLET elements, 191
EMBED elements, 254
FONT elements, 262
HEAD elements, 285
ILAYER elements, 301
IMG elements, 308
INPUT elements, 318
LAYER elements, 335

id property, 466
ID selectors

cascading style sheets, 48
JavaScript style sheets, 57

identifiers, 168, 461
identity (===) operator, 963
ids objects (JSS), 57
ids[] (document objects), 562
if statement, 23–24, 87
if statement (JavaScript), 969
if/else statement (JavaScript), 969
IFRAME elements, 118, 290–297
IFRAME objects, 610–614
ILAYER elements, 73–74, 118, 297–303

(see also layers)
images

captions for, 219–222
clickable image maps

AREA elements, 193–198
AREA objects, 493–498
MAP elements, 193, 347–348
MAP objects, 648–649

IMG elements, 303–312
mouse rollover, 15–16

preloading, 109
swapping, 109–112

images objects, 614–615
images[] (document objects), 562
IMG elements, 303–312
IMG objects, 615–622
@import rule, 44, 841
!important attribute (CSS), 874
important declarations, 60
importing style sheets, 42–44
imports[] (styleSheet objects), 748
incompatibility between platforms, 12–15,

152
client- and offset- properties, 463
Internet Explorer 4 DHTML, 19–21
keyboard character codes, 152
Navigator 4 DHTML, 15–19
style differences, 62–64
(see also cross-platform strategies)

increment (++) operator, 963
Indent command, 1029
indeterminate property (checkbox

objects), 533
index property (OPTION objects), 677
in-document styles, 39–42
inequality (!=) operator, 963
inheritance, 34
innerHeight, innerWidth properties

(window objects), 817
innerHTML property, 119–121, 466
innerText property, 119–121, 466
INPUT elements, 313–323

labels for, 328–331
INPUT objects, 622
inRange() (TextRange objects), 124, 790
INS elements, 323–325
INS objects, 622–623
insertAdjacentHTML(), 121, 472
insertAdjacentText(), 121, 472
InsertButton command, 1029
InsertFieldset command, 1030
InsertHorizontalRule command, 1030
InsertIFrame command, 1030
InsertInputButton command, 1030
InsertInputCheckbox command, 1030
InsertInputFileUpload command, 1030
InsertInputHidden command, 1030
InsertInputImage command, 1030
InsertInputPassword command, 1030
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1058 Index
InsertInputRadio command, 1030
InsertInputReset command, 1030
InsertInputSubmit command, 1030
InsertInputText command, 1030
InsertMarquee command, 1030
InsertOrderedList command, 1030
InsertParagraph command, 1030
InsertSelectDropdown command, 1030
InsertSelectListbox command, 1031
InsertTextArea command, 1031
InsertUnorderedList command, 1031
internal content branching, 23–24

scripting position, 87
internationalization, 158
Internet Explorer 4

commands, list of, 1028–1032
custom newsletter (example), 125–131
DHTML in, 19–21
event bubbling, 144–147
IFRAME elements, 118
JScript versions, 909–910
referencing positionable objects, 82–83

intrinsic events, 132–135
isEqual() (TextRange objects), 124, 790
isFinite() (JavaScript), 973
ISINDEX elements, 326
ISINDEX objects, 623–624
ISMAP attribute (IMG elements), 309
isMap property (IMG objects), 619
isNaN() (JavaScript), 973
isTextEdit property, 467
Italic command, 1031
italics, 289–290, 499–500
item()

all objects, 486
filters objects, 587
forms objects, 594
frames objects, 598
images objects, 614
options objects, 680
plugins objects, 691
rows objects, 704
scripts objects, 711

J
Java, embedding in APPLET

elements, 186–193
javaEnabled() (navigator objects), 666

JavaScript, 11–12, 909
control statements (list), 967–972
core objects (list), 911–956
document object containment, 33
global functions, list of, 972–976
Internet Explorer versions, 909–910
operators (list), 956–967
statements, list of, 976–977
(see also ECMAScript)

JavaScript style sheets (JSS), 16
attributes and element binding, 39,

54–59
attributes (see style sheet attributes)
selectors, 55–59

javascript: pseudo-URL
in A elements, 108
in FRAME elements, 105

JSS (see JavaScript style sheets)
JustifyCenter command, 1031
JustifyFull command, 1031
JustifyLeft command, 1031
JustifyRight command, 1031

K
KBD elements, 326–327
KBD objects, 483–484
key encryption, tagging for, 327–328
keyboard

character codes, 150–151
event handlers for (list), 134, 1008–1009
modifiers, 147–150

keyboard character codes, 1026–1027
keyCode property (event objects), 146,

152, 572
KEYGEN elements, 327–328

L
LABEL attribute

OPTGROUP elements, 375
OPTION elements, 377

LABEL elements, 328–331
LABEL objects, 624–626
label statement (JavaScript), 970
LANG attribute, 172
lang property, 467
LANGUAGE attribute, 173

SCRIPT elements, 390
language codes, 169, 462
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Index 1059
language property, 467
navigator objects, 664

lastModified property (document
objects), 552

LAYER elements, 17–18, 72–74, 117,
331–337

(see also layers)
layer objects, 626–634
layers, 17–18, 65

determining clicked objects, 153
ILAYER elements, 73–74, 118, 297–303
LAYER elements, 17–18, 72–74, 117,

331–337
layer object model (Navigator), 80–82
layer objects, 626–634
Navigator 4 syntax, 72–74
NOLAYER elements, 361
resizing Navigator 4 window and, 93

layerX, layerY properties (event
objects), 143, 573

left (value), 170
LEFT attribute

ILAYER elements, 301
LAYER elements, 74, 117, 335

left attribute (CSS, JSS), 74, 875
relative positioning and, 70

left property
layer objects, 84, 628
style objects, 737

LEFTMARGIN attribute (BODY
elements), 211

leftMargin property (BODY objects), 510
left-shift (<<) operator, 959
LEGEND elements, 338–339
LEGEND objects, 634–637
length property

anchors objects, 487
applets objects, 493
areas objects, 499
cells objects, 529
children objects, 536
elements objects, 565
embeds objects, 570
filters objects, 587
FORM objects, 591
forms objects, 593
frames objects, 598
history objects, 606
images objects, 614

links objects, 643
options objects, 679
plugin objects, 689
plugins objects, 691
rows objects, 703
rules objects, 705
scripts objects, 711
SELECT objects, 714
window objects, 817

length values, 168, 461, 837
length() (all objects), 486
less-than (<) operator, 964
less-than-or-equal (<=) operator, 964
letter-spacing attribute (CSS), 875
lettered lists (see ordered lists)
letterSpacing property (style objects), 737
LI elements, 340–341
LI objects, 638–639
line breaks

BR elements, 214–215
disallowing, 359–360
hardcoding whitespace instead, 398–399
WBR elements, 458

line-height attribute (CSS), 876
lineHeight attribute (JSS), 876
lineHeight property (style objects), 737
LINK attribute (BODY elements), 211
LINK elements, 43, 160, 342–346

downloading fonts (Navigator), 18
LINK objects, 639–642
link property (BODY objects), 510
linkColor property (document objects), 552
links, 174–183, 342–346
links objects, 642–643
links[] (document objects), 562
list-style attribute (CSS), 877
list-style-image attribute (CSS), 878
list-style-position attribute (CSS), 878
list-style-type attribute (CSS), 879
LISTING elements, 346–347
LISTING objects, 643–644
lists

definition lists
DD elements, 234–235
DL elements, 246–248
DT elements, 248–249

directory lists (DIR), 239–240
LI elements, 340–341
menu lists, 354–355
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1060 Index
lists (continued)
ordered list (OL elements), 373–374
unordered lists (UL elements), 456–457

listStyle, listStyleImage, listStylePosition,
listStyleType properties (style
objects), 737–739

listStyleType attribute (JSS), 879
load() (layer objects), 85, 631
location objects, 644–647
location property

document objects, 553
window objects, 818

locationbar objects, 647–648
locationbar property (window objects), 818
LONGDESC attribute

FRAME elements, 272
IFRAME elements, 294
IMG elements, 309

LOOP attribute
BGSOUND elements, 204
IMG elements, 309
MARQUEE elements, 352

loop property
BGSOUND objects, 504
IMG objects, 619
MARQUEE objects, 654

LOWSRC attribute (IMG elements), 310
lowsrc property (IMG objects), 619

M
MAP elements, 193, 347–348

(see also AREA elements)
MAP objects, 648–649
margin attribute (CSS), 880
margin-bottom, margin-left, margin-right.

margin-top attributes (CSS), 881
margin property (style objects), 739
marginBottom, marginLeft, marginRight,

marginTop properties (style
objects), 739

marginBottom, marginLeft, marginTight,
marginTop attributes (JSS), 881

MARGINHEIGHT attribute
FRAME elements, 272
IFRAME elements, 295

marginHeight, marginWidth properties
FRAME objects, 596
IFRAME objects, 612

margins, 32

margins() (JSS), 880
MARGINWIDTH attribute

FRAME elements, 272
IFRAME elements, 295

marks attribute (CSS), 882
MARQUEE elements, 348–354
MARQUEE objects, 649–657
Math objects (JavaScript), 932–938
max-height, min-height attributes

(CSS), 882
max-width, min-width attributes (CSS), 883
MAXLENGTH attribute (INPUT

elements), 318
maxLength property

password objects, 684
text objects, 774

MAYSCRIPT attribute (APPLET
elements), 192

MEDIA attribute
DIV elements, 243
LINK elements, 344
SPAN elements, 402
STYLE elements, 407

media property
LINK objects, 640
STYLE objects, 723

@media rule, 841
memory for precaching images, 109
MENU elements, 354–355
MENU objects, 657–658
menubar objects, 647–648
menubar property (window objects), 818
META elements, 355–358
META objects, 658–660
METHOD attribute (FORM elements), 267
method property (FORM objects), 591
METHODS attribute (A elements), 179
methods, list of, 1002–1006
Methods property (A objects), 478
middle (value), 170
mimeType objects, 660–661
mimeType property (A objects), 478
modifier keys, 147–150
modifiers property (event objects), 143,

573
modulus (%) operator, 964
monospaced fonts

CODE elements, 223–224
KBD elements, 326–327
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Index 1061
LISTING elements/objects, 346–347,
643–644

PLAINTEXT elements, 382–383
PRE elements, 383–385
SAMP elements, 387
TT elements/objects, 455, 499–500
XMP elements, 459

mouse
button identifiers, 150–151
event handlers for (list), 135, 1009–1010
rollover, 15–16
tracking cursor, 153

move() (TextRange objects), 123, 791
moveAbove(), moveBelow() (layer

objects), 85, 632
moveBy()

layer objects, 85, 632
window objects, 826

moveEnd(), moveStart() (TextRange
objects), 123, 791

moveTo()
layer objects, 85, 633
window objects, 827

moveToAbsolute() (layer objects), 85, 633
moveToBookmark() (TextRange

objects), 123, 790
moveToElementText() (TextRange

objects), 123, 792
moveToPoint() (TextRange objects), 123,

792
MSIE (see Internet Explorer 4)
MULTICOL elements, 358–359
MULTIPLE attribute (SELECT

elements), 395
multiple property (SELECT objects), 715
multiplication (*) operator, 965

N
NAME attribute

A elements, 174, 179
APPLET elements, 192
AREA elements, 196
BASEFONT elements, 202
BUTTON elements, 218
EMBED elements, 255
FORM elements, 268
FRAME elements, 272
IFRAME elements, 295
IMG elements, 310

INPUT elements, 319
KEYGEN elements, 328
MAP elements, 348
META elements, 357
OBJECT elements, 370
PARAM elements, 381
SELECT elements, 395
TEXTAREA elements, 432

name property
A objects, 478
APPLET objects, 491
BUTTON objects, 518
button objects, 523
checkbox objects, 533
EMBED objects, 567
fileUpload objects, 584
FORM objects, 592
FRAME objects, 597
hidden objects, 605
IFRAME objects, 613
IMG objects, 620
layer objects, 628
MAP objects, 649
OBJECT objects, 672
password objects, 685
plugin objects, 690
radio objects, 696
reset objects, 701
SELECT objects, 715
submit objects, 752
text objects, 774
TEXTAREA objects, 782
window objects, 818

nameProp property (A objects), 479
naming event handlers, 133
navigate() (window objects), 827
Navigator 4, 6

color attribute in LI elements (bug), 63
DHTML in, 15–19
event propagation, 18, 140–144
LAYER and ILAYER elements, 72–74,

117–118
referencing positionable objects, 80–82
window resizing, 93

navigator objects, 661–667
navigator property (window objects), 819
negation (-) operator, 965
Netscape Navigator 4 (see Navigator 4)
new operator (JavaScript), 965
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1062 Index
next property (history objects), 606
nextPage() (TABLE objects), 763
NOBR elements, 359–360

WBR elements vs., 458
NOEMBED elements, 360
NOFRAMES elements, 360–361
NOFRAMES objects, 667
NOHREF attribute (AREA elements), 196
noHref property (AREA objects), 496
NOLAYER elements, 361
nonidentity (!==) operator, 966
NORESIZE attribute

FRAME elements, 273
IFRAME elements, 296

noResize property
FRAME objects, 597
IFRAME objects, 613

NOSCRIPT elements, 361–362
NOSCRIPT objects, 667
NOSHADE attribute (HR elements), 287
noShade property (HR objects), 609
NOT (!) operator, 966
NOT (~) operator, 959
NOWRAP attribute

TD elements, 427
TH elements, 445

noWrap property
BODY objects, 510
DD objects, 540
DT objects, 564
TD objects, 770
TH objects, 801

Number objects (JavaScript), 938–940
numbered lists (see ordered lists)

O
object containment, 33
OBJECT elements, 250, 362–372

HTML 4.0, 159
PARAM elements, 379–382

object methods, list of, 1002–1006
OBJECT objects, 668–674
Object objects (JavaScript), 940–941
object properties

common, list of, 465–474
event handlers as, 137, 464
list of, 987–1001
value types, 461–463
(see also specific property name)

object property (OBJECT objects), 673
objects, JavaScript (list), 911–956
obsolete elements for HTML 4.0, 161
offscreenBuffering property (window

objects), 819
offsetHeight, offsetWidth properties, 463,

468
offsetLeft, offsetTop properties, 114, 463,

468
offsetParent property, 468
offsetX, offsetY properties (event

objects), 146, 153, 573
OL elements, 373–374
OL objects, 674–676
onAbort event handler, 134
onAfterUpdate event handler, 134
onBeforeUnload event handler, 134
onBeforeUpdate event handler, 134
onBlur event handler, 134
onBounce event handler, 134
onChange event handler, 134
onClick event handler, 134
onDataAvailable event handler, 134
onDatasetChanged event handler, 134
onDatasetComplete event handler, 134
onDblClick event handler, 134
onDragDrop event handler, 134
onDragStart event handler, 134
onError event handler, 134
onErrorUpdate event handler, 134
onFilterChange event handler, 134
onFinish event handler, 134
onFocus event handler, 134
onHelp event handler, 134
onKeyDown event handler, 134
onKeyPress event handler, 134
onKeyUp event handler, 134
onLine property (navigator objects), 664
onLoad event handler, 135
onMouseDown event handler, 135
onMouseMove event handler, 135
onMouseOut, OnMouseOver event

handlers, 16, 135
image swapping, 111

onMouseUp event handler, 135
onMove event handler, 135
onReadyStateChange event handler, 135
onReset event handler, 135
onResize event handler, 135
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Index 1063
onRowEnter event handler, 135
onRowExit event handler, 135
onScroll event handler, 135
onSelect event handler, 135
onSelectStart event handler, 135
onStart event handler, 135
onSubmit event handler, 135
onUnload event handler, 135
open()

document objects, 558
window objects, 827

opener property (window objects), 107,
819

operating systems (see platforms)
operators, JavaScript (list), 956–967
OPTGROUP elements, 374–376
OPTION elements, 376–378

OPTGROUP elements for, 374–376
SELECT elements, 391–397
(see also SELECT elements)

OPTION objects, 676–678
optional end tags, 29
options objects, 678–680
options[] (SELECT objects), 718
OR (^) operator, 959
OR (|) operator, 959
OR (||) operator, 966
ordered lists, 373–374
orphans attribute (CSS), 883
Outdent command, 1031
outerHeight, outerWidth properties

(window objects), 820
outerHTML property, 119–121, 469
outerText property, 119–121, 469
overflow attribute (CSS), 884
overflow attribute (CSS-P), 74, 77
overflow property (style objects), 740
overlapping elements, 71

stacking order (z-order), 79
OverWrite command, 1031
owningElement property (styleSheet

objects), 747

P
P elements, 29, 378–379
P objects, 680–681
padding attribute (CSS), 885

padding-bottom, padding-left, padding-
right, padding-top attributes
(CSS), 886

padding property (style objects), 740
padding space, 32
paddingBottom, paddingLeft, paddingRight,

paddingTop attributes (JSS), 886
paddingBottom, paddingLeft, paddingRight,

paddingTop properties (style
objects), 740

paddings() (JSS), 885
page-break-after, page-break-before

attributes (CSS), 887
@page rule, 841
pageBreakAfter, pageBreakBefore

properties (style objects), 741
pages

branching for different browsers, 21–24
binding handlers to objects, 137
scripting position, 87

embedding style sheets in, 39–44
HTML structures, 28–31

PAGEX, PAGEY attributes (LAYER
elements), 336

pageX, pageY properties, 114
event objects, 143, 574
layer objects, 629

pageXOffset, pageYOffset properties
(window objects), 820

PALETTE attribute (EMBED elements), 255
palette property (EMBED objects), 567
paragraphs, 378–379
paragraphs in HTML documents, 29
PARAM elements, 379–382
parent property (window objects), 820
parent-child selectors, 53
parentElement property, 469
parentElement() (TextRange objects), 124,

792
parentLayer property (layer objects), 629
parentStyleSheet property (styleSheet

objects), 747
parentTextEdit property, 470
parentWindow property (document

objects), 553
parseFloat() (JavaScript), 974
parseInt() (JavaScript), 973
password objects, 682–687
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1064 Index
Paste command, 1031
pasteHTML() (TextRange objects), 124,

792
pathname property

A objects, 479
AREA objects, 496
location objects, 645

pause-after, pause-before attributes
(CSS), 889

pause attribute (CSS), 888
personalbar objects, 647–648
personalbar property (window

objects), 818
phrase elements

ABBR, 183–184
ACRONYM, 184–185
CITE, 223
CODE, 223–224
DFN, 238
EM, 249–250
KDB, 326–327
SAMP elements, 387
STRONG elements, 405–406
VAR elements, 457–458
(see also fonts, style elements/objects)

pitch attribute (CSS), 889
pitch-range attribute (CSS), 890
pixelDepth property (screen objects), 707
pixelHeight, pixelLeft, pixelRight,

pixelWidth properties (style
objects), 84, 741

pixelTop property (style objects), 84
PLAINTEXT elements, 382–383
PLAINTEXT objects, 688
platform property (navigator objects), 664
platforms

definition of, 14–15
incompatibilities between, 12–15

client- and offset- properties, 463
Internet Explorer 4 DHTML, 19–21
keyboard character codes, 152
mouse button identifiers, 152
Navigator 4 DHTML, 15–19
style differences, 62–64
(see also cross-platform strategies)

play-during attribute (CSS), 890
PlayImage command, 1031
plugin objects, 689–690

plugins, 250–258
content when not accessible, 360

plugins objects, 690–691
plugins[] (document objects), 562
PLUGINSPAGE attribute (EMBED

elements), 256
pluginspage property (EMBED

objects), 567
PLUGINURL attribute (EMBED

elements), 256
POINT-SIZE attribute (FONT

elements), 262
port property

A objects, 479
AREA objects, 496
location objects, 646

posHeight, posLeft, posRight, posWidth
properties (style objects), 84, 742

position attribute (CSS), 891
position attribute (CSS-P), 66–71, 74
position property (style objects), 742
positionable elements, 17, 66–74

absolute vs. relative positioning, 67–71
attributes for, 74–80
common positioning tasks, 93–101
properties of, 83
referencing, 80–83
scripting position, 80–85

cross-platform strategies, 86–93
units of position, 75–76

positioning context, 67–71
posWidth property (style objects), 84
PRE elements, 383–385
PRE objects, 691–692
precedence in cascading, 59–61
preference() (navigator objects), 666
preformatted text, 383–385
prerelease browser versions, 4
previous property (history objects), 606
previousPage() (TABLE objects), 763
print() (window objects), 829
PROFILE attribute (HEAD elements), 285
PROMPT attribute (ISINDEX elements), 326
prompt property (ISINDEX objects), 624
prompt() (window objects), 829
propagating events, 139–147

Navigator 4, 18, 140–144
(see also events)

properties (see object properties)
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Index 1065
protocol property
A objects, 480
AREA objects, 496
IMG objects, 620
location objects, 646

protocolLong property (A objects), 480
prototype property (IMG objects), 620
pseudo-classes, 52, 839–840
pseudo-elements, 51, 839–840

Q
Q elements, 385
Q objects, 692
queryCommandEnabled()

commands for (list), 1028–1032
document objects, 558
TextRange objects, 124, 793

queryCommandIndeterm()
commands for (list), 1028–1032
document objects, 559
TextRange objects, 124, 793

queryCommandState()
commands for (list), 1028–1032
document objects, 559
TextRange objects, 124, 793

queryCommandSupported()
commands for (list), 1028–1032
document objects, 559
TextRange objects, 124, 794

queryCommandText()
commands for (list), 1028–1032
document objects, 559
TextRange objects, 124, 794

queryCommandValue()
document objects, 560
TextRange objects, 124, 794

quotations
BLOCKQUOTE elements, 206–207
CITE elements, 223
Q elements, 385

R
radio objects, 693–699
READONLY attribute

INPUT elements, 319
TEXTAREA elements, 433

readOnly property
password objects, 685

rule objects, 705
styleSheet objects, 747
text objects, 775
TEXTAREA objects, 782

readyState property
document objects, 553
EMBED objects, 568
IMG objects, 620
LINK objects, 641
OBJECT objects, 673
SCRIPT objects, 710
STYLE objects, 723

reason property (event objects), 146, 574
recordNumber property

A objects, 480
BODY objects, 510
button objects, 523
checkbox objects, 534
MARQUEE objects, 654
radio objects, 697
SELECT objects, 715
TABLE objects, 760
text objects, 775

redirecting events (Navigator 4), 142
referencing

positionable elements, 80–83
referrer property (document objects), 554
Refresh command, 1031
refresh()

plugin objects, 690
TABLE objects, 763

RegExp objects (JavaScript), 941–943
regular expression objects

(JavaScript), 943–946
REL attribute

A elements, 179
DIV elements, 244
LINK elements, 344
SPAN elements, 403

rel property
A objects, 480
LINK objects, 641

relative positioning, 67–71
relative URLs (BASE elements for), 200–201
releaseEvents(), 141

document objects, 560
layer objects, 633
window objects, 830

releasing events (Navigator 4), 141
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1066 Index
reload() (location objects), 647
remove() (options objects), 680
removeAttribute(), 473
RemoveFormat command, 1031
REPEAT attribute (COL elements), 227
replace() (location objects), 647
replaced elements, 15
reset objects, 699–703
reset() (FORM objects), 593
resizeBy()

layer objects, 85, 633
window objects, 830

resizeTo()
layer objects, 85, 634
window objects, 831

resizing Navigator 4 windows, 93
return statement in event handlers, 139
return statement (JavaScript), 970
returnValue property

event objects, 146, 574
window objects, 821

REV attribute
A elements, 180
DIV elements, 244
LINK elements, 345
SPAN elements, 403

rev property
A objects, 481
LINK objects, 642

RGB values, 170–171, 462, 838, 1013–1017
richness attribute (CSS), 891
right attribute (CSS), 892
right (value), 170
RIGHTMARGIN attribute (BODY

elements), 212
rightMargin property (BODY objects), 511
right-shift (>>) operator, 959
right-shift (>>>) operator, 960
routeEvent(), 142

document objects, 560
layer objects, 634
window objects, 831

row-span attribute (CSS), 892
rowIndex property (TR objects), 807
ROWS attribute

FRAMESET elements, 280
TEXTAREA elements, 433

rows objects, 703–704

rows property
FRAMESET objects, 601
TEXTAREA objects, 782

rows, table, 450–454, 805–809
rows[]

TBODY objects, 766
TFOOT objects, 797
THEAD objects, 804

rows() (TABLE objects), 763
ROWSPAN attribute

TD elements, 428
TH elements, 445

rowSpan property
TD objects, 770
TH objects, 801

rule objects, 704–705
RULES attribute (TABLE elements), 417
rules, horizontal, 286–288
rules objects, 705
rules of style sheets, 36
rules property (TABLE objects), 760
rules[] (styleSheet objects), 749

S
S elements, 386
S objects, 499–500
SAMP elements, 387
SAMP objects, 483–484
SCHEME attribute (META elements), 358
SCOPE attribute

TD elements, 428
TH elements, 446

screen objects, 706–708
screen property (window objects), 821
screenX, screenY properties (event

objects), 143, 146, 575
SCRIPT elements, 159, 387–391

event handlers as, 138
SCRIPT objects, 708–711
ScriptEngine(), ScriptEngineBuild-

Version(), ScriptEngineMajor-
Version(), ScriptEngineMinor-
Version() (JavaScript), 974

scripts, 387–391
NOSCRIPT elements, 361–362

scripts objects, 711–712
scripts[] (document objects), 563
SCROLL attribute (BODY elements), 212
scroll property (BODY objects), 511
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Index 1067
scroll value (overflow attribute), 78
scroll() (window objects), 831
SCROLLAMOUNT attribute (MARQUEE

elements), 353
scrollAmount property (MARQUEE

objects), 654
scrollbars in clipping regions, 78
scrollbars objects, 647–648
scrollbars property (window objects), 818
scrollBy() (window objects), 831
SCROLLDELAY attribute (MARQUEE

elements), 353
scrollDelay property (MARQUEE

objects), 655
scrollHeight, scrollWidth properties

BODY objects, 511
BUTTON objects, 518
CAPTION objects, 527
DIV objects, 545
FIELDSET objects, 580
LEGEND objects, 637
MARQUEE objects, 655
TABLE objects, 760
TEXTAREA objects, 782

SCROLLING attribute
FRAME elements, 273
IFRAME elements, 296

scrolling content (marquees), 348–354
scrolling property

FRAME objects, 597
IFRAME objects, 613

scrollIntoView() (TextRange objects), 124,
473

scrollLeft, scrollTop properties
BODY objects, 512
BUTTON objects, 518
CAPTION objects, 528
DIV objects, 545
FIELDSET objects, 581
LEGEND objects, 637
MARQUEE objects, 655
SPAN objects, 721
TABLE objects, 761
TEXTAREA objects, 783

scrollTo() (window objects), 832
search property

A objects, 481
AREA objects, 497
location objects, 646

sectionRowIndex property (TR
objects), 808

SELECT elements, 376, 391–397
SELECT objects, 712–718
select()

fileUpload objects, 586
password objects, 687
text objects, 778
TextRange objects, 124, 794
TEXYAREA objects, 785

SelectAll command, 1031
SELECTED attribute (OPTION

elements), 377
selected property (OPTION objects), 677
selectedIndex property (SELECT

objects), 716
selection objects, 718–719
selection property (document objects), 554
selectors, 39–40

CSS2 types of (list), 51–54
JavaScript style sheet syntax, 55–59
specificity of, 61
for subgroups (list of), 44–50

selectorText property (rule objects), 705
self property (window objects), 821
semicolons (;) and attribute

declarations, 38
SERVER elements, 397
setAttribute() (style objects), 85, 473
setEndPoint() (TextRange objects), 123,

795
setInterval() (window objects), 100, 832
setTimeout() (window objects), 100, 833
SHAPE attribute

A elements, 180
AREA elements, 197

shape property (AREA objects), 497
SHAPES attribute (OBJECT elements), 370
shiftKey property (event objects), 146, 575
shiftTo(), 27
showHelp() (window objects), 833
showModalDialog() (window objects), 834
siblingAbove, siblingBelow properties

(layer objects), 629
SIZE attribute

BASEFONT elements, 203
FONT elements, 262
HR elements, 288
INPUT elements, 320
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1068 Index
SIZE attribute (continued)
SELECT elements, 396
SPACER elements, 399

size attribute (CSS), 893
size, font (see fonts)
size property

BASEFONT objects, 502
fileUpload objects, 584
FONT objects, 589
HR objects, 609
password objects, 685
text objects, 775

SMALL elements, 397–398
SMALL objects, 499–500
sourceIndex property, 470
SPACER elements, 398–399
SPAN attribute

COL elements, 228
COLGROUP elements, 232

SPAN elements, 30, 399–404
SPAN objects, 719–722
span property (COL, COLGROUP

objects), 538
speak attribute (CSS), 893
speak-date attribute (CSS), 894
speak-header attribute (CSS), 894
speak-numeral attribute (CSS), 895
speak-punctuation attribute (CSS), 895
speak-time attribute (CSS), 896
specifications for DHTML, 4
specificity of selectors, 61
speech-rate attribute (CSS), 896
SRC attribute

APPLET elements, 193
BGSOUND elements, 205
EMBED elements, 256
FRAME elements, 274
IFRAME elements, 296
ILAYER elements, 301
IMG elements, 311
INPUT elements, 320
LAYER elements, 336
LINK elements, 345
SCRIPT elements, 390

src property
APPLET objects, 491
BGSOUND objects, 504
EMBED objects, 568
FRAME objects, 597

IFRAME objects, 613
image swapping and, 109–112
layer objects, 630
SCRIPT objects, 710

srcElement property (event objects), 146,
152, 575

srcFilter property (event objects), 146, 576
stacking (see overlapping)
standards for DHTML, 4
STANDBY attribute (OBJECT

elements), 371
START attribute

IMG elements, 311
OL elements, 374

start property (OL objects), 676
start() (MARQUEE objects), 657
statements, JavaScript (list), 967–972,

976–977
static objects, 910
status property

BUTTON objects, 519
checkbox objects, 534
radio objects, 697
window objects, 821

statusbar objects, 647–648
statusbar property (window objects), 818
stop()

MARQUEE objects, 657
window objects, 834

StopImage command, 1031
stress attribute (CSS), 896
STRIKE elements, 404–405
STRIKE objects, 499–500
strike-through text, 386, 404–405, 499–500
String objects (JavaScript), 947–956
STRONG elements, 405–406
STRONG objects, 483–484
structures, HTML, 28–31
style (see formatting)
style assignment (see declarations)
STYLE attribute, 41, 55, 173

FONT elements, 263
FRAMESET elements, 281
IFRAME elements, 297
IMG elements, 311
TEXTAREA elements, 434

STYLE elements, 35, 39–42, 406–408
downloading fonts (IE 4), 21

STYLE objects, 722–724
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Index 1069
style objects, 724–746
style property, 470
style sheet attributes, 36–39, 836

assigning values to
CSS syntax for, 38
JavaScript style sheets, 39, 54–59

changing values of, 113–117
list of (reference), 842–908
value types, 837–839

style sheets, 6–9, 28–64, 159
at-rules, 44, 840–841
attributes (see style sheet attributes)
CSS (cascading style sheets), 7–9, 35–36

binding to elements, 39
Level 1 (CSS1), 7, 16, 19
Level 2 (CSS2), 9, 51–54
Positioning (CSS-P), 8, 17, 19, 65–67

embedding, 39–44
external, importing, 42–44
JavaScript style sheets, 16

element binding, 39, 54–59
selectors, 55–59

pseudo-elements and pseudo-
classes, 52, 839–840

structuring HTML for, 28–31
styleFloat property (style objects), 743
styleSheet objects, 746–749
styleSheets[] (document objects), 563
SUB elements, 408
SUB objects, 749
subgroup selectors (list of), 44–50
submit objects, 750–754
submit() (FORM objects), 593
subscripts, 408
subtraction (-) operator, 967
suffixes property (mimeType objects), 661
SUMMARY attribute (TABLE elements), 417
SUP elements, 408–409
SUP objects, 749
superscripts, 408–409
swapping images, 109–112
switch/case statement (JavaScript), 971
systemLanguage property (navigator

objects), 665

T
TABINDEX attribute

A elements, 181
AREA elements, 197

BUTTON elements, 218
INPUT elements, 321
LABEL elements, 331
OBJECT elements, 371
SELECT elements, 396
TEXTAREA elements, 434

tabIndex property
A objects, 482
APPLET objects, 491
BODY objects, 512
BUTTON objects, 519
button objects, 524
checkbox objects, 534
EMBED objects, 568
FIELDSET objects, 581
fileUpload objects, 584
IFRAME objects, 614
MARQUEE objects, 655
OBJECT objects, 673
password objects, 685
radio objects, 697
reset objects, 701
SELECT objects, 716
submit objects, 752
TABLE objects, 761
text objects, 776
TEXTAREA objects, 783

TABLE elements, 409–418
table elements/objects

COL, 224–229, 537–538
COLGROUP, 229–234, 537–538
TABLE, 409–418, 754–763
TBODY, 418–421, 764–766
TD, 421–429, 766–771
TFOOT, 435–438, 795–797
TH, 439–447, 797–802
THEAD, 447–450, 802–804
TR, 450–454, 805–809

table-layout attribute (CSS), 897
TABLE objects, 754–763
tables in HTML 4.0, 158
tagName property, 471
tags, HTML (see HTML attributes; HTML

elements)
tags objects (JSS), 56, 763–764
tags()

all objects, 486
rows objects, 704
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1070 Index
tags[]
document objects, 563
SELECT objects, 718

taintEnabled() (navigator objects), 667
TARGET attribute

A elements, 181
AREA elements, 198
BASE elements, 201
DIV elements, 244
FORM elements, 268
LINK elements, 345
SPAN elements, 403

target property
A objects, 482
AREA objects, 498
BASE objects, 501
event objects, 143, 576
FORM objects, 592

tBodies[] (TABLE objects), 763
TBODY elements, 418–421
TBODY objects, 764–766
TD elements, 421–429
TD objects, 766–771
text-align attribute (CSS), 897
TEXT attribute (BODY elements), 212
text, changing after loading, 117–131
text-decoration attribute (CSS), 898
text-indent attribute (CSS), 899
text objects, 771–778
text property

BODY objects, 512
COMMENT objects, 539
OPTION objects, 678
SCRIPT objects, 710
TextRange objects, 787
TITLE objects, 804

text-shadow attribute (CSS), 900
text-transform attribute (CSS), 900
textAlign attribute (JSS), 897
textAlign property (style objects), 743
TEXTAREA elements, 429–435
TEXTAREA objects, 778–785
text/css content type, 35
textDecoration attribute (JSS), 898
textDecoration, textDecorationBlink, text-

DecorationLineThrough, text-
DecorationNone, textDecoration-
Overline, textDecorationUnderline
properties (style objects), 744

textIndent attribute (JSS), 899
textIndent property (style objects), 744
text/javascript content type, 36
TextRange objects, 122–125, 786–795

IE 4 commands for (list), 1028–1032
texttop (value), 170
textTransform attribute (JSS), 900
textTransform property (style objects), 744
TFOOT elements, 435–438
TFOOT objects, 795–797
tFoot property (TABLE objects), 762
TH elements, 439–447
TH objects, 797–802
THEAD elements, 447–450
THEAD objects, 802–804
tHead property (TABLE objects), 762
this keyword (JavaScript), 976
this reference, 136
TITLE attribute, 174

ABBR elements, 184
ACRONYM elements, 185
DEL elements, 237
DIV elements, 245
FIELDSET elements, 260
HEAD elements, 285
HTML elements, 289
LEGEND elements, 339

TITLE elements, 450
TITLE objects, 804
title property (document objects, 471, 554
toElement property (event objects), 147,

576
toolbar objects, 647–648
toolbar property (window objects), 818
top (value), 170
TOP attribute

ILAYER elements, 301–302
LAYER elements, 74, 117, 335–336

top attribute (CSS, JSS), 74, 901
relative positioning and, 70

top property
layer objects, 84, 630
style objects, 744
window objects, 822

TOPMARGIN attribute (BODY
elements), 213

topMargin property (BODY objects), 513
toString() (JavaScript), 975
TR elements, 450–454
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Index 1071
TR objects, 805–809
tracking cursor, 153
TRUESPEED attribute (MARQUEE

elements), 354
trueSpeed property (MARQUEE

objects), 656
TT elements, 455
TT objects, 499–500
TYPE attribute

A elements, 182
BUTTON elements, 219
DIV elements, 246
EMBED elements, 257
INPUT elements, 321
LI elements, 340
LINK elements, 346
OBJECT elements, 372
OL elements, 374
PARAM elements, 381
SCRIPT elements, 391
SPACER elements, 399
SPAN elements, 404
STYLE elements, 35, 407
UL elements, 457

type property
BUTTON objects, 519
button objects, 524
checkbox objects, 535
event objects, 143, 147, 577
fileUpload objects, 585
hidden objects, 605
LI objects, 638
LINK objects, 642
mimeType objects, 661
OBJECT objects, 674
OL objects, 676
password objects, 686
radio objects, 698
reset objects, 702
SCRIPT objects, 710
SELECT objects, 716
selection objects, 718
STYLE objects, 724
styleSheet objects, 747
submit objects, 752
text objects, 776
TEXTAREA objects, 784

TYPE property (UL objects), 810
typeof operator (JavaScript), 967
typewriter text style, 455, 499–500
typographical elements

SUB elements, 408
SUP elements, 408–409

U
U elements, 455
U objects, 499–500
UL elements, 456–457
UL objects, 809–810
UnBookmark command, 1031
Underline command, 1031
underscoring, 455, 499–500
unescape() (JavaScript), 975
UNITS attribute (EMBED elements), 257
units of position, 75–76
units property (EMBED objects), 569
universal selectors, 53
Unlink command, 1032
unordered lists, 456–457
Unselect command, 1032
unwatch() (JavaScript), 975
updateInterval property (screen

objects), 708
URIs (universal resource identifiers), 168,

461, 837
URL property (document objects), 554
url property (META objects), 660
URLs (uniform resource locators), 168, 461,

837
BASE elements, 200–201

URN attribute (A elements), 182
urn property (A objects), 482
USEMAP attribute

IMG elements, 312
INPUT elements, 323
OBJECT elements, 372

useMap property (IMG objects), 621
userAgent property (navigator objects), 665
userLanguage property (navigator

objects), 666
userProfile objects, 810–813
userProfile property (navigator

objects), 666
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

1072 Index
V
VALIGN attribute

CAPTION elements, 221
COL elements, 228
COLGROUP elements, 233
FIELDSET elements, 260
TBODY elements, 420
TD elements, 429
TFOOT elements, 438
TH elements, 446
THEAD elements, 449
TR elements, 454

vAlign property
CAPTION objects, 528
COL, COLGROUP objects, 538
TBODY objects, 766
TD objects, 771
TFOOT objects, 796
TH objects, 801
THEAD objects, 803
TR objects, 808

VALUE attribute
BUTTON elements, 219
INPUT elements, 323
LI elements, 341
OPTION elements, 377
PARAM elements, 381

value property
BUTTON objects, 519
button objects, 524
checkbox objects, 535
fileUpload objects, 585
hidden objects, 605
LI objects, 639
OPTION objects, 678
password objects, 686
radio objects, 698
reset objects, 702
SELECT objects, 717
submit objects, 753
text objects, 776
TEXTAREA objects, 784

VALUETYPE attribute (PARAM
elements), 382

VAR elements, 457–458
var keyword (JavaScript), 977
VAR objects, 483–484
variable content (see dynamic content)

variable positioning (see dynamic
positioning)

variable-length containers, 119–125
VERSION attribute (HTML elements), 289
versions of DHTML, 4–5
vertical-align attribute (CSS), 902
verticalAlign property (style objects), 745
visibility attribute (CSS, JSS), 74, 78, 903
VISIBILITY attribute (LAYER elements), 74,

302, 337
visibility property

layer objects, 84, 630
style objects, 84, 745

visible property (locationbar, menubar,
personalbar, scrollbars, statusbar,
toolbar objects), 648

VLINK attribute (BODY elements), 213
vLink property (BODY objects), 513
vlinkColor property (document

objects), 555
voice-family attribute (CSS), 904
void operator (JavaScript), 967
VOLUME attribute (BGSOUND

elements), 205
volume attribute (CSS), 904
volume property (BGSOUND objects), 504
VSPACE attribute

APPLET elements, 191
EMBED elements, 254
IMG elements, 308
MARQUEE elements, 352
OBJECT elements, 370

vspace property
APPLET objects, 490
IMG objects, 619
MARQUEE objects, 653
OBJECT objects, 672

W
watch() (JavaScript), 975
WBR elements, 458

NOBR elements vs., 458
web browsers

browser flags, 86–87
common denominator design, 24–27

scripting position, 88–89
content branching, 21–24

binding handlers to objects, 137
scripting position, 87
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

Index 1073
incompatibilities between, 12–15
client- and offset- properties, 463
Internet Explorer 4 DHTML, 19–21
keyboard character codes, 152
mouse button identifiers, 152
Navigator 4 DHTML, 15–19
style differences, 62–64
(see also cross-platform strategies)

prerelease (beta) versions, 4
web pages (see pages)
WEIGHT attribute (FONT elements), 263
which property (events), 143, 151, 577
while statement (JavaScript), 971
white-space attribute (CSS), 905
whiteSpace attribute (JSS), 905
whitespace, hardcoded, 398–399

(see also line breaks)
widows attribute (CSS), 905
WIDTH attribute

APPLET elements, 190
COL elements, 229
COLGROUP elements, 233
EMBED elements, 253
FRAME elements, 271
HR elements, 288
IFRAME elements, 294
ILAYER elements, 300
IMG elements, 307
LAYER elements, 74, 118, 334
MARQUEE elements, 351
MULTICOL elements, 359
OBJECT elements, 369
PRE elements, 384
SPACER elements, 398
TABLE elements, 416
TD elements, 427
TH elements, 444

width attribute (CSS, JSS), 74, 906
width property

APPLET objects, 490
COL, COLGROUP objects, 538
HR objects, 609
IMG objects, 618
MARQUEE objects, 653
OBJECT objects, 672
screen objects, 707

style objects, 736
TABLE objects, 759
TD objects, 770
TH objects, 800

window objects, 813–835
windows

centering objects in, 93–96
creating and writing to, 106–108
moving objects in, 96–101
resizing in Navigator 4, 93

with statement (JavaScript), 56, 972
word-spacing attribute (CSS), 907
word wrap, tagging for, 458
WRAP attribute

PRE elements, 385
TEXTAREA elements, 435

wrap property (TEXTAREA objects), 784
wrapping elements, 71
write(), writeln() (document

objects), 102–104, 561

X
x property

event objects, 147, 577
IMG objects, 621

XMP elements, 459
XOR (^) operator, 959

Y
y property

event objects, 147, 577
IMG objects, 621

Z
Z-INDEX attribute

ILAYER elements, 302
LAYER elements, 74, 337

z-index attribute (CSS), 907
zero-fill right-shift (>>>) operator, 960
z-index attribute (CSS-P), 74, 79
zIndex attribute (JSS), 907
zIndex property, 84

layer objects, 631
style objects, 745
Dynamic HTML: The Definitive Reference, eMatter Edition
Copyright © 1999 Danny Goodman. All rights reserved.

About the Author
Danny Goodman has been an active participant on the editorial side of the
personal computer and consumer electronics revolutions since the late 1970s. His
articles in the field have appeared in some of the most prestigious general-audi-
ence publications, and he has written dozens of feature articles for leading
computer publications, such as PC Magazine, PC World, Macworld, and MacUser.
He is currently a monthly columnist for Netscape Communication’s online devel-
oper newsletter, View Source.

Danny is also the author of more than two dozen books on computing and infor-
mation superhighway technologies. The Complete HyperCard Handbook, published
by Bantam Books in 1987, claimed honors as the bestselling Macintosh book and
fastest selling computer book in the history of the industry. That book is now in its
fourth edition and has been translated into more than a half-dozen languages. His
HyperCard Handbook and HyperCard Developer’s Guide have both received Best
Product-Specific Book awards from the Computer Press Association (1987 and
1988, respectively). Danny Goodman’s Macintosh Handbook (1993), a radical
departure from traditional computer books, won Danny’s third CPA award.

To keep up to date on the needs of web developers for his recent books and
Netscape articles, Danny is also a programming and design consultant to some of
the industry’s top intranet application development groups.

Danny, 47, was born in Chicago, Illinois. He earned a B.A. and M.A. in Classical
Antiquity from the University of Wisconsin, Madison. He moved to California in
1983 and now lives in a small San Francisco area coastal community, where he
alternates views between computer screens and the Pacific Ocean.

Colophon
The animal featured on the cover of Dynamic HTML: The Definitive Reference is a
flamingo. Flamingos are easily identifiable by their long legs and neck, turned-
down bill, and bright color, which ranges from white to pink to bright red. There
are five living species of flamingo, encompassing the family Phoenicopteridae.
Flamingos are found in Asia, Africa, Europe, South American, and the Caribbean
islands. Although wild flamingos are sometimes seen in Florida, they do not natu-
rally nest in the United States.

Flamingos feed on small crustaceans, algae, and other unicellular organisms. Their
unusually shaped bills provide flamingos with a unique food-filtering system. A
flamingo eats by placing its head upside down below the water surface and

sucking in water and small food particles through the serrated edges of its bill. The
flamingo then pushes its thick, fleshy tongue forward, forcing the water out but
trapping the food particles on lamellae inside the beak.

As a result of this filtration system, flamingos can eat foods few other birds can,
and thus can live in otherwise inhospitable salt lakes and brackish waters. The
filtration technique varies in the different species of flamingo. As a result of this
differentiation, several species can live in the same water source and not disturb
each other.

Flamingos are very gregarious birds, and they nest in colonies that sometimes
consist of thousands of birds. Males and females together build nests. The nests
are composed of mud, stones, and shells, shaped in a cone formation. One, and
occasionally two, eggs are laid in a shallow depression at the top of the cone.
Both sexes incubate the eggs for 27 to 31 days.

In the wild, flamingos tend to live in remote, difficult-to-reach areas. In the
suburbs, however, they stand guard over many a front lawn.

O’Reilly’s production group put the finishing touches on this book. Mary Anne
Weeks Mayo was the project manager and production editor. Deborah English and
Kristine Simmons copyedited the book. Norma Emory and Lunaea Hougland
served as proofreaders, and quality was assured by Sheryl Avruch. Seth Maislin
created the index. Kathleen Wilson designed the back cover.

Edie Freedman designed the cover of this book, using a 19th-century engraving
from the Dover Pictorial Archive. The cover layout was produced with Quark-
XPress 3.32 using the ITC Garamond font.

The inside layout was designed by Nancy Priest and formatted in FrameMaker 5.0
by Mike Sierra using the ITC Garamond Light and Garamond Book fonts. The
screenshots that appear in the book were created in Adobe Photoshop 4 and the
illustrations were created in Macromedia Freehand 7.0 by Robert Romano. This
colophon was written by Clairemarie Fisher O’Leary.

The production editors for DHTML: The Definitive Reference, eMatter Edition were
Ellie Cutler and Jeff Liggett. Linda Walsh was the product manager. Kathleen
Wilson provided design support. Lenny Muellner, Mike Sierra, Erik Ray, and Benn
Salter provided technical support. This eMatter Edition was produced with
FrameMaker 5.5.6.

	Copyright
	Table of Contents
	Preface
	What You Should Already Know
	Contents of This Book
	Conventions Used in This Book
	Request for Comments
	Acknowledgments

	Part I - Applying Dynamic HTML
	Chapter 1 - The State of the Art
	The Standards Alphabet Soup
	Version Headaches
	HTML 4.0
	Style Sheets
	Document Object Model
	ECMAScript
	A Fragmenting World

	Chapter 2 - Cross-Platform Compromises
	What Is a Platform?
	Navigator 4 DHTML
	Internet Explorer 4 DHTML
	Cross-Platform Strategies
	Cross-Platform Expectations

	Chapter 3 - Adding Style Sheets to Documents
	Rethinking HTML Structures
	Understanding Block-Level Elements
	Two Types of Containment
	CSS Platforms
	Of Style Sheets, Elements, Attributes, and Values
	Embedding Style Sheets
	Subgroup Selectors
	Attribute Selector Futures: CSS2
	JavaScript Style Sheet Syntax
	Cascade Precedence Rules
	Cross-Platform Style Differences

	Chapter 4 - Adding Dynamic Positioning to Documents
	Creating Positionable Elements
	Positioning Attributes
	Changing Attribute Values via Scripting
	Cross-Platform Position Scripting
	Handling Navigator Window Resizing
	Common Positioning Tasks

	Chapter 5 - Making Content Dynamic
	Writing Variable Content
	Writing to Other Frames and Windows
	Links to Multiple Frames
	Image Swapping
	Changing Tag Attribute Values
	Changing Style Attribute Values
	Changing Content

	Chapter 6 - Scripting Events
	Basic Events
	Binding Event Handlers to Elements
	Event Handler Return Values
	Event Propagation
	Examining Modifier Keys
	Examining Mouse Buttons and Key Codes
	Dragging Elements
	Event Futures

	Chapter 7 - Looking Ahead to HTML 4.0
	New Directions Overview
	New Elements
	Deprecated Elements
	Obsolete Elements
	New Element Attributes
	Deprecated Attributes

	Part II - Dynamic HTML Reference
	Chapter 8 - HTML Reference
	Attribute Value Types
	Common HTML Attributes
	CLASS
	DIR
	ID
	LANG
	LANGUAGE
	STYLE
	TITLE

	Alphabetical Tag Reference
	<A>
	ACCESSKEY
	CHARSET
	COORDS
	DATAFLD
	DATASRC
	HREF
	HREFLANG
	ID
	METHODS
	NAME
	REL
	REV
	SHAPE
	TABINDEX
	TARGET
	TYPE
	URN

	<ABBR>
	TITLE

	<ACRONYM>
	TITLE

	<ADDRESS>
	<APPLET>
	ALIGN
	ALT
	ARCHIVE
	CODE
	CODEBASE
	DATAFLD, DATASRC
	HEIGHT, WIDTH
	HSPACE, VSPACE
	ID
	MAYSCRIPT
	NAME
	SRC
	VSPACE
	WIDTH

	<AREA>
	ACCESSKEY
	ALT
	COORDS
	HREF
	NAME
	NOHREF
	SHAPE
	TABINDEX
	TARGET

	
	<BASE>
	HREF
	TARGET

	<BASEFONT>
	COLOR
	FACE
	NAME
	SIZE

	<BDO>
	<BGSOUND>
	BALANCE
	LOOP
	SRC
	VOLUME

	<BIG>
	<BLINK>
	<BLOCKQUOTE>
	CITE

	<BODY>
	ALINK
	BACKGROUND
	BGCOLOR
	BGPROPERTIES
	BOTTOMMARGIN
	LEFTMARGIN
	LINK
	RIGHTMARGIN
	SCROLL
	TEXT
	TOPMARGIN
	VLINK

	

	CLEAR

	<BUTTON>
	ACCESSKEY
	DATAFLD
	DATAFORMATAS
	DATASRC
	DISABLED
	NAME
	TABINDEX
	TYPE
	VALUE

	<CAPTION>
	ALIGN
	VALIGN

	<CENTER>
	<CITE>
	<CODE>
	<COL>
	ALIGN
	CHAR
	CHAROFF
	REPEAT
	SPAN
	VALIGN
	WIDTH

	<COLGROUP>
	ALIGN
	CHAR
	CHAROFF
	SPAN
	VALIGN
	WIDTH

	<COMMENT>
	<DD>
	
	CITE
	DATETIME
	TITLE

	<DFN>
	<DIR>
	COMPACT

	<DIV>
	ALIGN
	CHARSET
	DATAFLD
	DATAFORMATAS
	DATASRC
	HREF
	HREFLANG
	MEDIA
	REL
	REV
	TARGET
	TITLE
	TYPE

	<DL>
	COMPACT

	<DT>
	
	<EMBED>
	ALIGN
	ALT
	BORDER
	CODE
	CODEBASE
	FRAMEBORDER
	HEIGHT, WIDTH
	HIDDEN
	HSPACE, VSPACE
	ID
	NAME
	PALETTE
	PLUGINSPAGE
	PLUGINURL
	SRC
	TYPE
	UNITS
	VSPACE
	WIDTH

	<FIELDSET>
	ALIGN
	TITLE
	VALIGN

	
	COLOR
	FACE
	ID
	POINT-SIZE
	SIZE
	STYLE
	WEIGHT

	<FORM>
	ACCEPT
	ACCEPT-CHARSET
	ACTION
	ENCTYPE
	METHOD
	NAME
	TARGET

	<FRAME>
	BORDERCOLOR
	DATAFLD
	DATASRC
	FRAMEBORDER
	HEIGHT, WIDTH
	LONGDESC
	MARGINHEIGHT, MARGINWIDTH
	NAME
	NORESIZE
	SCROLLING
	SRC
	WIDTH

	<FRAMESET>
	BORDER
	BORDERCOLOR
	COLS
	FRAMEBORDER
	FRAMESPACING
	ROWS
	STYLE

	<H1>, <H2>, <H3>, <H4>, <H5>, <H6>
	ALIGN

	<HEAD>
	CLASS
	ID
	PROFILE
	TITLE

	<HR>
	ALIGN
	COLOR
	NOSHADE
	SIZE
	WIDTH

	<HTML>
	TITLE
	VERSION

	<I>
	<IFRAME>
	ALIGN
	BORDER
	BORDERCOLOR
	DATAFLD
	DATASRC
	FRAMEBORDER
	FRAMESPACING
	HEIGHT, WIDTH
	HSPACE, VSPACE
	LONGDESC
	MARGINHEIGHT, MARGINWIDTH
	NAME
	NORESIZE
	SCROLLING
	SRC
	STYLE
	VSPACE
	WIDTH

	<ILAYER>
	ABOVE
	BACKGROUND
	BELOW
	BGCOLOR
	CLIP
	HEIGHT, WIDTH
	ID
	LEFT, TOP
	SRC
	TOP
	VISIBILITY
	WIDTH
	Z-INDEX

	
	ALIGN
	ALT
	BORDER
	DATAFLD
	DATASRC
	DYNSRC
	HEIGHT, WIDTH
	HSPACE, VSPACE
	ID
	ISMAP
	LONGDESC
	LOOP
	LOWSRC
	NAME
	SRC
	START
	STYLE
	USEMAP
	VSPACE
	WIDTH

	<INPUT>
	ACCEPT
	ACCESSKEY
	ALIGN
	ALT
	BORDER
	CHECKED
	DATAFLD
	DATASRC
	DISABLED
	ID
	MAXLENGTH
	NAME
	READONLY
	SIZE
	SRC
	TABINDEX
	TYPE
	USEMAP
	VALUE

	<INS>
	CITE
	DATETIME

	<ISINDEX>
	PROMPT

	<KBD>
	<KEYGEN>
	CHALLENGE
	NAME

	<LABEL>
	ACCESSKEY
	DATAFLD
	DATAFORMATAS
	DATASRC
	FOR
	TABINDEX

	<LAYER>
	ABOVE
	BACKGROUND
	BELOW
	BGCOLOR
	CLIP
	HEIGHT, WIDTH
	ID
	LEFT, TOP
	PAGEX, PAGEY
	SRC
	TOP
	VISIBILITY
	WIDTH
	Z-INDEX

	<LEGEND>
	ACCESSKEY
	ALIGN
	TITLE

	
	TYPE
	VALUE

	<LINK>
	CHARSET
	DISABLED
	HREF
	HREFLANG
	MEDIA
	REL
	REV
	SRC
	TARGET
	TYPE

	<LISTING>
	<MAP>
	NAME

	<MARQUEE>
	BEHAVIOR
	BGCOLOR
	DATAFLD
	DATAFORMATAS
	DATASRC
	DIRECTION
	HEIGHT, WIDTH
	HSPACE, VSPACE
	LOOP
	SCROLLAMOUNT
	SCROLLDELAY
	TRUESPEED
	VSPACE
	WIDTH

	<MENU>
	COMPACT

	<META>
	CONTENT
	HTTP-EQUIV
	NAME
	SCHEME

	<MULTICOL>
	COLS
	GUTTER
	WIDTH

	<NOBR>
	<NOEMBED>
	<NOFRAMES>
	<NOLAYER>
	<NOSCRIPT>
	<OBJECT>
	ACCESSKEY
	ALIGN
	ARCHIVE
	BORDER
	CLASSID
	CODE
	CODEBASE
	CODETYPE
	DATA
	DATAFLD
	DATASRC
	DECLARE
	EXPORT
	HEIGHT, WIDTH
	HSPACE, VSPACE
	NAME
	SHAPES
	STANDBY
	TABINDEX
	TYPE
	USEMAP
	VSPACE
	WIDTH

	
	COMPACT
	START
	TYPE

	<OPTGROUP>
	DISABLED
	LABEL

	<OPTION>
	DISABLED
	LABEL
	SELECTED
	VALUE

	<P>
	ALIGN

	<PARAM>
	DATAFLD
	DATAFORMATAS
	DATASRC
	NAME
	TYPE
	VALUE
	VALUETYPE

	<PLAINTEXT>
	<PRE>
	COLS
	WIDTH
	WRAP

	<Q>
	CITE

	<S>
	<SAMP>
	<SCRIPT>
	CHARSET
	DEFER
	EVENT
	FOR
	LANGUAGE
	SRC
	TYPE

	<SELECT>
	ACCESSKEY
	ALIGN
	DATAFLD
	DATASRC
	DISABLED
	MULTIPLE
	NAME
	SIZE
	TABINDEX

	<SERVER>
	<SMALL>
	<SPACER>
	ALIGN
	HEIGHT, WIDTH
	SIZE
	TYPE
	WIDTH

	
	CHARSET
	DATAFLD
	DATAFORMATAS
	DATASRC
	HREF
	HREFLANG
	MEDIA
	REL
	REV
	TARGET
	TYPE

	<STRIKE>
	
	<STYLE>
	DISABLED
	MEDIA
	TYPE

	<SUB>
	<SUP>
	<TABLE>
	ALIGN
	BACKGROUND
	BGCOLOR
	BORDER
	BORDERCOLOR
	BORDERCOLORDARK, BORDERCOLORLIGHT
	CELLPADDING
	CELLSPACING
	COLS
	DATAPAGESIZE
	DATASRC
	DIR
	FRAME
	HEIGHT, WIDTH
	RULES
	SUMMARY
	WIDTH

	<TBODY>
	ALIGN
	BGCOLOR
	CHAR
	CHAROFF
	VALIGN

	<TD>
	ABBR
	ALIGN
	AXIS
	BACKGROUND
	BGCOLOR
	BORDERCOLOR
	BORDERCOLORDARK, BORDERCOLORLIGHT
	CHAR
	CHAROFF
	COLSPAN
	DATAFLD
	HEADERS
	HEIGHT, WIDTH
	NOWRAP
	ROWSPAN
	SCOPE
	VALIGN
	WIDTH

	<TEXTAREA>
	ACCESSKEY
	ALIGN
	COLS
	DATAFLD
	DATASRC
	DISABLED
	NAME
	READONLY
	ROWS
	STYLE
	TABINDEX
	WRAP

	<TFOOT>
	ALIGN
	BGCOLOR
	CHAR
	CHAROFF
	VALIGN

	<TH>
	ABBR
	ALIGN
	AXIS
	BACKGROUND
	BGCOLOR
	BORDERCOLOR
	BORDERCOLORDARK, BORDERCOLORLIGHT
	CHAR
	CHAROFF
	COLSPAN
	DATAFLD
	HEADERS
	HEIGHT, WIDTH
	NOWRAP
	ROWSPAN
	SCOPE
	VALIGN
	WIDTH

	<THEAD>
	ALIGN
	BGCOLOR
	CHAR
	CHAROFF
	VALIGN

	<TITLE>
	<TR>
	ALIGN
	BGCOLOR
	BORDERCOLOR
	BORDERCOLORDARK, BORDERCOLORLIGHT
	CHAR
	CHAROFF
	VALIGN

	<TT>
	<U>
	
	COMPACT
	TYPE

	<VAR>
	<WBR>
	<XMP>

	Chapter 9 - Document Object Reference
	Property Value Types
	About client- and offset- Properties
	Event Handler Properties
	Common Object Properties, Methods, and Collections
	className
	document
	id
	innerHTML
	innerText
	isTextEdit
	lang
	language
	offsetHeight, offsetWidth
	offsetLeft, offsetTop
	offsetParent
	outerHTML
	outerText
	parentElement
	parentTextEdit
	sourceIndex
	style
	tagName
	title
	click()
	contains()
	getAttribute()
	insertAdjacentHTML()
	insertAdjacentText()
	removeAttribute()
	scrollIntoView()
	setAttribute()
	all[]
	children[]
	filters[]

	Alphabetical Object Reference
	A
	accessKey
	dataFld
	dataSrc
	hash
	host
	hostname
	href
	Methods
	mimeType
	name
	nameProp
	pathname
	port
	protocol
	protocolLong
	recordNumber
	rel
	rev
	search
	tabIndex
	target
	urn
	blur()
	focus()

	ACRONYM, CITE, CODE, DFN, EM, KBD, SAMP, STRONG, VAR
	ADDRESS
	all
	length
	item()
	tags()

	anchors
	length

	APPLET
	accessKey
	align
	altHTML
	code
	codeBase
	dataFld
	dataSrc
	height, width
	hspace, vspace
	name
	src
	tabIndex
	vspace
	width
	blur()
	focus()

	applets
	length

	AREA
	alt
	coords
	hash
	host
	hostname
	href
	noHref
	pathname
	port
	protocol
	search
	shape
	tabIndex
	target
	blur()
	focus()

	areas
	length

	B, BIG, I, S, SMALL, STRIKE, TT, U
	BASE
	href
	target

	BASEFONT
	color
	face
	size

	BDO
	dir

	BGSOUND
	balance
	loop
	src
	volume

	BIG
	BLOCKQUOTE
	cite

	BODY
	accessKey
	aLink
	background
	bgColor
	bgProperties
	bottomMargin
	clientHeight, clientWidth
	clientLeft, clientTop
	leftMargin
	link
	noWrap
	recordNumber
	rightMargin
	scroll
	scrollHeight, scrollWidth
	scrollLeft, scrollTop
	tabIndex
	text
	topMargin
	vLink
	createTextRange()

	BR
	clear

	BUTTON
	accessKey
	clientHeight, clientWidth
	clientLeft, clientTop
	dataFld
	dataFormatAs
	dataSrc
	disabled
	form
	name
	scrollHeight, scrollWidth
	scrollLeft, scrollTop
	status
	tabIndex
	type
	value
	blur()
	createTextRange()
	focus()

	button
	accessKey
	dataFld
	dataSrc
	disabled
	form
	name
	recordNumber
	tabIndex
	type
	value
	blur()
	focus()
	handleEvent()

	CAPTION
	align
	clientHeight, clientWidth
	clientLeft, clientTop
	scrollHeight, scrollWidth
	scrollLeft, scrollTop
	vAlign
	blur()
	focus()

	cells
	length

	CENTER
	checkbox
	accessKey
	checked
	dataFld
	dataSrc
	defaultChecked
	disabled
	form
	indeterminate
	name
	recordNumber
	status
	tabIndex
	type
	value
	blur()
	focus()
	handleEvent()

	children
	length

	CITE
	CODE
	COL, COLGROUP
	align
	span
	vAlign
	width

	COMMENT
	text

	DD
	noWrap

	DEL
	cite
	dateTime

	DFN
	DIR
	DIV
	align
	clientHeight, clientWidth
	dataFld
	dataFormatAs
	dataSrc
	scrollHeight, scrollWidth
	scrollLeft, scrollTop
	blur()
	focus()

	DL
	compact

	document
	activeElement
	alinkColor
	bgColor
	body
	charset
	cookie
	defaultCharset
	domain
	expando
	fgColor
	lastModified
	linkColor
	location
	parentWindow
	readyState
	referrer
	selection
	title
	URL
	vlinkColor
	captureEvents()
	clear()
	close()
	createElement()
	createStyleSheet()
	elementFromPoint()
	execCommand()
	getSelection()
	handleEvent()
	open()
	queryCommandEnabled()
	queryCommandIndeterm()
	queryCommandState()
	queryCommandSupported()
	queryCommandText()
	queryCommandValue()
	releaseEvents()
	routeEvent()
	write(), writeln()
	anchors[]
	applets[]
	classes[]
	embeds[]
	forms[]
	frames[]
	ids[]
	images[]
	links[]
	plugins[]
	scripts[]
	styleSheets[]
	tags[]

	DT
	noWrap

	elements
	length

	EM
	EMBED
	accessKey
	clientHeight, clientWidth
	clientLeft, clientTop
	hidden
	name
	palette
	pluginspage
	readyState
	src
	tabIndex
	units
	blur()
	focus()

	embeds
	length

	event
	altKey
	button
	cancelBubble
	clientX, clientY
	ctrlKey
	data
	fromElement
	keyCode
	layerX, layerY
	modifiers
	offsetX, offsetY
	pageX, pageY
	reason
	returnValue
	screenX, screenY
	shiftKey
	srcElement
	srcFilter
	target
	toElement
	type
	which
	x, y

	Event
	external
	FIELDSET
	accessKey
	align
	clientHeight, clientWidth
	clientLeft, clientTop
	scrollHeight, scrollWidth
	scrollLeft, scrollTop
	tabIndex
	blur()
	focus()

	fileUpload
	accessKey
	disabled
	form
	name
	size
	tabIndex
	type
	value
	blur()
	focus()
	handleEvent()
	select()

	filters
	length
	item()

	FONT
	color
	face
	size

	FORM
	action
	encoding
	length
	method
	name
	target
	handleEvent()
	reset()
	submit()
	elements[]

	forms
	length
	item()

	FRAME
	borderColor
	dataFld
	dataSrc
	frameBorder
	height
	marginHeight, marginWidth
	name
	noResize
	scrolling
	src

	frames
	length
	item()

	FRAMESET
	border
	borderColor
	cols
	frameBorder
	frameSpacing
	rows

	H1, H2, H3, H4, H5, H6
	align

	HEAD
	hidden
	dataFld property
	dataSrc
	disabled
	form
	name
	type
	value

	history
	current, next, previous
	length
	back()
	forward()
	go()

	HR
	align
	color
	noShade
	size
	width

	HTML
	I
	IFRAME
	align
	dataFld
	dataSrc
	frameBorder
	frameSpacing
	hspace, vspace
	marginHeight, marginWidth
	name
	noResize
	scrolling
	src
	tabIndex
	vspace

	images
	length
	item()

	IMG
	align
	alt
	border
	complete
	dataFld
	dataSrc
	dynsrc
	height, width
	href
	hspace, vspace
	isMap
	loop
	lowsrc
	name
	protocol
	prototype
	readyState
	useMap
	vspace
	width
	x, y
	blur()
	focus()

	INPUT
	INS
	cite
	dateTime

	ISINDEX
	prompt

	KBD
	LABEL
	accessKey
	dataFld
	dataFormatAs
	dataSrc
	htmlFor

	layer
	above, below
	background
	bgColor
	clip
	hidden
	left
	name
	pageX, pageY
	parentLayer
	siblingAbove, siblingBelow
	src
	top
	visibility
	zIndex
	captureEvents()
	handleEvent()
	load()
	moveAbove(), moveBelow()
	moveBy()
	moveTo(), moveToAbsolute()
	releaseEvents()
	resizeBy()
	resizeTo()
	routeEvent()

	LEGEND
	accessKey
	align
	clientHeight, clientWidth
	clientLeft, clientTop
	scrollHeight, scrollWidth
	scrollLeft, scrollTop
	blur()
	focus()

	LI
	type
	value

	LINK
	disabled
	href
	media
	readyState
	rel
	rev
	type

	links
	length

	LISTING
	location
	hash
	host
	hostname
	href
	pathname
	port
	protocol
	search
	assign()
	reload()
	replace()

	locationbar, menubar, personalbar, scrollbars, statusbar, toolbar
	visible

	MAP
	name
	areas[]

	MARQUEE
	accessKey
	behavior
	bgColor
	clientHeight, clientWidth
	clientLeft, clientTop
	dataFld
	dataFormatAs
	dataSrc
	direction
	height, width
	hspace, vspace
	loop
	recordNumber
	scrollAmount
	scrollDelay
	scrollHeight, scrollWidth
	scrollLeft, scrollTop
	tabIndex
	trueSpeed
	vspace
	width
	blur()
	focus()
	start()
	stop()

	MENU
	menubar
	META
	charset
	content
	httpEquiv
	url

	mimeType
	description
	enabledPlugin
	suffixes
	type

	navigator
	appCodeName
	appMinorVersion
	appName
	appVersion
	browserLanguage
	cookieEnabled
	cpuClass
	language
	onLine
	platform
	systemLanguage
	userAgent
	userLanguage
	userProfile
	javaEnabled()
	preference()
	taintEnabled()

	NOFRAMES, NOSCRIPT
	dir

	OBJECT
	accessKey
	align
	altHtml
	classid
	code
	codeBase
	codeType
	data
	dataFld
	dataSrc
	form
	height, width
	hspace, vspace
	name
	object
	readyState
	tabIndex
	type
	vspace
	width

	OL
	compact
	start
	type

	OPTION
	defaultSelected
	index
	selected
	text
	value

	options
	length
	add()
	item()
	remove()

	P
	align

	password
	accessKey
	dataFld
	dataSrc
	defaultValue
	disabled
	form
	maxLength
	name
	readOnly
	size
	tabIndex
	type
	value
	blur()
	focus()
	handleEvent()
	select()

	personalbar
	PLAINTEXT
	plugin
	description
	filename
	length
	name
	refresh()

	plugins
	length
	item()

	PRE
	Q
	radio
	accessKey
	checked
	dataFld
	dataSrc
	defaultChecked
	disabled
	form
	name
	recordNumber
	status
	tabIndex
	type
	value
	blur()
	focus()
	handleEvent()

	reset
	accessKey
	disabled
	form
	name
	tabIndex
	type
	value
	blur()
	focus()
	handleEvent()

	rows
	length
	item()
	tags()

	rule
	readOnly
	selectorText

	rules
	length

	S
	SAMP
	screen
	availHeight, availWidth
	availLeft, availTop
	bufferDepth
	colorDepth
	height, width
	pixelDepth
	updateInterval
	width

	SCRIPT
	defer
	event
	htmlFor
	readyState
	src
	text
	type

	scripts
	length
	item()

	scrollbars
	SELECT
	accessKey
	dataFld
	dataSrc
	disabled
	form
	length
	multiple
	name
	recordNumber
	selectedIndex
	tabIndex
	type
	value
	blur()
	focus()
	options[]
	tags[]

	selection
	type
	clear()
	createRange()
	empty()

	SMALL
	SPAN
	dataFld
	dataFormatAs
	dataSrc
	scrollLeft, scrollTop
	blur()
	focus()

	statusbar
	STRIKE
	STRONG
	STYLE
	disabled
	media
	readyState
	type

	style
	background
	backgroundAttachment
	backgroundColor
	backgroundImage
	backgroundPosition
	backgroundPositionX, backgroundPositionY
	backgroundRepeat
	border
	borderBottom, borderLeft, borderRight, borderTop
	borderBottomColor, borderLeftColor, borderRightColor, borderTopColor
	borderBottomStyle, borderLeftStyle, borderRightStyle, borderTopStyle
	borderBottomWidth, borderLeftWidth, borderRightWidth, borderTopWidth
	borderColor
	borderStyle
	borderWidth
	clear
	clip
	color
	cssText
	cursor
	display
	filter
	font
	fontFamily
	fontSize
	fontStyle
	fontVariant
	fontWeight
	height, width
	left
	letterSpacing
	lineHeight
	listStyle
	listStyleImage
	listStylePosition
	listStyleType
	margin
	marginBottom, marginLeft, marginRight, marginTop
	overflow
	padding
	paddingBottom, paddingLeft, paddingRight, paddingTop
	pageBreakAfter, pageBreakBefore
	pixelHeight, pixelWidth
	pixelLeft, pixelTop
	posHeight, posWidth
	position
	posLeft, posTop
	styleFloat
	textAlign
	textDecoration
	textDecorationBlink, textDecorationLineThrough, textDecorationNone, textDecorationOv...
	textIndent
	textTransform
	top
	verticalAlign
	visibility
	width
	zIndex

	styleSheet
	disabled
	href
	owningElement
	parentStyleSheet
	readOnly
	type
	addImport()
	addRule()
	imports[]
	rules[]

	SUB, SUP
	submit
	accessKey
	disabled
	form
	name
	tabIndex
	type
	value
	blur()
	focus()
	handleEvent()

	SUP
	TABLE
	align
	background
	bgColor
	border
	borderColor
	borderColorDark, borderColorLight
	caption
	cellPadding
	cellSpacing
	clientHeight, clientWidth
	cols
	dataFld
	dataPageSize
	dataSrc
	frame
	height, width
	recordNumber
	rules
	scrollHeight, scrollWidth
	scrollLeft, scrollTop
	tabIndex
	tFoot
	tHead
	width
	blur()
	focus()
	nextPage(), previousPage()
	refresh()
	rows()
	tBodies[]

	tags
	TBODY
	align
	bgColor
	vAlign
	rows[]

	TD
	align
	background
	bgColor
	borderColor
	borderColorDark, borderColorLight
	cellIndex
	clientHeight, clientWidth
	colSpan
	height, width
	noWrap
	rowSpan
	vAlign
	width
	blur()
	focus()

	text
	accessKey
	dataFld
	dataSrc
	defaultValue
	disabled
	form
	maxLength
	name
	readOnly
	recordNumber
	size
	tabIndex
	type
	value
	blur()
	createTextRange()
	focus()
	handleEvent()
	select()

	TEXTAREA
	accessKey
	clientHeight, clientWidth
	clientLeft, clientTop
	cols
	dataFld
	dataSrc
	defaultValue
	disabled
	form
	name
	readOnly
	rows
	scrollHeight, scrollWidth
	scrollLeft, scrollTop
	tabIndex
	type
	value
	wrap
	blur()
	createTextRange()
	focus()
	handleEvent()
	select()

	TextRange
	boundingHeight, boundingWidth
	boundingLeft, boundingTop
	htmlText
	text
	collapse()
	compareEndPoints()
	duplicate()
	execCommand()
	expand()
	findText()
	getBookmark(), moveToBookmark()
	inRange()
	isEqual()
	move()
	moveEnd(), moveStart()
	moveToBookmark()
	moveToElementText()
	moveToPoint()
	parentElement()
	pasteHTML()
	queryCommandEnabled()
	queryCommandIndeterm()
	queryCommandState()
	queryCommandSupported()
	queryCommandText()
	queryCommandValue()
	select()
	setEndPoint()

	TFOOT
	align
	bgColor
	vAlign
	rows[]

	TH
	align
	background
	bgColor
	borderColor
	borderColorDark, borderColorLight
	cellIndex
	clientHeight, clientWidth
	colSpan
	height, width
	noWrap
	rowSpan
	vAlign
	width
	blur()
	focus()

	THEAD
	align
	bgColor
	vAlign
	rows[]

	TITLE
	text

	toolbar
	TR
	align
	bgColor
	borderColor
	borderColorDark, borderColorLight
	clientHeight, clientWidth
	rowIndex
	sectionRowIndex
	vAlign
	blur()
	focus()
	cells[]

	TT
	U
	UL
	compact
	type

	userProfile
	addReadRequest()
	clearRequest()
	doReadRequest()
	getAttribute()

	VAR
	window
	clientInformation
	closed
	defaultStatus
	dialogArguments
	dialogHeight, dialogWidth
	dialogLeft, dialogTop
	event
	history
	innerHeight, innerWidth
	length
	location
	locationbar, menubar, personalbar, scrollbars, statusbar, toolbar
	name
	navigator
	offscreenBuffering
	opener
	outerHeight, outerWidth
	pageXOffset, pageYOffset
	parent
	returnValue
	screen
	self
	status
	top
	alert()
	back()
	blur()
	captureEvents()
	clearInterval()
	clearTimeout()
	close()
	confirm()
	disableExternalCapture(), enableExternalCapture()
	execScript()
	find()
	focus()
	forward()
	handleEvent()
	home()
	moveBy()
	moveTo()
	navigate()
	open()
	print()
	prompt()
	releaseEvents()
	resizeBy()
	resizeTo()
	routeEvent()
	scroll()
	scrollBy()
	scrollTo()
	setInterval()
	setTimeout()
	showHelp()
	showModalDialog()
	stop()
	frames[]

	XMP

	Chapter 10 - Style Sheet Attribute Reference
	Attribute Value Types
	Pseudo-Elements and Pseudo-Classes
	At-Rules
	Conventions
	Alphabetical Attribute Reference
	azimuth
	background
	background-attachment
	background-color
	background-image
	background-position
	background-repeat
	border
	border-bottom, border-left, border-right, border-top
	border-bottom-color, border-left-color, border-right-color, border-top-color
	border-bottom-style, border-left-style, border-right-style, border-top-style
	border-bottom-width, border-left-width, border-right-width, border-top-width
	border-collapse
	border-color
	border-style
	border-width
	bottom
	caption-side
	cell-spacing
	clear
	clip
	color
	column-span
	content
	cue
	cue-after, cue-before
	cursor
	direction
	display
	elevation
	filter
	float
	font
	font-family
	font-size
	font-size-adjust
	font-style
	font-variant
	font-weight
	height
	!important
	left
	letter-spacing
	line-height
	list-style
	list-style-image
	list-style-position
	list-style-type
	margin
	margin-bottom, margin-left, margin-right, margin-top
	marks
	max-height, min-height
	max-width, min-width
	orphans
	overflow
	padding
	padding-bottom, padding-left, padding-right, padding-top
	page-break-after, page-break-before
	pause
	pause-after, pause-before
	pitch
	pitch-range
	play-during
	position
	richness
	right
	row-span
	size
	speak
	speak-date
	speak-header
	speak-numeral
	speak-punctuation
	speak-time
	speech-rate
	stress
	table-layout
	text-align
	text-decoration
	text-indent
	text-shadow
	text-transform
	top
	vertical-align
	visibility
	voice-family
	volume
	white-space
	widows
	width
	word-spacing
	z-index

	Chapter 11 - JavaScript Core Language Reference
	Internet Explorer JScript Versions
	About Static Objects
	Core Objects
	Array
	length
	prototype
	concat()
	join()
	pop()
	push()
	reverse()
	shift()
	slice()
	sort()
	unshift()

	Boolean
	prototype
	toString()
	valueOf()

	Date
	prototype
	getDate()
	getDay()
	getFullYear()
	getHours()
	getMilliseconds()
	getMinutes()
	getMonth()
	getSeconds()
	getTime()
	getTimezoneOffset()
	getUTCDate()
	getUTCDay()
	getUTCFullYear()
	getUTCHours()
	getUTCMilliseconds()
	getUTCMinutes()
	getUTCMonth()
	getUTCSeconds()
	getYear()
	parse()
	setDate()
	setFullYear()
	setHours()
	setMilliseconds()
	setMinutes()
	setMonth()
	setSeconds()
	setTime()
	setUTCDate()
	setUTCFullYear()
	setUTCHours()
	setUTCMilliseconds()
	setUTCMinutes()
	setUTCMonth()
	setUTCSeconds()
	setYear()
	toGMTString()
	toLocaleString()
	toString()
	toUTCString()
	UTC()
	valueOf()

	Function
	arguments
	arity
	caller
	length
	prototype
	toString()
	valueOf()

	Math
	E
	LN2
	LN10
	LOG2E
	LOG10E
	PI
	SQRT1_2
	SQRT2
	abs()
	acos()
	asin()
	atan()
	atan2()
	ceil()
	cos()
	exp()
	floor()
	log()
	max()
	min()
	pow()
	random()
	round()
	sin()
	sqrt()
	tan()

	Number
	MAX_VALUE
	MIN_VALUE
	NaN
	NEGATIVE_INFINITY, POSITIVE_INFINITY
	prototype
	toString()
	valueOf()

	Object
	prototype
	toString()
	valueOf()

	RegExp
	input
	lastMatch
	lastParen
	leftContext, rightContext
	multiline
	$1, ..., $9

	regular expression
	global, ignoreCase
	lastIndex
	source
	compile()
	exec()
	test()

	String
	length
	prototype
	anchor()
	big()
	blink()
	bold()
	charAt()
	charCodeAt()
	concat()
	fixed()
	fontcolor()
	fontsize()
	fromCharCode()
	indexOf()
	italics()
	lastIndexOf()
	link()
	match()
	replace()
	search()
	slice()
	small()
	split()
	strike()
	sub()
	substr()
	substring()
	sup()
	toLowerCase(), toUpperCase()

	Operators
	+
	+=
	&&
	=
	&
	<<
	~
	|
	>>
	^
	>>>
	,
	?:
	--
	delete
	/
	==
	>
	>=
	===
	++
	!=
	<
	<=
	%
	*
	-
	new
	!==
	!
	||
	-
	typeof
	void

	Control Statements
	break
	continue
	do/while
	for
	for/in
	if
	if/else
	label
	return
	switch/case
	while
	with

	Global Functions
	escape()
	eval()
	isFinite()
	isNaN()
	parseInt()
	parseFloat()
	ScriptEngine()
	toString()
	unescape()
	unwatch(), watch()

	Statements
	//, /*...*/
	this
	var

	Part III - Cross References
	Chapter 12 - HTML Attribute Index
	Chapter 13 - Document Object Properties Index
	Chapter 14 - Document Object Methods Index
	Chapter 15 - Document Object Event Handlers Index

	Part IV - Appendixes
	Appendix A - Color Names and RGB Values
	Appendix B - HTML Character Entities
	Appendix C - Keyboard Event Character Values
	Appendix D - Internet Explorer Commands

	Glossary
	Index
	About the Author/Colophon

